Exercise and Nutrition Strategies to Counteract Sarcopenic Obesity

Inez Trouwborst, Amely Verreijen, Robert Memelink, Pablo Massanet, Yves Boirie, Peter Weijs, Michael Tieland, Inez Trouwborst, Amely Verreijen, Robert Memelink, Pablo Massanet, Yves Boirie, Peter Weijs, Michael Tieland

Abstract

As the population is aging rapidly, there is a strong increase in the number of individuals with chronic disease and physical limitations. The decrease in skeletal muscle mass and function (sarcopenia) and the increase in fat mass (obesity) are important contributors to the development of physical limitations, which aggravates the chronic diseases prognosis. The combination of the two conditions, which is referred to as sarcopenic obesity, amplifies the risk for these negative health outcomes, which demonstrates the importance of preventing or counteracting sarcopenic obesity. One of the main challenges is the preservation of the skeletal muscle mass and function, while simultaneously reducing the fat mass in this population. Exercise and nutrition are two key components in the development, as well as the prevention and treatment of sarcopenic obesity. The main aim of this narrative review is to summarize the different, both separate and combined, exercise and nutrition strategies so as to prevent and/or counteract sarcopenic obesity. This review therefore provides a current update of the various exercise and nutritional strategies to improve the contrasting body composition changes and physical functioning in sarcopenic obese individuals.

Keywords: aging; body composition; exercise; nutrition; sarcopenic obesity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Pathophysiology and interventions in sarcopenic obesity. Black arrows indicate the pathophysiology of sarcopenic obesity. Red arrows indicate potential targets of nutritional and exercise interventions to counteract sarcopenic obesity.

References

    1. United Nations . In: Population Ageing and Development. Affairs D.o.E.a.S., editor. United Nations; New York, NY, USA: 2012.
    1. Kaufman D.W., Kelly J.P., Rosenberg L., Anderson T.E., Mitchell A.A. Recent patterns of medication use in the ambulatory adult population of the United States: The Slone survey. JAMA. 2002;287:337–344. doi: 10.1001/jama.287.3.337.
    1. Rozenfeld S., Fonseca M.J., Acurcio F.A. Drug utilization and polypharmacy among the elderly: A survey in Rio de Janeiro City, Brazil. Rev. Panam. Salud Publica. 2008;23:34–43. doi: 10.1590/S1020-49892008000100005.
    1. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.P., Rolland Y., Schneider S.M., et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034.
    1. Jensen G.L., Hsiao P.Y. Obesity in older adults: Relationship to functional limitation. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:46–51. doi: 10.1097/MCO.0b013e32833309cf.
    1. Lee D.-c., Shook R.P., Drenowatz C., Blair S.N. Physical activity and sarcopenic obesity: Definition, assessment, prevalence and mechanism. Future Sci. OA. 2016;2:FSO127. doi: 10.4155/fsoa-2016-0028.
    1. Batsis J.A., Zbehlik A.J., Pidgeon D., Bartels S.J. Dynapenic obesity and the effect on long-term physical function and quality of life: Data from the osteoarthritis initiative. BMC Geriatr. 2015;15:118. doi: 10.1186/s12877-015-0118-9.
    1. Zamboni M., Mazzali G., Fantin F., Rossi A., Di Francesco V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008;18:388–395. doi: 10.1016/j.numecd.2007.10.002.
    1. Cauley J.A. An Overview of Sarcopenic Obesity. J. Clin. Densitom. 2015;18:499–505. doi: 10.1016/j.jocd.2015.04.013.
    1. Baumgartner R.N. Body composition in healthy aging. Ann. N. Y. Acad. Sci. 2000;904:437–448. doi: 10.1111/j.1749-6632.2000.tb06498.x.
    1. Levine M.E., Crimmins E.M. The impact of insulin resistance and inflammation on the association between sarcopenic obesity and physical functioning. Obesity (Silver Spring) 2012;20:2101–2106. doi: 10.1038/oby.2012.20.
    1. Bouchard D.R., Dionne I.J., Brochu M. Sarcopenic/obesity and physical capacity in older men and women: Data from the Nutrition as a Determinant of Successful Aging (NuAge)-the Quebec longitudinal Study. Obesity (Silver Spring) 2009;17:2082–2088. doi: 10.1038/oby.2009.109.
    1. Kim T.N., Yang S.J., Yoo H.J., Lim K.I., Kang H.J., Song W., Seo J.A., Kim S.G., Kim N.H., Baik S.H., et al. Prevalence of sarcopenia and sarcopenic obesity in Korean adults: The Korean sarcopenic obesity study. Int. J. Obes. (Lond) 2009;33:885–892. doi: 10.1038/ijo.2009.130.
    1. Zoico E., Di Francesco V., Guralnik J.M., Mazzali G., Bortolani A., Guariento S., Sergi G., Bosello O., Zamboni M. Physical disability and muscular strength in relation to obesity and different body composition indexes in a sample of healthy elderly women. Int. J. Obes. Relat. Metab. Disord. 2004;28:234–241. doi: 10.1038/sj.ijo.0802552.
    1. Janssen I., Heymsfield S.B., Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002;50:889–896. doi: 10.1046/j.1532-5415.2002.50216.x.
    1. Davison K.K., Ford E.S., Cogswell M.E., Dietz W.H. Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III. J. Am. Geriatr. Soc. 2002;50:1802–1809. doi: 10.1046/j.1532-5415.2002.50508.x.
    1. Fielding R.A., Vellas B., Evans W.J., Bhasin S., Morley J.E., Newman A.B., Abellan van Kan G., Andrieu S., Bauer J., Breuille D., et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011;12:249–256. doi: 10.1016/j.jamda.2011.01.003.
    1. Johnson Stoklossa C.A., Sharma A.M., Forhan M., Siervo M., Padwal R.S., Prado C.M. Prevalence of Sarcopenic Obesity in Adults with Class II/III Obesity Using Different Diagnostic Criteria. J. Nutr. Metab. 2017;2017:7307618. doi: 10.1155/2017/7307618.
    1. Newman A.B., Kupelian V., Visser M., Simonsick E., Goodpaster B., Nevitt M., Kritchevsky S.B., Tylavsky F.A., Rubin S.M., Harris T.B., et al. Sarcopenia: Alternative definitions and associations with lower extremity function. J. Am. Geriatr. Soc. 2003;51:1602–1609. doi: 10.1046/j.1532-5415.2003.51534.x.
    1. Batsis J.A., Mackenzie T.A., Lopez-Jimenez F., Bartels S.J. Sarcopenia, sarcopenic obesity, and functional impairments in older adults: National Health and Nutrition Examination Surveys 1999–2004. Nutr. Res. 2015;35:1031–1039. doi: 10.1016/j.nutres.2015.09.003.
    1. St-Onge M.P. Relationship between body composition changes and changes in physical function and metabolic risk factors in aging. Curr. Opin. Clin. Nutr. Metab. Care. 2005;8:523–528.
    1. Hairi N.N., Cumming R.G., Naganathan V., Handelsman D.J., Le Couteur D.G., Creasey H., Waite L.M., Seibel M.J., Sambrook P.N. Loss of Muscle Strength, Mass (Sarcopenia), and Quality (Specific Force) and Its Relationship with Functional Limitation and Physical Disability: The Concord Health and Ageing in Men Project. J. Am. Geriatr. Soc. 2010;58:2055–2062. doi: 10.1111/j.1532-5415.2010.03145.x.
    1. Janssen I., Heymsfield S.B., Wang Z.M., Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J. Appl. Physiol. (1985) 2000;89:81–88. doi: 10.1152/jappl.2000.89.1.81.
    1. Mitchell W.K., Williams J., Atherton P., Larvin M., Lund J., Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 2012;3:260. doi: 10.3389/fphys.2012.00260.
    1. Dreyer H.C., Fujita S., Cadenas J.G., Chinkes D.L., Volpi E., Rasmussen B.B. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J. Physiol. 2006;576:613–624. doi: 10.1113/jphysiol.2006.113175.
    1. Larsson L. Morphological and functional characteristics of the ageing skeletal muscle in man. A cross-sectional study. Acta Physiol. Scand. Suppl. 1978;457:1–36.
    1. Verdijk L.B., Koopman R., Schaart G., Meijer K., Savelberg H.H., van Loon L.J. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am. J. Physiol. Endocrinol. Metab. 2007;292:E151–E157. doi: 10.1152/ajpendo.00278.2006.
    1. De Stefano F., Zambon S., Giacometti L., Sergi G., Corti M.C., Manzato E., Busetto L. Obesity, Muscular Strength, Muscle Composition and Physical Performance in an Elderly Population. J. Nutr. Health Aging. 2015;19:785–791. doi: 10.1007/s12603-015-0482-3.
    1. Walrand S., Guillet C., Salles J., Cano N., Boirie Y. Physiopathological mechanism of sarcopenia. Clin. Geriatr. Med. 2011;27:365–385. doi: 10.1016/j.cger.2011.03.005.
    1. Prentice A.M., Jebb S.A. Beyond body mass index. Obes. Rev. 2001;2:141–147. doi: 10.1046/j.1467-789x.2001.00031.x.
    1. Cetin D., Lessig B.A., Nasr E. Comprehensive Evaluation for Obesity: Beyond Body Mass Index. J. Am. Osteopath. Assoc. 2016;116:376–382. doi: 10.7556/jaoa.2016.078.
    1. Tchernof A., Després J.-P. Pathophysiology of Human Visceral Obesity: An Update. Physiol. Rev. 2013;93:359–404. doi: 10.1152/physrev.00033.2011.
    1. Pucci A., Batterham R., Manning S. Obesity: Causes, Consequences and Patient-Centred Therapeutic Approaches. Health Manag. 2014;14:21–24.
    1. Mathus-Vliegen E.M. Obesity and the elderly. J. Clin. Gastroenterol. 2012;46:533–544. doi: 10.1097/MCG.0b013e31825692ce.
    1. Elia M., Ritz P., Stubbs R.J. Total energy expenditure in the elderly. Eur. J. Clin. Nutr. 2000;54(Suppl. 3):S92. doi: 10.1038/sj.ejcn.1601030.
    1. Schrauwen P., Schrauwen-Hinderling V., Hoeks J., Hesselink M.K. Mitochondrial dysfunction and lipotoxicity. Biochim. Biophys. Acta. 2010;1801:266–271. doi: 10.1016/j.bbalip.2009.09.011.
    1. Villareal D., Apovian C.M., Kushner R.F., Klein S., American Society for N., Naaso T.O.S. Obesity in older adults: Technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Obes. Res. 2005;13:1849–1863. doi: 10.1038/oby.2005.228.
    1. Roubenoff R. Sarcopenic obesity: The confluence of two epidemics. Obes. Res. 2004;12:887–888. doi: 10.1038/oby.2004.107.
    1. Choi K.M. Sarcopenia and sarcopenic obesity. Korean J. Intern. Med. 2016;31:1054–1060. doi: 10.3904/kjim.2016.193.
    1. Stenholm S., Harris T.B., Rantanen T., Visser M., Kritchevsky S.B., Ferrucci L. Sarcopenic obesity: Definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care. 2008;11:693–700. doi: 10.1097/MCO.0b013e328312c37d.
    1. Cooper J.A., Manini T.M., Paton C.M., Yamada Y., Everhart J.E., Cummings S., Mackey D.C., Newman A.B., Glynn N.W., Tylavsky F., et al. Longitudinal change in energy expenditure and effects on energy requirements of the elderly. Nutr. J. 2013;12:73. doi: 10.1186/1475-2891-12-73.
    1. Molino S., Dossena M., Buonocore D., Verri M. Sarcopenic Obesity: An Appraisal of the Current Status of Knowledge and Management in Elderly People. J. Nutr. Health Aging. 2016;20:780–788. doi: 10.1007/s12603-015-0631-8.
    1. Rolland Y., Czerwinski S., Abellan Van Kan G., Morley J.E., Cesari M., Onder G., Woo J., Baumgartner R., Pillard F., Boirie Y., et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging. 2008;12:433–450. doi: 10.1007/BF02982704.
    1. Nilsson M.I., Dobson J.P., Greene N.P., Wiggs M.P., Shimkus K.L., Wudeck E.V., Davis A.R., Laureano M.L., Fluckey J.D. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity. FASEB J. 2013;27:3905–3916. doi: 10.1096/fj.12-224006.
    1. Hilton T.N., Tuttle L.J., Bohnert K.L., Mueller M.J., Sinacore D.R. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: Association with performance and function. Phys. Ther. 2008;88:1336–1344. doi: 10.2522/ptj.20080079.
    1. Tardif N., Salles J., Guillet C., Tordjman J., Reggio S., Landrier J.F., Giraudet C., Patrac V., Bertrand-Michel J., Migne C., et al. Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2alpha activation. Aging Cell. 2014;13:1001–1011. doi: 10.1111/acel.12263.
    1. Cleasby M.E., Jamieson P.M., Atherton P.J. Insulin resistance and sarcopenia: Mechanistic links between common co-morbidities. J. Endocrinol. 2016;229:R67–R81. doi: 10.1530/JOE-15-0533.
    1. Lang C.H. Elevated plasma free fatty acids decrease basal protein synthesis, but not the anabolic effect of leucine, in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2006;291:E666–E674. doi: 10.1152/ajpendo.00065.2006.
    1. Guillet C., Delcourt I., Rance M., Giraudet C., Walrand S., Bedu M., Duche P., Boirie Y. Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. J. Clin. Endocrinol. Metab. 2009;94:3044–3050. doi: 10.1210/jc.2008-2216.
    1. Tam C.S., Clement K., Baur L.A., Tordjman J. Obesity and low-grade inflammation: A paediatric perspective. Obes. Rev. 2010;11:118–126. doi: 10.1111/j.1467-789X.2009.00674.x.
    1. Invitti C. Obesity and low-grade systemic inflammation. Minerva Endocrinologica. 2002;27:209–214.
    1. Van Greevenbroek M.M., Schalkwijk C.G., Stehouwer C.D. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: Causes and consequences. Neth. J. Med. 2013;71:174–187.
    1. Mraz M., Haluzik M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J. Endocrinol. 2014;222:R113–R127. doi: 10.1530/JOE-14-0283.
    1. Guillet C., Masgrau A., Boirie Y. Is protein metabolism changed with obesity? Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:89–92. doi: 10.1097/MCO.0b013e328341389e.
    1. Rahemi H., Nigam N., Wakeling J.M. The effect of intramuscular fat on skeletal muscle mechanics: Implications for the elderly and obese. J. R. Soc. Interface. 2015;12 doi: 10.1098/rsif.2015.0365.
    1. Tieland M., Trouwborst I., Clark B. Skeletal muscle performance and ageing. J. Cachexia Sarcopenia Muscle. 2017 doi: 10.1002/jcsm.12238.
    1. Reiner M., Niermann C., Jekauc D., Woll A. Long-Term Health Benefits of Physical Activity—A Systematic Review of Longitudinal Studies. BMC Public Health. 2013;13:813. doi: 10.1186/1471-2458-13-813.
    1. Vissers D., Hens W., Teaymans J., Beayens J., Poortmans J., van Gaal L. The Effect of Exercise on Visceral Adipose Tissue in Overweight Adults: A Systematic Review and Meta-Analysis. PLoS ONE. 2013;8:e56415. doi: 10.1371/journal.pone.0056415.
    1. Montero-Fernandez N., Serra-Rexach J.A. Role of exercise on sarcopenia in the elderly. Eur. J. Phys. Rehabil. Med. 2013;49:131–143.
    1. Stoner L., Rowlands D., Morrison A., Credeur D., Hamlin M., Gaffney K., Lambrick D., Matheson A. Efficacy of Exercise Intervention for Weight Loss in Overweight and Obese Adolescents: Meta-Analysis and Implications. Sports Med. 2016;46:1737–1751. doi: 10.1007/s40279-016-0537-6.
    1. Shaw K., Gennat H., O’Rourke P., Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst. Rev. 2006 doi: 10.1002/14651858.CD003817.pub3.
    1. Fock K.M., Khoo J. Diet and exercise in management of obesity and overweight. J. Gastroenterol. Hepatol. 2013;28(Suppl. 4):59–63. doi: 10.1111/jgh.12407.
    1. Villareal D., Chode S., Parimi N., Sinacore D.R., Hilton T., Armamento-Villareal R., Napoli N., Qualls C., Shah K. Weight loss, exercise, or both and physical function in obese older adults. N. Engl. J. Med. 2011;364:1218–1229. doi: 10.1056/NEJMoa1008234.
    1. Villareal D., Aguirre L., Gurney B., Waters D., Colombo E., Armamento-Villareal R., Qualls C. Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults. N. Engl. J. Med. 2017;376:1943–1955. doi: 10.1056/NEJMoa1616338.
    1. Cadore E.L., Casas-Herrero A., Zambom-Ferraresi F., Idoate F., Millor N., Gomez M., Rodriguez-Manas L., Izquierdo M. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age (Dordrecht, The Netherlands) 2014;36:773–785. doi: 10.1007/s11357-013-9586-z.
    1. Koopman R., van Loon L.J. Aging, exercise, and muscle protein metabolism. J. Appl. Physiol. (1985) 2009;106:2040–2048. doi: 10.1152/japplphysiol.91551.2008.
    1. Phillips S.M., Parise G., Roy B.D., Tipton K.D., Wolfe R.R., Tamopolsky M.A. Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can. J. Physiol. Pharmacol. 2002;80:1045–1053. doi: 10.1139/y02-134.
    1. Kumar V., Atherton P., Smith K., Rennie M.J. Human muscle protein synthesis and breakdown during and after exercise. J. Appl. Physiol. (1985) 2009;106:2026–2039. doi: 10.1152/japplphysiol.91481.2008.
    1. Liu C.J., Latham N.K. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst. Rev. 2009 doi: 10.1002/14651858.CD002759.pub2.
    1. Peterson M.D., Rhea M.R., Sen A., Gordon P.M. Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Res. Rev. 2010;9:226–237. doi: 10.1016/j.arr.2010.03.004.
    1. Peterson M.D., Sen A., Gordon P.M. Influence of resistance exercise on lean body mass in aging adults: A meta-analysis. Med. Sci. Sports Exerc. 2011;43:249–258. doi: 10.1249/MSS.0b013e3181eb6265.
    1. Gine-Garriga M., Roque-Figuls M., Coll-Planas L., Sitja-Rabert M., Salva A. Physical exercise interventions for improving performance-based measures of physical function in community-dwelling, frail older adults: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2014;95:753–769. doi: 10.1016/j.apmr.2013.11.007.
    1. Vasconcelos K.S., Dias J.M., Araujo M.C., Pinheiro A.C., Moreira B.S., Dias R.C. Effects of a progressive resistance exercise program with high-speed component on the physical function of older women with sarcopenic obesity: A randomized controlled trial. Braz. J. Phys. Ther. 2016;20:432–440. doi: 10.1590/bjpt-rbf.2014.0174.
    1. Gadelha A.B., Paiva F.M., Gauche R., de Oliveira R.J., Lima R.M. Effects of resistance training on sarcopenic obesity index in older women: A randomized controlled trial. Arch. Gerontol. Geriatr. 2016;65:168–173. doi: 10.1016/j.archger.2016.03.017.
    1. Liao C.D., Tsauo J.Y., Lin L.F., Huang S.W., Ku J.W., Chou L.C., Liou T.H. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity: A CONSORT-compliant prospective randomized controlled trial. Medicine (Baltimore) 2017;96:e7115. doi: 10.1097/MD.0000000000007115.
    1. Huang S.W., Ku J.W., Lin L.F., Liao C.D., Chou L.C., Liou T.H. Body composition influenced by progressive elastic band resistance exercise of sarcopenic obesity elderly women: A pilot randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2017 doi: 10.23736/S1973-9087.17.04443-4.
    1. Chen T., Chung Y.C., Chen Y.J., Ho S.Y., Wu H.J. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J. Am. Geriatr. Soc. 2017;65:827–832. doi: 10.1111/jgs.14722.
    1. Franchi M.V., Reeves N.D., Narici M.V. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations. Front. Physiol. 2017;8:447. doi: 10.3389/fphys.2017.00447.
    1. Hoppeler H. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality. Front. Physiol. 2016;7:483. doi: 10.3389/fphys.2016.00483.
    1. LaStayo P., Marcus R., Dibble L., Frajacomo F., Lindstedt S. Eccentric exercise in rehabilitation: Safety, feasibility, and application. J. Appl. Physiol. (1985) 2014;116:1426–1434. doi: 10.1152/japplphysiol.00008.2013.
    1. Mueller M., Breil F.A., Lurman G., Klossner S., Fluck M., Billeter R., Dapp C., Hoppeler H. Different molecular and structural adaptations with eccentric and conventional strength training in elderly men and women. Gerontology. 2011;57:528–538. doi: 10.1159/000323267.
    1. Marcus R.L., Smith S., Morrell G., Addison O., Dibble L.E., Wahoff-Stice D., Lastayo P.C. Comparison of combined aerobic and high-force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus. Phys. Ther. 2008;88:1345–1354. doi: 10.2522/ptj.20080124.
    1. Forbes S.C., Little J.P., Candow D.G. Exercise and nutritional interventions for improving aging muscle health. Endocrine. 2012;42:29–38. doi: 10.1007/s12020-012-9676-1.
    1. Landi F., Marzetti E., Martone A.M., Bernabei R., Onder G. Exercise as a remedy for sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care. 2014;17:25–31. doi: 10.1097/MCO.0000000000000018.
    1. Lundby C., Jacobs R.A. Adaptations of skeletal muscle mitochondria to exercise training. Exp. Physiol. 2016;101:17–22. doi: 10.1113/EP085319.
    1. Agarwal S.K. Cardiovascular benefits of exercise. Int. J. Gen. Med. 2012;5:541–545. doi: 10.2147/IJGM.S30113.
    1. Laughlin M.H., Roseguini B. Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: Differences with interval sprint training versus aerobic endurance training. J. Physiol. Pharmacol. 2008;59(Suppl. 7):71–88.
    1. Bouaziz W., Schmitt E., Kaltenbach G., Geny B., Vogel T. Health benefits of endurance training alone or combined with diet for obese patients over 60: A review. Int. J. Clin. Pract. 2015;69:1032–1049. doi: 10.1111/ijcp.12648.
    1. Willis L.H., Slentz C.A., Bateman L.A., Shields A.T., Piner L.W., Bales C.W., Houmard J.A., Kraus W.E. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J. Appl. Physiol. (1985) 2012;113:1831–1837. doi: 10.1152/japplphysiol.01370.2011.
    1. Sawyer B.J., Bhammar D.M., Angadi S.S., Ryan D.M., Ryder J.R., Sussman E.J., Bertmann F.M., Gaesser G.A. Predictors of fat mass changes in response to aerobic exercise training in women. J. Strength Cond. Res. 2015;29:297–304. doi: 10.1519/JSC.0000000000000726.
    1. Kim H., Kim M., Kojima N., Fujino K., Hosoi E., Kobayashi H., Somekawa S., Niki Y., Yamashiro Y., Yoshida H. Exercise and Nutritional Supplementation on Community-Dwelling Elderly Japanese Women With Sarcopenic Obesity: A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2016;17:1011–1019. doi: 10.1016/j.jamda.2016.06.016.
    1. Kemmler W., Weissenfels A., Teschler M., Willert S., Bebenek M., Shojaa M., Kohl M., Freiberger E., Sieber C., von Stengel S. Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk: The randomized controlled FranSO study. Clin. Interv. Aging. 2017;12:1503–1513. doi: 10.2147/CIA.S137987.
    1. Muscariello E., Nasti G., Siervo M., Di Maro M., Lapi D., D’Addio G., Colantuoni A. Dietary protein intake in sarcopenic obese older women. Clin. Interv. Aging. 2016;11:133–140. doi: 10.2147/CIA.S96017.
    1. Frimel T.N., Sinacore D.R., Villareal D.T. Exercise attenuates the weight-loss-induced reduction in muscle mass in frail obese older adults. Med. Sci. Sports Exerc. 2008;40:1213–1219. doi: 10.1249/MSS.0b013e31816a85ce.
    1. Bell G.J., Syrotuik D., Martin T.P., Burnham R., Quinney H.A. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur. J. Appl. Physiol. 2000;81:418–427. doi: 10.1007/s004210050063.
    1. Chen T., Tseng W.C., Huang G.L., Chen H.L., Tseng K.W., Nosaka K. Superior Effects of Eccentric to Concentric Knee Extensor Resistance Training on Physical Fitness, Insulin Sensitivity and Lipid Profiles of Elderly Men. Front. Physiol. 2017;8:209. doi: 10.3389/fphys.2017.00209.
    1. Wittmann K., Sieber C., von Stengel S., Kohl M., Freiberger E., Jakob F., Lell M., Engelke K., Kemmler W. Impact of whole body electromyostimulation on cardiometabolic risk factors in older women with sarcopenic obesity: The randomized controlled FORMOsA-sarcopenic obesity study. Clin. Interv. Aging. 2016;11:1697–1706. doi: 10.2147/CIA.S116430.
    1. Goisser S., Kemmler W., Porzel S., Volkert D., Sieber C.C., Bollheimer L.C., Freiberger E. Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons—A narrative review. Clin. Interv. Aging. 2015;10:1267–1282. doi: 10.2147/CIA.S82454.
    1. Mathus-Vliegen E.M. Prevalence, pathophysiology, health consequences and treatment options of obesity in the elderly: A guideline. Obes. Facts. 2012;5:460–483. doi: 10.1159/000341193.
    1. Curioni C.C., Lourenco P.M. Long-term weight loss after diet and exercise: A systematic review. Int. J. Obes. (Lond) 2005;29:1168–1174. doi: 10.1038/sj.ijo.0803015.
    1. Han T.S., Tajar A., Lean M.E. Obesity and weight management in the elderly. Br. Med. Bull. 2011;97:169–196. doi: 10.1093/bmb/ldr002.
    1. Heymsfield S.B., Gonzalez M.C., Shen W., Redman L., Thomas D. Weight loss composition is one-fourth fat-free mass: A critical review and critique of this widely cited rule. Obes. Rev. 2014;15:310–321. doi: 10.1111/obr.12143.
    1. Darmon P. Intentional weight loss in older adults: Useful or wasting disease generating strategy? Curr. Opin. Clin. Nutr. Metab. Care. 2013;16:284–289. doi: 10.1097/MCO.0b013e32835f503f.
    1. Waters D.L., Ward A.L., Villareal D.T. Weight loss in obese adults 65years and older: A review of the controversy. Exp. Gerontol. 2013;48:1054–1061. doi: 10.1016/j.exger.2013.02.005.
    1. Bouchonville M.F., Villareal D.T. Sarcopenic obesity: How do we treat it? Curr. Opin. Endocrinol. Diabetes Obes. 2013;20:412–419. doi: 10.1097/01.med.0000433071.11466.7f.
    1. Porter Starr K.N., McDonald S.R., Bales C.W. Obesity and physical frailty in older adults: A scoping review of lifestyle intervention trials. J. Am. Med. Dir. Assoc. 2014;15:240–250. doi: 10.1016/j.jamda.2013.11.008.
    1. Weinheimer E.M., Sands L.P., Campbell W.W. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: Implications for sarcopenic obesity. Nutr. Rev. 2010;68:375–388. doi: 10.1111/j.1753-4887.2010.00298.x.
    1. Damms-Machado A., Weser G., Bischoff S.C. Micronutrient deficiency in obese subjects undergoing low calorie diet. Nutr. J. 2012;11:34. doi: 10.1186/1475-2891-11-34.
    1. Villareal D., Fontana L., Weiss E.P., Racette S.B., Steger-May K., Schechtman K.B., Klein S., Holloszy J.O. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: A randomized controlled trial. Arch. Intern. Med. 2006;166:2502–2510. doi: 10.1001/archinte.166.22.2502.
    1. Paddon-Jones D., Sheffield-Moore M., Zhang X.J., Volpi E., Wolf S.E., Aarsland A., Ferrando A.A., Wolfe R.R. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am. J. Physiol. Endocrinol. Metab. 2004;286:E321–E328. doi: 10.1152/ajpendo.00368.2003.
    1. Malafarina V., Uriz-Otano F., Iniesta R., Gil-Guerrero L. Effectiveness of nutritional supplementation on muscle mass in treatment of sarcopenia in old age: A systematic review. J. Am. Med. Dir. Assoc. 2013;14:10–17. doi: 10.1016/j.jamda.2012.08.001.
    1. Volpi E., Kobayashi H., Sheffield-Moore M., Mittendorfer B., Wolfe R.R. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am. J. Clin. Nutr. 2003;78:250–258. doi: 10.1093/ajcn/78.2.250.
    1. Burd N.A., Gorissen S.H., van Loon L.J. Anabolic resistance of muscle protein synthesis with aging. Exerc. Sport Sci. Rev. 2013;41:169–173. doi: 10.1097/JES.0b013e318292f3d5.
    1. Guillet C., Prod’homme M., Balage M., Gachon P., Giraudet C., Morin L., Grizard J., Boirie Y. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J. 2004;18:1586–1587. doi: 10.1096/fj.03-1341fje.
    1. Breen L., Phillips S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. Nutr. Metab. (Lond) 2011;8:68. doi: 10.1186/1743-7075-8-68.
    1. Deer R.R., Volpi E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:248–253. doi: 10.1097/MCO.0000000000000162.
    1. Bauer J., Biolo G., Cederholm T., Cesari M., Cruz-Jentoft A.J., Morley J.E., Phillips S., Sieber C., Stehle P., Teta D., et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013;14:542–559. doi: 10.1016/j.jamda.2013.05.021.
    1. Hector A.J., Marcotte G.R., Churchward-Venne T.A., Murphy C.H., Breen L., von Allmen M., Baker S.K., Phillips S.M. Whey protein supplementation preserves postprandial myofibrillar protein synthesis during short-term energy restriction in overweight and obese adults. J. Nutr. 2015;145:246–252. doi: 10.3945/jn.114.200832.
    1. Pennings B., Boirie Y., Senden J.M., Gijsen A.P., Kuipers H., van Loon L.J. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 2011;93:997–1005. doi: 10.3945/ajcn.110.008102.
    1. Boirie Y., Dangin M., Gachon P., Vasson M.P., Maubois J.L., Beaufrere B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA. 1997;94:14930–14935. doi: 10.1073/pnas.94.26.14930.
    1. Wall B.T., Hamer H.M., de Lange A., Kiskini A., Groen B.B., Senden J.M., Gijsen A.P., Verdijk L.B., van Loon L.J. Leucine co-ingestion improves post-prandial muscle protein accretion in elderly men. Clin. Nutr. (Edinburgh, Scotland) 2013;32:412–419. doi: 10.1016/j.clnu.2012.09.002.
    1. Gilbert J.A., Bendsen N.T., Tremblay A., Astrup A. Effect of proteins from different sources on body composition. Nutr. Metab. Cardiovasc. Dis. 2011;21(Suppl. 2):B16–B31. doi: 10.1016/j.numecd.2010.12.008.
    1. Van Vliet S., Burd N.A., van Loon L.J. The Skeletal Muscle Anabolic Response to Plant-versus Animal-Based Protein Consumption. J. Nutr. 2015;145:1981–1991. doi: 10.3945/jn.114.204305.
    1. Tieland M., Borgonjen-Van den Berg K.J., Van Loon L.J., de Groot L.C. Dietary Protein Intake in Dutch Elderly People: A Focus on Protein Sources. Nutrients. 2015;7:9697–9706. doi: 10.3390/nu7125496.
    1. Arnal M.A., Mosoni L., Boirie Y., Houlier M.L., Morin L., Verdier E., Ritz P., Antoine J.M., Prugnaud J., Beaufrere B., et al. Protein pulse feeding improves protein retention in elderly women. Am. J. Clin. Nutr. 1999;69:1202–1208. doi: 10.1093/ajcn/69.6.1202.
    1. Mamerow M.M., Mettler J.A., English K.L., Casperson S.L., Arentson-Lantz E., Sheffield-Moore M., Layman D.K., Paddon-Jones D. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults. J. Nutr. 2014;144:876–880. doi: 10.3945/jn.113.185280.
    1. Cardon-Thomas D.K., Riviere T., Tieges Z., Greig C.A. Dietary Protein in Older Adults: Adequate Daily Intake but Potential for Improved Distribution. Nutrients. 2017;9 doi: 10.3390/nu9030184.
    1. Farsijani S., Payette H., Morais J.A., Shatenstein B., Gaudreau P., Chevalier S. Even mealtime distribution of protein intake is associated with greater muscle strength, but not with 3-y physical function decline, in free-living older adults: The Quebec longitudinal study on Nutrition as a Determinant of Successful Aging (NuAge study) Am. J. Clin. Nutr. 2017;106:113–124. doi: 10.3945/ajcn.116.146555.
    1. Farsijani S., Morais J.A., Payette H., Gaudreau P., Shatenstein B., Gray-Donald K., Chevalier S. Relation between mealtime distribution of protein intake and lean mass loss in free-living older adults of the NuAge study. Am. J. Clin. Nutr. 2016;104:694–703. doi: 10.3945/ajcn.116.130716.
    1. Leidy H.J., Clifton P.M., Astrup A., Wycherley T.P., Westerterp-Plantenga M.S., Luscombe-Marsh N.D., Woods S.C., Mattes R.D. The role of protein in weight loss and maintenance. Am. J. Clin. Nutr. 2015 doi: 10.3945/ajcn.114.084038.
    1. Walrand S., Gryson C., Salles J., Giraudet C., Migne C., Bonhomme C., Le Ruyet P., Boirie Y. Fast-digestive protein supplement for ten days overcomes muscle anabolic resistance in healthy elderly men. Clin. Nutr. (Edinburgh, Scotland) 2016;35:660–668. doi: 10.1016/j.clnu.2015.04.020.
    1. Chanet A., Verlaan S., Salles J., Giraudet C., Patrac V., Pidou V., Pouyet C., Hafnaoui N., Blot A., Cano N., et al. Supplementing Breakfast with a Vitamin D and Leucine-Enriched Whey Protein Medical Nutrition Drink Enhances Postprandial Muscle Protein Synthesis and Muscle Mass in Healthy Older Men. J. Nutr. 2017;147:2262–2271. doi: 10.3945/jn.117.252510.
    1. Coker R.H., Miller S., Schutzler S., Deutz N., Wolfe R.R. Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutr. J. 2012;11:105. doi: 10.1186/1475-2891-11-105.
    1. Van Dronkelaar C., van Velzen A., Abdelrazek M., van der Steen A., Weijs P.J.M., Tieland M. Minerals and Sarcopenia; The Role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on Muscle Mass, Muscle Strength, and Physical Performance in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2017 doi: 10.1016/j.jamda.2017.05.026.
    1. Scott D., Blizzard L., Fell J., Ding C., Winzenberg T., Jones G. A prospective study of the associations between 25-hydroxy-vitamin D, sarcopenia progression and physical activity in older adults. Clin. Endocrinol. (Oxf.) 2010;73:581–587. doi: 10.1111/j.1365-2265.2010.03858.x.
    1. Muir S.W., Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2011;59:2291–2300. doi: 10.1111/j.1532-5415.2011.03733.x.
    1. Semba R.D., Bartali B., Zhou J., Blaum C., Ko C.W., Fried L.P. Low serum micronutrient concentrations predict frailty among older women living in the community. J. Gerontol. A Biol. Sci. Med. Sci. 2006;61:594–599. doi: 10.1093/gerona/61.6.594.
    1. Kimmons J.E., Blanck H.M., Tohill B.C., Zhang J., Khan L.K. Associations between body mass index and the prevalence of low micronutrient levels among US adults. MedGenMed. 2006;8:59.
    1. Singh R.B., Beegom R., Rastogi S.S., Gaoli Z., Shoumin Z. Association of low plasma concentrations of antioxidant vitamins, magnesium and zinc with high body fat per cent measured by bioelectrical impedance analysis in Indian men. Magnes. Res. 1998;11:3–10.
    1. Aasheim E.T., Hofso D., Hjelmesaeth J., Birkeland K.I., Bohmer T. Vitamin status in morbidly obese patients: A cross-sectional study. Am. J. Clin. Nutr. 2008;87:362–369. doi: 10.1093/ajcn/87.2.362.
    1. Kaider-Person O., Person B., Zsomstein S., Rosenthal R.J. Nutritional Deficiencies in Morbidly Obese Patients: A New Form of Malnutrition? SpringerLink. 2017 doi: 10.1007/s11695-007-9350-5.
    1. Kim J.E., O’Connor L.E., Sands L.P., Slebodnik M.B., Campbell W.W. Effects of dietary protein intake on body composition changes after weight loss in older adults: A systematic review and meta-analysis. Nutr. Rev. 2016;74:210–224. doi: 10.1093/nutrit/nuv065.
    1. Porter Starr K.N., Pieper C.F., Orenduff M.C., McDonald S.R., McClure L.B., Zhou R., Payne M.E., Bales C.W. Improved Function With Enhanced Protein Intake per Meal: A Pilot Study of Weight Reduction in Frail, Obese Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2016;71:1369–1375. doi: 10.1093/gerona/glv210.
    1. Backx E.M., Tieland M., Borgonjen-van den Berg K.J., Claessen P.R., van Loon L.J., de Groot L.C. Protein intake and lean body mass preservation during energy intake restriction in overweight older adults. Int. J. Obes. (Lond) 2016;40:299–304. doi: 10.1038/ijo.2015.182.
    1. Poggiogalle E., Migliaccio S., Lenzi A., Donini L.M. Treatment of body composition changes in obese and overweight older adults: Insight into the phenotype of sarcopenic obesity. Endocrine. 2014;47:699–716. doi: 10.1007/s12020-014-0315-x.
    1. Miller C.T., Fraser S.F., Levinger I., Straznicky N.E., Dixon J.B., Reynolds J., Selig S.E. The effects of exercise training in addition to energy restriction on functional capacities and body composition in obese adults during weight loss: A systematic review. PLoS ONE. 2013;8:e81692. doi: 10.1371/journal.pone.0081692.
    1. Tieland M., Dirks M.L., van der Zwaluw N., Verdijk L.B., van de Rest O., de Groot L.C., van Loon L.J. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: A randomized, double-blind, placebo-controlled trial. J. Am. Med Dir. Assoc. 2012;13:713–719. doi: 10.1016/j.jamda.2012.05.020.
    1. Cermak N.M., Res P.T., de Groot L.C., Saris W.H., van Loon L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012;96:1454–1464. doi: 10.3945/ajcn.112.037556.
    1. Kim H.K., Suzuki T., Saito K., Yoshida H., Kobayashi H., Kato H., Katayama M. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. J. Am. Geriatr. Soc. 2012;60:16–23. doi: 10.1111/j.1532-5415.2011.03776.x.
    1. Verreijen A.M., Verlaan S., Engberink M.F., Swinkels S., de Vogel-van den Bosch J., Weijs P.J. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2015;101:279–286. doi: 10.3945/ajcn.114.090290.
    1. Verreijen A.M., Engberink M.F., Memelink R.G., van der Plas S.E., Visser M., Weijs P.J. Effect of a high protein diet and/or resistance exercise on the preservation of fat free mass during weight loss in overweight and obese older adults: A randomized controlled trial. Nutr. J. 2017;16:10. doi: 10.1186/s12937-017-0229-6.
    1. Mojtahedi M.C., Thorpe M.P., Karampinos D.C., Johnson C.L., Layman D.K., Georgiadis J.G., Evans E.M. The effects of a higher protein intake during energy restriction on changes in body composition and physical function in older women. J. Gerontol. A Biol. Sci. Med. Sci. 2011;66:1218–1225. doi: 10.1093/gerona/glr120.
    1. Moize V., Pi-Sunyer X., Vidal J., Miner P., Boirie Y., Laferrere B. Effect on Nitrogen Balance, Thermogenesis, Body Composition, Satiety, and Circulating Branched Chain Amino Acid Levels up to One Year after Surgery: Protocol of a Randomized Controlled Trial on Dietary Protein During Surgical Weight Loss. JMIR Res. Protoc. 2016;5:e220. doi: 10.2196/resprot.6438.

Source: PubMed

3
Abonnieren