Recent Advances in Herbal-Derived Products with Skin Anti-Aging Properties and Cosmetic Applications

Erika F Costa, Wagner V Magalhães, Luiz C Di Stasi, Erika F Costa, Wagner V Magalhães, Luiz C Di Stasi

Abstract

Although aesthetic benefits are a desirable effect of the treatment of skin aging, it is also important in controlling several skin diseases, mainly in aged people. The development of new dermocosmetics has rapidly increased due to consumers' demand for non-invasive products with lower adverse effects than those currently available on the market. Natural compounds of plant origin and herbal-derived formulations have been popularized due to their various safe active products, which act through different mechanisms of action on several signaling pathways for skin aging. Based on this, the aim of the review was to identify the recent advances in herbal-derived product research, including herbal formulations and isolated compounds with skin anti-aging properties. The studies evaluated the biological effects of herbal-derived products in in vitro, ex vivo, and in vivo studies, highlighting the effects that were reported in clinical trials with available pharmacodynamics data that support their protective effects to treat, prevent, or control human skin aging. Thus, it was possible to identify that gallic and ferulic acids and herbal formulations containing Thymus vulgaris, Panax ginseng, Triticum aestivum, or Andrographis paniculata are the most promising natural products for the development of new dermocosmetics with skin anti-aging properties.

Keywords: cosmetic; herbal formulations; natural products; skin anti-aging.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Extracellular matrix components (ECM) and skin elasticity. HA, Hyaluronic Acid; MMPs, Metalloproteinases; TIMPs, Tissue Inhibitor of Metalloproteinases. The illustration was drawn using BioRender software.
Figure 2
Figure 2
TGF-β signaling pathway. AP-1, factor activating protein 1; SBE, SMAD-binding elements; TGF-β, transforming growth factor beta; TβRI, TGF-β type I receptor; TβRII, TGF-β type II receptor. The illustration was drawn using BioRender software.
Figure 3
Figure 3
Activation pathway of Nrf2 and the production of endogenous antioxidant molecules. ARE, antioxidant response element; GST, glutathione S-transferase; HO-1, heme oxygenase-1; NQO1, NAD(P)H: quinone acceptor oxidoreductase 1; Nrf2, nuclear erythroid 2-related factor. The illustration was drawn using BioRender software.
Figure 4
Figure 4
Synthesis of melanin. DHI, 5,6-dihydroxyindole; DHICA, DHI-2-carboxylic acid; l-DOPA, to l-3,4-dihydroxyphenylalanine; TYR, tyrosinase; TYRP2, tyrosinase-related protein-2. The illustration was drawn using Biorender software.
Figure 5
Figure 5
Signaling pathway MITF expression. α-MSH, melanocyte-stimulating hormone; AC, adenylyl cyclase; ACTH, adrenocorticotropic hormone; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; CREB, cAMP response element; GDP, guanosine diphosphate; GTP, guanosine triphosphate; MCR1, melanocyte-specific melanocortin-1receptor; MITF, microphthalmia-associated transcription factor; PKA, protein kinase A; POMC, pro-opiomelanocortin; TYR, tyrosinase; TYRP-1, tyrosinase-related protein-1; TYRP-2, tyrosinase-related protein-2. The illustration was drawn using Biorender software.
Figure 6
Figure 6
Mitogen-activated protein kinase signaling pathway modulating mediators of the skin aging process. AP-1, activator protein 1; Nrf2, nuclear factor (erythroid-derived 2)-like 2; NF-κB, Nuclear factor-kappa B; MMP, metalloproteinases; NQO11, NADPH-quinone oxidoreductase 1; HO-1, heme oxygenase-1. The illustration was drawn using Biorender software.
Figure 7
Figure 7
Main natural compounds of plant origin with promising skin anti-aging properties. Chemical structures were drawn using ACD/ChemSketch software.

References

    1. Li Z., Zhang Z., Ren Y., Wang Y., Fang J., Yue H., Ma S., Guan F. Aging and age-related diseases: From mechanism to therapeutic strategies. Biogerontology. 2021;22:165–187. doi: 10.1007/s10522-021-09910-5.
    1. Franceschi C., Garagnani P., Morsiani C., Conte M., Santoro A., Grignolio A., Monti D., Capri M., Salvioli S. The continuum of aging and age-related diseases: Common mechanisms but different rates. Front. Med. 2018;5:61. doi: 10.3389/fmed.2018.00061.
    1. Magalhaes J.P., Stevens M., Thornton D. The business of anti-aging science. Trends Biotechnol. 2017;35:1062–1073. doi: 10.1016/j.tibtech.2017.07.004.
    1. Caversan J., Mussi L., Sufi B., Padovani G., Nazaro L., Camargo-Junior F.B., Magalhães W.V., Di Stasi L.C. A new phytocosmetic preparation from Thymus vulgaris stimulates adipogenesis and controls skin aging process: In vitro studies and topical effects in a double-blind placebo-controlled clinical trial. J. Cosmet. Dermatol. 2021;20:2190–2202. doi: 10.1111/jocd.13818.
    1. Ahmed I.A., Mikail M.A., Zamakshshari N., Abdulah A.S. Natural anti-aging skincare: Role and potential. Biogerontology. 2020;21:293–310. doi: 10.1007/s10522-020-09865-z.
    1. Zouboulis C.C., Ganceviciene R., Liakou A.I., Theodoridis A., Elewa R., Makrantonaki E. Aesthetic aspects of skin aging, prevention, and local treatment. Clin. Dermatol. 2019;37:365–372. doi: 10.1016/j.clindermatol.2019.04.002.
    1. Dai B., Pelton L.E. Exploring consumer’s skincare retails patronage. J. Retail. Cons. Serv. 2018;43:269–277. doi: 10.1016/j.jretconser.2018.04.002.
    1. AMR (Allied Market Research) Cosmetic Market by Category, Gender and Distribution Channel: Opportunity, Analysis and Industry Forecast, 2021–2027. [(accessed on 4 July 2022)]. Available online: .
    1. Ganceviciene R., Liakou A.I., Theodoridis A., Makrantonaki E., Zoubolis C.C. Skin anti-aging strategies. Dermato-Endocrinology. 2012;4:308–319. doi: 10.4161/derm.22804.
    1. Di Stasi L.C. Coumarin derivatives in Inflammatory Bowel Diseases. Molecules. 2021;26:422. doi: 10.3390/molecules26020422.
    1. Shin J.W., Kwon S.H., Choi J.Y., Na J.I., Huh C.H., Choi H.R., Park K.C. Molecular mechanisms of dermal aging and antiaging approaches. Int. J. Mol. Sci. 2019;20:2126. doi: 10.3390/ijms20092126.
    1. Tracy L.E., Minasian R.A., Caterson E.J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care. 2016;5:119–136. doi: 10.1089/wound.2014.0561.
    1. Suto M., Masutomi H., Ishihara K., Masaki H. A potato peel extract stimulates type I collagen synthesis via Akt and ERK signaling in normal human dermal fibroblasts. Biol. Pharm. Bull. 2019;42:1510–1516. doi: 10.1248/bpb.b19-00193.
    1. Pientaweeratch S., Panapisal V., Tansirikongkol A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and sylimarin: An in vitro comparative study for anti-aging applications. Pharmac. Biol. 2016;54:1865–1872. doi: 10.3109/13880209.2015.1133658.
    1. Cui N., Hu M., Khalil R.A. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017;147:1–73.
    1. Choi E.H. Aging of the skin barrier. Clin. Dermatol. 2019;37:336–345. doi: 10.1016/j.clindermatol.2019.04.009.
    1. Gu Y., Han J., Jiang C., Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020;59:101036. doi: 10.1016/j.arr.2020.101036.
    1. Krutmann J., Bouloc A., Sore G., Bernad B.A., Passeron T. The skin aging exposome. J. Dermatol. Sci. 2017;85:152–161. doi: 10.1016/j.jdermsci.2016.09.015.
    1. Im A.R., Kim Y.M., Chin Y.C., Chae S. Protective effects of compounds from Garcinia mangostana L. (mangosteen) against UVB damage in HaCaT cells and hairless mice. Int. J. Mol. Med. 2017;40:1941–1949. doi: 10.3892/ijmm.2017.3188.
    1. Ma R.J., Yang L., Bai X., Yuan M.Y., Wang Y.K., Xie Y., Hu J.M., Zhou J. Phenolic constituents with antioxidative, tyrosinase inhibitory and anti-aging activities from Dendrobium loddigesii Rolfe. Nat. Prod. Bioprosp. 2019;9:329–336. doi: 10.1007/s13659-019-00219-y.
    1. Morikawa T., Nagatomo A., Kitazawa K., Muraoka O., Kikuchi T., Yamada T., Tanaka R., Ninomiya K. Collagen synthesis-promoting effects of andiroba oil and its limonoid constituents in normal human dermal fibroblasts. J. Oleo Sci. 2018;67:1271–1277. doi: 10.5650/jos.ess18143.
    1. Tan H., Sonam T., Shimizu K. The potential of triterpenoids from loquat leaves (Eryobotrya japonica) for prevention and treatment of skin disorder. Int. J. Mol. Sci. 2017;18:1030. doi: 10.3390/ijms18051030.
    1. Henriet E., Jäger S., Tran C., Bastien P., Michelet J.F., Minondo A.M., Formanek F., Dalko-Csiba M., Lortat-Jacob H., Breton L., et al. A jasmonic acid derivative improves skin healing and induces changes in proteoglycan expression and glycosaminoglycan structure. Biochim. Biophys. Acta Gen. Subj. 2017;1861:2250–2260. doi: 10.1016/j.bbagen.2017.06.006.
    1. Kim J.E., Jang S.G., Lee C.H., Lee J.Y., Park H., Kim J.H., Lee S., Kim S.H., Park E.Y., Lee K.W., et al. Beneficial effects on skin health using polysaccharides from red ginseng by-product. J. Food Biochem. 2019;43:e12961. doi: 10.1111/jfbc.12961.
    1. Zdunska-Peciak K., Rotsztejn H. The effectiveness of ferulic acid and microneedling in reducing signs of photoaging: A split-face comparative study. Dermatol. Ther. 2020;33:e14000.
    1. Moreira L.C., Ávila R.I., Veloso D.F.M.C., Pedrosa T.N., Lima E.S., Couto R.O., Lima E.M., Batista A.C., Paula J.R., Valadares M.C. In vitro safety and efficacy of a complex botanical mixture of Eugenia dysenterica Dc. (Myrtaceae): Prospects for developing a new dermocosmetic product. Toxicol. Vitr. 2017;45:394–408. doi: 10.1016/j.tiv.2017.04.002.
    1. Song E., Chung H., Shin E., Jeong J.K., Han B.K., Choi H.J., Hwang J. Gastrodea elata Blume extract modulates antioxidant activity and ultraviolet A-irradiated skin aging in human dermal fibroblast cells. J. Med. Food. 2016;19:1057–1064. doi: 10.1089/jmf.2016.3722.
    1. Lourith N., Kanlayavattanakul M., Chaikul P., Chansriniyom C., Bunwatcharaphansakun P. In vitro and cellular activities of the selected fruit residues for skin aging treatment. An. Acad. Bras. Ciências. 2017;89:577–589. doi: 10.1590/0001-3765201720160849.
    1. Wu L., Chen C., Cheng C., Dai H., Ai Y., Lin C., Chung Y. Evaluation of tyronisase inhibitory, antioxidant, antimicrobial, and antiaging activities of Magnolia officinalis extracts after Aspergillus niger fermentation. Biomed. Res. Int. 2018;2018:5201786. doi: 10.1155/2018/5201786.
    1. Bose B., Choudhury H., Tandon P., Kumaria S. Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminate, a threatened orchid of nutraceutical importance. J. Photochem. Photobiol. B. 2017;173:686–695. doi: 10.1016/j.jphotobiol.2017.07.010.
    1. Shoko T., Naharaj V.J., Naidoo D., Tselanyane M., Nthambeleni R., Khorombi E., Apostolides Z. Anti-aging potential of extracts from Sclerocarya birrea (A. Rich.) Hochst and its chemical profiling by UPLC-Q-TOF-MS. BMC Complem. Alt. Med. 2018;18:54. doi: 10.1186/s12906-018-2112-1.
    1. Kwon K.R., Alam M.B., Park J.H., Kim T.H., Lee S.H. Attenuation of UVB-induced photo-aging by polyphenolic-rich Spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients. 2019;11:1341. doi: 10.3390/nu11061341.
    1. Sundaran I.K., Sarangi D.D., Sundararajan V., George S., Mohideen S.S. Poly herbal formulation with anti-elastase and antioxidant properties for skin anti-aging. BMC Complem. Alt. Med. 2018;18:33
    1. Lee H., Hong Y., Kwon S.H., Park J., Park J. Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice. Clin. Interv. Aging. 2016;11:1017–1026.
    1. Dieament G., Pereda M.D.C.V., Nogueira C., Eberlin S., Facchini G., Checon J.T., Cesar C.K., Mussi L., Polezel M.A., Oliveira-Junior D.M., et al. Antiageing mechanisms of a standardized supercritical CO2 preparation of Black Jack (Bidens Pilosa L.) in human fibroblasts and skin fragments. Altern. Med. 2015;2015:280529.
    1. Hwang E., Ngo H.T.T., Seo S.A., Park B., Zhang M., Yi T.H. Protective effect of dietary Alchemilla mollis on UVB-irradiated premature skin aging through regulation of transcription factor NFATc1 and Nrf2/ARE pathways. Phytomedicine. 2018;39:125–136. doi: 10.1016/j.phymed.2017.12.025.
    1. Ngo H.T.T., Hwang E., Seo S.A., Park B., Sun Z.W., Zhang M., Shin Y.K., Yi T.H. Topical application of neem leaves prevents wrinkles formation in UVB-exposed hairless mice. J. Photochem. Photobiol. B. 2017;169:161–170. doi: 10.1016/j.jphotobiol.2017.03.010.
    1. Zhao P., Alam M.B., Lee S.H. Protection of UVB-induced photoaging by Fuzhuan-brick tea aqueous extract via MAPKs/Nrf2-mediated down-regulation of MMP-1. Nutrients. 2019;11:60. doi: 10.3390/nu11010060.
    1. Adhikari D., Panthi V.K., Pangeni R., Kim H.J., Park J.W. Preparation, characterization, and biological activities of topical anti-aging ingredients in a Citrus junos callus extract. Molecules. 2017;22:2198. doi: 10.3390/molecules22122198.
    1. Nam G.H., Kawk H.W., Kim S.Y., Kim Y.M. Solvent fraction of fermented Trapa japonica fruit extract stimulates collagen synthesis through TGF-β1/GSK-3β/β-catenin pathway in human dermal fibroblasts. J. Cosmet. Dermatol. 2020;19:226–233. doi: 10.1111/jocd.13253.
    1. Jeon H., Kim D.H., Nho Y.H., Park J.E., Kim S.N., Choi E.H. A mixture of Kochia scoparia and Rosa multiflora with PPAR α/γ dual agonistic effects prevents photoaging in hairless mice. Int. J. Mol. Sci. 2016;17:1919. doi: 10.3390/ijms17111919.
    1. You J., Roh K.B., Li Z., Liu G., Tang J., Shin S., Park D., Jung E. The antiaging properties of Andrographs paniculata by activation epidermal cell stemness. Molecules. 2015;20:17557–17569. doi: 10.3390/molecules200917557.
    1. Limtrakul P., Yodkeeree S., Thippraphan P., Punfa W., Srisomboom J. Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Compl. Altern. Med. 2016;16:497. doi: 10.1186/s12906-016-1484-3.
    1. Pakravan N., Mahmoudi E., Hashemi S.A., Kamali J., Hajiaghayi R., Rahimzadeh M. Cosmeceutical effect of ethyl acetate fraction of kombucha tea by intradermal administration in the skin of aged mice. J. Cosmet. Dermatol. 2017;17:1216–1224. doi: 10.1111/jocd.12453.
    1. Bravo K., Duque L., Ferreres F., Moreno D.A., Osorio E. Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. J. Photochem. Photobiol. B. 2017;168:78–88. doi: 10.1016/j.jphotobiol.2017.01.023.
    1. Cicchetti E., Duroure L., Le Borgne E., Laville R. Upregulation of skin-aging biomarkers in aged NHDF cells by a sucrose ester extract from agroindustrial waste of Physalis peruviana calyces. J. Nat. Prod. 2018;81:1946–1955. doi: 10.1021/acs.jnatprod.7b01069.
    1. Jeong D., Lee J., Park S.H., Kim Y.A., Park B.J., Oh J., Sung G.H., Aravithan A., Kim J.H., Kang H., et al. Antiphotoaging and antimelanogenic effects of Penthorum chinense pursh ethanol extract due to antioxidant- and autophagy-inducing properties. Oxid. Med. Cell Long. 2019;2019:9679731. doi: 10.1155/2019/9679731.
    1. Khare R., Upmanyu N., Jha M. Exploring the potential of methanolic extract of Salvia officinalis against UV exposed skin aging: In vivo and in vitro model. Curr. Aging Sci. 2021;12:46–55. doi: 10.2174/1874609812666190808140549.
    1. Kim H.K. Protective effect of garlic on cellular senescence in UVB-exposed HaCaT human keratinocytes. Nutrient. 2016;8:464. doi: 10.3390/nu8080464.
    1. Hwang E., Lin P., Ngo T.T., Yi T.H. Clove attenuates UVB-induced photodamage and repairs skin barrier function in hairless mice. Food Nutr. 2018;9:4936–4947. doi: 10.1039/C8FO00843D.
    1. Choi S.I., Lee J.S., Lee S., Cho B.Y., Choi S.H., Han X., Sin W.S., Kim Y.C., Lee B.Y., Kang I.J., et al. Protective effects and mechanisms of Pourthiaea villosa (Thumb.) Decne. extract on hydrogen peroxide-induced skin aging in human dermal fibroblasts. J. Med. Food. 2019;22:841–850. doi: 10.1089/jmf.2018.4379.
    1. Kusumawati I., Kurniawan K.O., Rullyansyah S., Prijo T.A., Widyowati R., Ekowati J., Hestianah E.P., Maat S., Matsunami K. Anti-aging of Curcuma heyneana Valeton & Zipj: A scientific approach use in Javanese tradition. J. Ethnopharmacol. 2018;225:64–70.
    1. Li J., Lu Y.R., Lin I.F., Kang W., Chen H.B., Lu H.F., Wang H.M.D. Reversing UVB-induced photoaging with Hibiscus sabdariffa calyx aqueous extract. J. Sci. Food Agric. 2020;100:672–681. doi: 10.1002/jsfa.10063.
    1. Choi M., Oh J.H., Shin M.K., Lee S.R. Beneficial effects of blood group antigen synthesis-increasing natural plant extracts and monosaccharides on extracellular matrix protein production in vivo. J. Dermatol. Sci. 2015;80:152–155. doi: 10.1016/j.jdermsci.2015.08.001.
    1. Uchiyama T., Tsunenaga M., Miyanaga M., Ueda U., Ogo M. Oral intake of lingonberry and amla fruit extract improves skin conditions in healthy female subjects: A randomized, double-blind placebo-controlled clinical trial. Biotechnol. Appl. Biochem. 2018;66:870–879. doi: 10.1002/bab.1800.
    1. Davinelli S., Bertoglio J.C., Polimeni A., Scapagnini G. Cytroprotective polyphenols Against chronological skin aging and cutaneous photodamage. Curr. Pharmac. Design. 2018;24:99–105. doi: 10.2174/1381612823666171109102426.
    1. Petruk G., Giudice R.D., Rigano M.M., Monti D.M. Antioxidants from plants protect against skin photoaging. Oxid. Med. Cell. Long. 2018;2018:1454936. doi: 10.1155/2018/1454936.
    1. Nam S.H., Park J., Jun W., Kim D., Ko J.A., El-Aty A.M.A., Choi J.Y., Kim D.I., Yang K.Y. Transglycosylation of gallic acid by using Leuconostoc glucansucrase and its characterization as a functional cosmetic agent. AMB Express. 2017;7:224. doi: 10.1186/s13568-017-0523-x.
    1. Manosroi A., Jantrawut P., Akihisa T., Manosroi W., Manosroi J. In vitro and in vivo skin anti-aging evaluation of gel containing niosomes loaded with a semi-purified fraction containing gallic acid from Terminalia chebula galls. Pharmac. Biol. 2011;49:1190–1203. doi: 10.3109/13880209.2011.576347.
    1. Goindi S., Guleria A., Aggarwal N. development and evaluation of solid lipid nanoparticles of N-6-furfuryl adenine for prevention of photoaging. J. Biomed. Nanotechnol. 2015;11:1734–1746. doi: 10.1166/jbn.2015.2111.
    1. Choi S.I., Lee J.H., Kim J.M., Jung T.D., Cho B.Y., Choi S.H., Lee D.W., Kim J., Kim J.Y., Lee O.H. Ulmus macrocarpa Hance extracts attenuated H2O2 and UVB-induced skin photo-aging by activating antioxidant enzymes and inhibiting MAPK Pathways. Int. J. Mol. Sci. 2017;18:1200. doi: 10.3390/ijms18061200.
    1. Michael J.S., Kalirajan A., Padmalatha C., Ranjit Singh A.J.A. In vitro antioxidant evaluation and total phenolics of methanolic extracts of Nyctanthes arbor-tristis L. Chin. J. Nat. Med. 2013;11:484–487. doi: 10.1016/S1875-5364(13)60088-6.
    1. Mohammad I.S., Khan H.M.S., Akhtar N., Rasool F. Biological potential and phytochemical evaluation of Prosopis cineraria. World App. Sci. J. 2013;27:1489–1494.
    1. Dzialo M., Mierziak J., Korzun U., Preisner M., Zsopa J., Kulma A. The potential of plant phenolics in prevention and therapy os skin disorders. Int. J. Mol. Sci. 2016;17:160. doi: 10.3390/ijms17020160.
    1. Pillaiyar T., Manickam M., Jung S.H. Recent development of signaling pathways inhibitors of melanogenesis. Cell. Signal. 2017;40:99–115. doi: 10.1016/j.cellsig.2017.09.004.
    1. Serre C., Busuttil V., Botto J.M. Intrinsic and extrinsic regulations of human skin melanogenesis and pigmentation. Int. J. Cosmet. Sci. 2018;40:328–347. doi: 10.1111/ics.12466.
    1. Foster A.R., El Chamil C., O’Neill C.A., Watson R.E.B. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell. 2020;19:e13058. doi: 10.1111/acel.13058.
    1. Boisnic S., Keophiphath M., Serandour A.L., Branchet M.C., Le Breton S., Lamour I., Gaillard E. polar lipids from wheat extract oil improve skin damages induced by aging: Evidence from a randomized, placebo-controlled clinical trial in women and an ex vivo study on human skin explant. J. Cosmet. Dermatol. 2019;18:2027–2036. doi: 10.1111/jocd.12967.
    1. Markiewicz A., Zasda M., Erkiert-Polguj A., Wieckowska-Szakiel M., Budzisz E. An evaluation of the antiaging properties of strawberry hydrolysate treatment enriched with l-ascorbic acid applied with microneedle mesotherapy. J. Cosmet. Dermatol. 2019;18:129–135. doi: 10.1111/jocd.12545.
    1. Mercurio D.G., Wagemaker T.A.L., Alves V.M., Benevenutto C.G., Gaspar L.R., Maia Campos P.M.B.G. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, ginkgo biloba and red algae extracts. J. Photochem. Photobiol. B. 2015;153:121–126. doi: 10.1016/j.jphotobiol.2015.09.016.
    1. An S., Cha H.J., Ko J.M., Han H., Kim S.Y., Kim K.S., Lee S.J., An I.S., Kim S., Youn H.J., et al. Kinetin improves barrier function of the skin by modulating keratinocyte differentiation markers. Ann. Dermatol. 2017;29:6–12. doi: 10.5021/ad.2017.29.1.6.
    1. Katekawa E., Caversan J., Mussi L., Camargo-Junior F.B., Sufi B., Padovani G., Nazato L., Nogueira C., Magalhães W.V., Di Stasi L.C. Novel topical skin hydration agent containing Anadenanthera colubrine polysaccharide-standardized herbal preparation. J. Cosmet. Dermatol. 2019;19:1691–1698. doi: 10.1111/jocd.13217.
    1. Kostyuk V., Potapovich A., Albuhaydar A.R., Mayer W., De Luca C., Korkina L. Natural substances for prevention of skin photoaging: Screening systems in the development of sunscreen and rejuvenation cosmetics. Rejuvenation Res. 2018;21:91–101. doi: 10.1089/rej.2017.1931.
    1. Letsiou S., Kapazoglou A., Tsaftaris A. Transcriptional and epigenetic effects of Vitis vinifera L. leaf extract on UV-stressed human dermal fibroblasts. Mol. Biol. Rep. 2020;47:5763–5772. doi: 10.1007/s11033-020-05645-7.
    1. Mancuso C., Santangelo R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol. 2014;65:185–195. doi: 10.1016/j.fct.2013.12.024.
    1. Ghosh S., Basak P., Dutta S., Chowdhury S., Sil P.C. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem. Toxicol. 2017;103:41–55. doi: 10.1016/j.fct.2017.02.028.
    1. Barone E., Calabrese V., Mancuso C. Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology. 2009;10:97–108. doi: 10.1007/s10522-008-9160-8.
    1. Kim K.H., Jung J.H., Chung W.S., Lee C.H., Jang H.J. Ferulic acid induces keratin 6α via inhibition of nuclear β-catenin accumulation and activation of Nrf2 in wound-induced inflammation. Biomedicines. 2021;9:459. doi: 10.3390/biomedicines9050459.
    1. Calabrese V., Calafato S., Puleo E., Cornelius C., Sapienza M., Morganti P., Mancuso C. redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: Role of vitagenes. Clin. Dermatol. 2008;26:358–363. doi: 10.1016/j.clindermatol.2008.01.005.
    1. Hahn H.J., Kim K.B., Bae S., Choi B.G., An S., Ahn K.J., Kim S.Y. Pretreatment of ferulic acid protects human dermal fibroblasts against ultraviolet A irradiation. Ann. Dermatol. 2016;28:740–748. doi: 10.5021/ad.2016.28.6.740.
    1. Zhou Z., Shi T., Hou J., Li M. Ferulic acid alleviates atopic dermatitis-like symptoms in mice via its potent anti-inflammatory effect. Immunopharmacol. Immunotoxicol. 2020;42:156–164. doi: 10.1080/08923973.2020.1733012.
    1. Peres D.D., Sarruf F.D., Oliveira C.A., Velasco M.V.R., Baby A.R. Ferulic acid photoprotective properties in association with UV filters: Multifunctional sunscreen with improved SPF and UVA-PF. J. Photochem. Photobiol. B. 2018;185:46–49. doi: 10.1016/j.jphotobiol.2018.05.026.
    1. Park H.J., Cho J.H., Hong S.H., Kim D.H., Jung H.Y., Kang I.K., Cho D.H. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonoides in B16F10 melanoma and CCD- 986sk fibroblast cells. J. Nat. Med. 2018;72:127–135. doi: 10.1007/s11418-017-1120-7.
    1. Alias L.M., Manoharam S., Vellaichamy L., Balakrishnan S., Ramachandran C.R. Protective effect of ferulic acid on 7,12-dimethylbenz[a]anthracene-induced skin carcinogenesis in Swiss albino mice. Exp. Toxicol. Patol. 2009;61:205–214. doi: 10.1016/j.etp.2008.09.001.
    1. Saija A., Tomaino A., Trombetta D., De Pasquale A., Uccella N., Barbuzzi T., Paolino D., Bonina F. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agentes. Int. J. Pharmac. 2000;199:39–47. doi: 10.1016/S0378-5173(00)00358-6.
    1. Amic A., Markovic J.M.D., Markovic Z., Mienkovic D., Milanovic Z., Antonijevic M., Cargadová D.M., Pedregal J.R.G. Theoretical study of radical inactivation, LOX inhibition, and iron chelation: The role of ferulic acid in skin protection against UVA induced oxidative stress. Antioxidants. 2021;10:1303. doi: 10.3390/antiox10081303.
    1. Lin F.H., Lin J.Y., Gupta R.D., Tournas J.A., Burch J.A., Selim M.A., Monteiro-Riviere N.A., Grichnik J.M., Zielinski J., Pinnell S.R. Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J. Investig. Dermatol. 2005;125:826–832. doi: 10.1111/j.0022-202X.2005.23768.x.
    1. Chen J., Liu Y., Zhao Z., Qiu J. Oxidative stress in the skin: Impact and related protection. Int. J. Cosm. Sci. 2021;43:495–509. doi: 10.1111/ics.12728.
    1. Rattan S.I.S. Hormesis in aging. Ageing Res. Rev. 2008;7:63–78. doi: 10.1016/j.arr.2007.03.002.
    1. Zdunska K., Dana A., Kolodziejczak A., Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol. 2018;31:332–336. doi: 10.1159/000491755.
    1. Chaikul P., Khat-udomkiri N., Iangthanarat K., Manosroi J., Manosroi A. Characteristics and in vitro anti-skin aging activity of gallic acid loaded in cationic CTAB noisome. Eur. J. Pharmac. Sci. 2019;131:39–49. doi: 10.1016/j.ejps.2019.02.008.
    1. Alonso C., Martí M., Barba C., Lis M., Rubio L., Coderch L. Skin penetration and antioxidant effects of cosmeto-textiles with gallic acid. J. Photochem. Photobiol. B. 2016;156:50–55. doi: 10.1016/j.jphotobiol.2016.01.014.
    1. Khmaladze I., Österlund C., Smiljanic S., Hrapovic N., Lafon-Kolb V., Amini B.N., Xi L., Fabre S. A novel multifunctional skin care formulation with a unique blend of antipollution, brightening and antiaging active complexes. J. Cosmet. Dermatol. 2019;19:1415–1425. doi: 10.1111/jocd.13176.
    1. Monteiro e Silva S.A., Calixto G.M.F., Cajado J., Carvalho P.C.A., Rodero C.F., Chorilli M., Leonardi G.R. Gallic acid-lçoaded gel formulation combats skin oxidative stress: Development, characterization and ex vivo biological assays. Polymers. 2017;9:391. doi: 10.3390/polym9090391.
    1. Wu Y.Z., Tsai Y.Y., Chang L.S., Chen Y.J. Evaluation of gallic acid-coated gold nanoparticles as an anti-aging ingredient. Pharmaceuticals. 2021;14:1071. doi: 10.3390/ph14111071.
    1. Hu G., Zhou X. Gallic acid ameliorates atopic dermatitis-like skin inflammation through immune regulation in a mouse model. Clin. Cosmet. Inv. Dermatol. 2021;14:1675–1683. doi: 10.2147/CCID.S327825.
    1. Zhang J., Li X., Wei J., Chen H., Lu Y., Li K.L., Han L., Lu C. Gallic acid inhibits the expression od keratin 16 and keratin 17 through Nrf2 in psoriasis-like skin disease. Int. Immunopharmacol. 2018;65:84–95. doi: 10.1016/j.intimp.2018.09.048.
    1. Wang X., Liu K., Ruan M., Yang J., Gao Z. Gallic acid inhibits fibroblasts growth and migration in keloids through the AKT/ERK signaling pathway. Acta Biochim. Biophys. Sin. 2018;50:1114–1120. doi: 10.1093/abbs/gmy115.
    1. Chen Y.J., Lee Y.C., Huang C.H., Chang L.S. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast MDA-MB-231 cells. Toxicol. Appl. Pharmacol. 2016;310:98–107. doi: 10.1016/j.taap.2016.09.007.
    1. Cheng Y.J., Chang L.S. Gallic acid downregulates matrix metalloproteinase-2 (MMP-2) and MMP-9 in human leukemia cells with expressed Bcr/Abl. Mol. Nutr. Food Res. 2012;56:1398–1402. doi: 10.1002/mnfr.201200167.
    1. Zguizzato M., Valacchi G., Pecorelli A., Boldrini P., Similière F., Huang N., Cortesi R., Esposito E. Gallic acid loaded poloxamer gel as a new adjuvant strategy for melanoma: A preliminary study. Colloids Surf. Biointerf. 2020;185:110613. doi: 10.1016/j.colsurfb.2019.110613.
    1. Meeran M.F.N., Javed H., Taee H.A., Azimullah S., Ojha S.K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol. 2017;8:380. doi: 10.3389/fphar.2017.00380.
    1. Hotta M., Nakata R., Katsukawa M., Hori K., Takahashi S., Inoue H. Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J. Lip. Res. 2010;51:132–139. doi: 10.1194/jlr.M900255-JLR200.
    1. Kwon H.I., Jeong N.H., Jun S.H., Son J.H., Kim S., Jeon H., Kang S.C., Kim S.H., Lee J.C. Thymol attenuates the worsening of atopic dermatitis induced by Staphylococcus aureus membrane vesicles. Int. Immunopharmacol. 2018;59:301–309. doi: 10.1016/j.intimp.2018.04.027.
    1. Pivetta T.P., Simões S., Araújo M.M., Carvalho T., Arruda C., Marcato P.D. development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Coll. Surf. Biointerf. 2018;164:281–290. doi: 10.1016/j.colsurfb.2018.01.053.
    1. Folle C., Díaz-Carrido N., Sánchez-López E., Marqués A.M., Badia J., Baldomá L., Espina M., Calpena A.C., García M.L. Surface-modified multifunctional thymol-loaded biodegradable nanoparticles for topical acne treatment. Pharmaceuticals. 2021;13:1501. doi: 10.3390/pharmaceutics13091501.
    1. Folle C., Marqués A.M., Díaz-Carrido N., Espina M., Sánchez-López E., Badia J., Baldoma L., Calpena A.C., García M.L. Thymol-loaded PLGA nanoparticles: An efficient approach for acne treatment. J. Nanotechnol. 2021;19:359. doi: 10.1186/s12951-021-01092-z.
    1. Aristatile B., Al-Assaf A.H., Pugalendi K.V. Carvacrol ameliorates the PPAR-α and cytochrome P450 expression on d-galactosamine induced hepatotoxicity rats. Afr. J. Tradit. Complement. Alt. Med. 2014;11:118–123. doi: 10.4314/ajtcam.v11i3.18.
    1. Sharifi-Rad M., Varoni M., Iriti M., Martorell M., Setzer W.N., Contreras M.M., Salehi B., Soltani-Nejad A., Rajabi S., Tajbakhsh M., et al. Carvacrol and human health: A comprehensive review. Phytother. Res. 2017;32:1675–1687. doi: 10.1002/ptr.6103.
    1. Suntres Z.E., Coccimiglio J., Alipour M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 2015;55:304–318. doi: 10.1080/10408398.2011.653458.
    1. Khoury R.E., Jubeli R.M., Beurouthy M.E., Guffroy A.B., Rizk T., Tfayli A., Lteif R.J. Phytochemical screening and antityrosinase activity of carvacrol, thymoquinone, and four essential oils of Lebanese plants. Cosmet. Dermatol. 2018;18:944–952. doi: 10.1111/jocd.12754.
    1. Wang Y., Li H., Xue C., Chen H., Xue Y., Zhao F., Zhu M.X., Cao Z. TRPV3 enhances skin keratinocytes proliferation through EGFR-dependent signaling pathways. Cell Biol. Toxicol. 2021;37:313–330. doi: 10.1007/s10565-020-09536-2.
    1. Park H.J., Kim D.H., Park S.J., Kim J.M., Ryu J.H. Ginseng in traditional herbal presriptions. J. Ginseng Res. 2012;36:225–241. doi: 10.5142/jgr.2012.36.3.225.
    1. Kim K. Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action. J. Ginseng Res. 2015;38:1–6. doi: 10.1016/j.jgr.2014.10.006.
    1. Hwang E., Park S.Y., Jo H., Lee D.G., Kim H.T., Kim Y.M., Yin C.S., Yi T.H. Efficacy and safety of enzyme-modified Panax ginseng for anti-wrinkle therapy in health skin: A single-center, randomized, double-blind, placebo-controlled study. Rejuvenation Res. 2015;18:449–457. doi: 10.1089/rej.2015.1660.
    1. Lim T.G., Lee C.C., Dong Z., Lee K.W. Ginsenosides and their metabolites: A review of their pharmacological activities in the skin. Arch. Dermatol. Res. 2015;307:397–403. doi: 10.1007/s00403-015-1569-8.
    1. Kim E., Kim D., Yoo S., Hong Y.H., Han S.Y., Jeong S., Jeong D., Kim J.H., Cho J.Y., Park J. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. J. Ginseng Res. 2018;42:218–224. doi: 10.1016/j.jgr.2017.03.007.
    1. Jiang R., Xu X., Sun Z., Wang F., Ma R., Feng K., Li T., Sun L. Protective effects of ginseng proteins on photoaging of muse fibroblasts induced by UVA. Photochem. Photobiol. 2020;96:113–123. doi: 10.1111/php.13156.
    1. Han N.R., Ko S.G., Moon P.D., Park H.J. Ginsenoside Rg3 attenuates skin disorders via down-regulation of MDM2/HIF1α signaling pathway. J. Ginseng Res. 2021;45:610–616. doi: 10.1016/j.jgr.2021.06.008.
    1. Xu X., Sun G., Liu J., Zhou J., Li J., Sun Z., Li X., Cheng H., Zhao D., Jiang R., et al. Akt activation-dependent protective effect of wild ginseng adventitious root protein against UVA-induced NIH-3T3 cell damage. Wound Repair Regen. 2021;29:1006–1016. doi: 10.1111/wrr.12962.
    1. Jiang R., Xu X.H., Wang K., Yang X.Z., Bi Y.F., Yan Y., Liu J.Z., Chen X.N., Wang Z.Z., Gui X.L., et al. Ethyl acetate extract from Panax ginseng C.A. Myer and its main constituents inhibit α-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells. J. Ethnopharmacol. 2017;208:149–156. doi: 10.1016/j.jep.2017.07.004.
    1. Lee J.O., Kim E., Kim J.H., Hong Y.H., Kim H.G., Jeong D., Kim J., Kim S.H., Parl C., Seo D.B., et al. Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract. J. Ginseng Res. 2018;42:389–399. doi: 10.1016/j.jgr.2018.02.007.
    1. Lee D.Y., Kim H.G., Lee Y.G., Kim J.H., Lee J.W., Choi B.R., Jang I.B., Kim G.S., Bael N.I. Isolation and quantification of ginsenoside Rh23, a new anti-melanogenic compound from the leaves of Panax ginseng. Molecules. 2018;23:267. doi: 10.3390/molecules23020267.
    1. Liu X.Y., Xiao Y.K., Hwang E., Haeng J.J., Yi T.H. Antiphotoaging and antimelanogenesis properties of ginsenoside C-Y, a ginsenoside Rb2 metabolite from American ginseng PDD-ginsenoside. Photochem. Photobiol. 2019;95:1412–1423. doi: 10.1111/php.13116.
    1. Liu J., Xu X., Jiang R., Sun L., Zhao D. Vanillic acid in Panax ginseng root extract inhibits melanogenesis in B16F10 cells via inhibition of the NO/PKG signaling pathway. Biosci. Biotechnol. Biochem. 2019;83:1205–1215. doi: 10.1080/09168451.2019.1606694.
    1. Lee H.R., Jung J.M., Seo J.Y., Chang S.E., Song Y. Anti-melanogenic property of ginsenoside Rf from Panax ginseng via inhibition of CREB/MITF pathway in melanocytes and ex vivo human skin. J. Ginseng Res. 2021;45:555–564. doi: 10.1016/j.jgr.2020.11.003.
    1. Liu J., Jiang R., Zhou J., Xu X., Sun Z., Li J., Chen X., Li Z., Yan X., Zhao D., et al. Salicylic acid in ginseng root alleviates skin hyperpigmentation disorders by inhibiting melanogenesis and melanosome transport. Eur. J. Pharmacol. 2021;910:174458. doi: 10.1016/j.ejphar.2021.174458.
    1. Lorz L.R., Kim M.Y., Cho J.Y. Medicinal potential of Panax ginseng and its ginsenosides in atopic dermatitis treatment. J. Ginseng Res. 2020;44:8–13. doi: 10.1016/j.jgr.2018.12.012.
    1. Choi B.Y. Hair-growth potential of ginseng and its major metabolites: A review on its molecular mechanisms. Int. J. Mol. Sci. 2018;19:2703. doi: 10.3390/ijms19092703.
    1. Park K.S., Park D.H. The effect of Korean red ginseng on full-thickness skin wound healing in rats. J. Ginseng Res. 2019;43:226–235. doi: 10.1016/j.jgr.2017.12.006.
    1. Faltermaier A., Waters D., Becker T., Arendt E., Gastl M. Common wheat (Triticum aestivum L.) and its use asa brewing cereal—A review. J. Inst. Brew. 2014;120:1–15. doi: 10.1002/jib.107.
    1. Hattarki S.A., Bogar C. Triticum aestivum (wheat grass), a powerhouse plant—A review. Dent. J. Adv. Stud. 2017;5:25–29.
    1. Sutar-kapashikar P.S., Gawali T.R., Kolli S.R., Khot A.S., Dehankar S.P., Patil P.D. Phenolic content in Triticum aestivum: A review. Int. J. New Technol. Res. 2018;4:1–2. doi: 10.31871/IJNTR.4.12.08.
    1. Lee J.H., Ki H.H., Kim D.K., Lee Y.M. Triticum aestivum sprout extract attenuates 2,3-dinitrobenzene-induced atopic dermatitis-like skin lesions in mice and the expression of chemokines in human keratinocytes. Mol. Med. Rep. 2018;18:3461–3468.
    1. Son D.J., Jun J.C., Choi Y.M., Ryu H.Y., Lee S., Davis B.A. Wheat extract oil (WEO) attenuates YVB-induced photoaging via collagen synthesis in human keratinocytes and hairless mice. Nutrients. 2020;12:300. doi: 10.3390/nu12020300.
    1. Tito A., Minale M., Riccio S., Grieco F., Colucci M.G., Apone G. A Triticum vulgare extract exhibits regenerating activity during the wound healing process. Clin. Cosmet. Investig. Dermatol. 2020;13:21–30. doi: 10.2147/CCID.S216391.
    1. Sahin F., Koçak P., Günes M.Y., Özkan I., Yildirim E., Kala E.Y. In vitro wound healing activity of wheat-derived nanovesicles. Appl. Biochem. Biotechnol. 2019;188:381–394. doi: 10.1007/s12010-018-2913-1.
    1. Sui H., Wang F., Weng Z., Song H., Fang Y., Tang X., Shen X. A wheat germ-derived peptide YDWPGGRN facilitates skin wound-healing processes. Biochem. Biophys. Res. Commun. 2020;524:943–950. doi: 10.1016/j.bbrc.2020.01.162.
    1. Morretta E., D’Agostino A., Cassese E., Maglione B., Petrella A., Schiraldi C., Monti M.C. Label-free quantitative proteomics to explore the action mechanism of the pharmaceutical-grade Triticum vulgare extract in speeding up keratinocyte healing. Molecules. 2022;27:1108. doi: 10.3390/molecules27031108.
    1. Kumar S., Singh B., Bajpai V. Andrographis paniculata (Brum.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. J. Ethnopharmacol. 2021;275:114054. doi: 10.1016/j.jep.2021.114054.
    1. Hossain S., Urbi Z., Sule A., Rahman K.M.H. Andrographis paniculata (Burm.f.) Wall. Ex Nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci. World J. 2014;2014:274905. doi: 10.1155/2014/274905.
    1. Mehta S., Sharma A.K., Sing R.K. Pharmacological activities and molecular mechanisms of pure and crude extract of Andrographis paniculate: An update. Phytomedicine Plus. 2021;1:100085. doi: 10.1016/j.phyplu.2021.100085.
    1. Fardiyah Q., Ersam T., Suyanta, Slamet A., Suprapto, Kurniawan F. New potential and characterization of Andrographis paniculata L. Ness plant extracts as photoprotective agent. Arab. J. Chem. 2020;13:8888–8897. doi: 10.1016/j.arabjc.2020.10.015.

Source: PubMed

3
Abonnieren