New Trends in Migraine Pharmacology: Targeting Calcitonin Gene-Related Peptide (CGRP) With Monoclonal Antibodies

Damiana Scuteri, Annagrazia Adornetto, Laura Rombolà, Maria Diana Naturale, Luigi Antonio Morrone, Giacinto Bagetta, Paolo Tonin, Maria Tiziana Corasaniti, Damiana Scuteri, Annagrazia Adornetto, Laura Rombolà, Maria Diana Naturale, Luigi Antonio Morrone, Giacinto Bagetta, Paolo Tonin, Maria Tiziana Corasaniti

Abstract

Migraine is a common neurologic disorder characterized by attacks consisting of unilateral, throbbing headache accompanied by photophobia, phonophobia, and nausea which remarkably reduces the patients' quality of life. Not migraine-specific non-steroidal anti-inflammatory drugs (NSAIDs) are effective in patients affected by mild episodic migraine whilst in moderate or severe episodic migraine and in chronic migraineurs triptans and preventative therapies are needed. Since these treatments are endowed with serious side effects and have limited effectiveness new pharmacological approaches have been investigated. The demonstrated pivotal role of calcitonin gene-related peptide (CGRP) has fostered the development of CGRP antagonists, unfortunately endowed with liver toxicity, and monoclonal antibodies (mAbs) toward circulating CGRP released during migraine attack or targeting its receptor. Currently, four mAbs, eptinezumab, fremanezumab, galcanezumab for CGRP and erenumab for CGRP canonical receptor, have been studied in clinical trials for episodic and chronic migraine. Apart from the proven effectiveness, these antibodies have resulted well tolerated and could improve the compliance of the patients due to their long half-lives allowing less frequent administrations. This study aims at investigating the still poorly clear pathogenesis of migraine and the potential role of anti-CGRP mAbs in the scenario of prophylaxis of migraine.

Keywords: CGRP; anti-CGRP; migraine; monoclonal antibodies anti-CGRP; pharmacology of migraine; treatment.

Figures

FIGURE 1
FIGURE 1
CGRP occurrence and pathway in migraine. Expression of CGRP, CLR, and RAMP1 in human dura vessels: (A) CGRP immunoreactivity is found in thin fibers in the adventitia; (B) cross and longitudinal sections showing RAMP1 expression in the cytoplasm of smooth muscle cells; (C) coexpression of CLR and RAMP1 in the smooth muscle cell layer. (D) CGRP receptor components and important residues for receptor signaling and internalization. The CGRP receptor is formed by CLR (blue), RAMP1 (yellow), and RCP (orange). Functionally important residues are shown as single letter abbreviations. Amino acid residues are numbered from the start of the predicted N-terminal signal peptide (Swiss-Prot Q16602). Several amino acids within the CLR C-terminus (∼N400-C436) and I312 at the ICL3/TM5 junction are required for effective CGRP-mediated internalization. Important features of the CGRP receptor, including the TM6 “kink” (P343) and the putative eighth helix (∼G388-W399) in CLR are illustrated. C′, C-terminal; ECL, extracellular loop; ICL, intracellular loop; N′, N-terminal; TM, transmembrane. (E) CGRP receptor-mediated intracellular signaling: Gαs signaling increases AC (green) activity, elevating intracellular cAMP, activating PKA and subsequently many potential downstream effectors. Panels (A–C) are adapted from Eftekhari et al. (2013) and panel (D,E) from Walker et al. (2010), respectively, with permission.

References

    1. American Academy of Neurology and American Headache Society (2015). Appendix a: summary of evidence-based guideline for clinicians, update: pharmacologic treatment for episodic migraine prevention in adults. Continuum 21 1165–1166. 10.1212/01.CON.0000470901.87438.80
    1. Bendtzen K. (2013). Personalized medicine: theranostics (therapeutics diagnostics) essential for rational use of tumor necrosis factor-alpha antagonists. Discov. Med. 15 201–211.
    1. Bonilla F. A. (2008). Pharmacokinetics of immunoglobulin administered via intravenous or subcutaneous routes. Immunol. Allergy Clin. North Am. 28 803–819. 10.1016/j.iac.2008.06.006
    1. Collaborators G. B. D. H. (2018). Global, regional, and national burden of migraine and tension-type headache, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 17 954–976. 10.1016/S1474-4422(18)30322-3
    1. D’Amico D., Tepper S. J. (2008). Prophylaxis of migraine: general principles and patient acceptance. Neuropsychiatr. Dis. Treat. 4 1155–1167.
    1. Deen M., Correnti E., Kamm K., Kelderman T., Papetti L., Rubio-Beltran E., et al. (2017). Blocking CGRP in migraine patients - a review of pros and cons. J. Headache Pain 18:96. 10.1186/s10194-017-0807-1
    1. Dodick D. W., Ashina M., Brandes J. L., Kudrow D., Lanteri-Minet M., Osipova V., et al. (2018). ARISE: a phase 3 randomized trial of erenumab for episodic migraine. Cephalalgia 38 1026–1037. 10.1177/0333102418759786
    1. Drummond P. D., Lance J. W. (1983). Extracranial vascular changes and the source of pain in migraine headache. Ann. Neurol. 13 32–37. 10.1002/ana.410130108
    1. Dussor G., Yan J., Xie J. Y., Ossipov M. H., Dodick D. W., Porreca F. (2014). Targeting TRP channels for novel migraine therapeutics. ACS Chem. Neurosci. 5 1085–1096. 10.1021/cn500083e
    1. Edvinsson L. (2015). CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br. J. Clin. Pharmacol. 80 193–199. 10.1111/bcp.12618
    1. Edvinsson L. (2018). The CGRP pathway in migraine as a viable target for therapies. Headache 58(Suppl. 1), 33–47. 10.1111/head.13305
    1. Edvinsson L., Haanes K. A., Warfvinge K., Krause D. N. (2018). CGRP as the target of new migraine therapies - successful translation from bench to clinic. Nat. Rev. Neurol. 14 338–350. 10.1038/s41582-018-0003-1
    1. Eftekhari S., Warfvinge K., Blixt F. W., Edvinsson L. (2013). Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J. Pain 14 1289–1303. 10.1016/j.jpain.2013.03.010
    1. Evans M. S., Cheng X., Jeffry J. A., Disney K. E., Premkumar L. S. (2012). Sumatriptan inhibits TRPV1 channels in trigeminal neurons. Headache 52 773–784. 10.1111/j.1526-4610.2011.02053.x
    1. Ferrari M. D., Roon K. I., Lipton R. B., Goadsby P. J. (2001). Oral triptans (serotonin 5-HT(1B/1D) agonists) in acute migraine treatment: a meta-analysis of 53 trials. Lancet 358 1668–1675. 10.1016/S0140-6736(01)06711-3
    1. Forderreuther S., Zhang Q., Stauffer V. L., Aurora S. K., Lainez M. J. A. (2018). Preventive effects of galcanezumab in adult patients with episodic or chronic migraine are persistent: data from the phase 3, randomized, double-blind, placebo-controlled EVOLVE-1, EVOLVE-2, and REGAIN studies. J. Headache Pain 19:121. 10.1186/s10194-018-0951-2
    1. Giamberardino M. A., Affaitati G., Costantini R., Cipollone F., Martelletti P. (2017). Calcitonin gene-related peptide receptor as a novel target for the management of people with episodic migraine: current evidence and safety profile of erenumab. J. Pain Res. 10 2751–2760. 10.2147/JPR.S128143
    1. Giamberardino M. A., Martelletti P. (2015). Emerging drugs for migraine treatment. Expert Opin. Emerg. Drugs 20 137–147. 10.1517/14728214.2015.999040
    1. Goadsby P. J., Edvinsson L., Ekman R. (1990). Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol. 28 183–187. 10.1002/ana.410280213
    1. Goadsby P. J., Holland P. R., Martins-Oliveira M., Hoffmann J., Schankin C., Akerman S. (2017a). Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 97 553–622. 10.1152/physrev.00034.2015
    1. Goadsby P. J., Reuter U., Hallstrom Y., Broessner G., Bonner J. H., Zhang F., et al. (2017b). A controlled trial of erenumab for episodic migraine. N. Engl. J. Med. 377 2123–2132. 10.1056/NEJMoa1705848
    1. Hepp Z., Dodick D. W., Varon S. F., Chia J., Matthew N., Gillard P., et al. (2017). Persistence and switching patterns of oral migraine prophylactic medications among patients with chronic migraine: a retrospective claims analysis. Cephalalgia 37 470–485.
    1. Ho T. W., Ho A. P., Chaitman B. R., Johnson C., Mathew N. T., Kost J., et al. (2012). Randomized, controlled study of telcagepant in patients with migraine and coronary artery disease. Headache 52 224–235. 10.1111/j.1526-4610.2011.02052.x
    1. Israel H., Neeb L., Reuter U. (2018). CGRP monoclonal antibodies for the preventative treatment of migraine. Curr. Pain Headache Rep. 22:38. 10.1007/s11916-018-0686-4
    1. Lambru G., Andreou A. P., Guglielmetti M., Martelletti P. (2018). Emerging drugs for migraine treatment: an update. Expert Opin. Emerg. Drugs 23 301–318.
    1. Lassen L. H., Haderslev P. A., Jacobsen V. B., Iversen H. K., Sperling B., Olesen J. (2002). CGRP may play a causative role in migraine. Cephalalgia 22 54–61. 10.1046/j.1468-2982.2002.00310.x
    1. Lobo E. D., Hansen R. J., Balthasar J. P. (2004). Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 93 2645–2668. 10.1002/jps.20178
    1. MacGregor E. A. (2017). Migraine. Ann. Intern. Med. 166 ITC49–ITC64. 10.7326/AITC201704040
    1. Martelletti P. (2017). The application of CGRP(r) monoclonal antibodies in migraine spectrum: needs and priorities. BioDrugs 31 483–485. 10.1007/s40259-017-0251-4
    1. Messlinger K. (2018). The big CGRP flood - sources, sinks and signalling sites in the trigeminovascular system. J. Headache Pain 19:22. 10.1186/s10194-018-0848-0
    1. Monteith D., Collins E. C., Vandermeulen C., Van Hecken A., Raddad E., Scherer J. C., et al. (2017). Safety, tolerability, pharmacokinetics, and pharmacodynamics of the CGRP binding monoclonal antibody LY2951742 (Galcanezumab) in healthy volunteers. Front. Pharmacol. 8:740. 10.3389/fphar.2017.00740
    1. Ohlsson L., Kronvall E., Stratton J., Edvinsson L. (2018). Fremanezumab blocks CGRP induced dilatation in human cerebral, middle meningeal and abdominal arteries. J. Headache Pain 19:66. 10.1186/s10194-018-0905-8
    1. Prado M. S., Bendtzen K., Andrade L. E. C. (2017). Biological anti-TNF drugs: immunogenicity underlying treatment failure and adverse events. Expert Opin. Drug Metab. Toxicol. 13 985–995. 10.1080/17425255.2017.1360280
    1. Russell F. A., King R., Smillie S. J., Kodji X., Brain S. D. (2014). Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev. 94 1099–1142. 10.1152/physrev.00034.2013
    1. Sacco S., Bendtsen L., Ashina M., Reuter U., Terwindt G., Mitsikostas D. D., et al. (2019). European headache federation guideline on the use of monoclonal antibodies acting on the calcitonin gene related peptide or its receptor for migraine prevention. J. Headache Pain 20:6. 10.1186/s10194-018-0955-y
    1. Saper J., Lipton R., Kudrow D., Hirman J., Dodick D., Silberstein S., et al. (2018). Primary results of PROMISE-1 (prevention of migraine via intravenous eptinezumab safety and efficacy–1) trial: a phase 3, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of eptinezumab for prevention of frequent episodic migraines (S20.001). Neurology 90(15 Suppl.), S20.001.
    1. Shi L., Lehto S. G., Zhu D. X., Sun H., Zhang J., Smith B. P., et al. (2016). Pharmacologic characterization of AMG 334, a potent and selective human monoclonal antibody against the calcitonin gene-related peptide receptor. J. Pharmacol. Exp. Ther. 356 223–231. 10.1124/jpet.115.227793
    1. Skljarevski V., Matharu M., Millen B. A., Ossipov M. H., Kim B. K., Yang J. Y. (2018). Efficacy and safety of galcanezumab for the prevention of episodic migraine: results of the EVOLVE-2 Phase 3 randomized controlled clinical trial. Cephalalgia 38 1442–1454. 10.1177/0333102418779543
    1. Stauffer V. L., Dodick D. W., Zhang Q., Carter J. N., Ailani J., Conley R. R. (2018). Evaluation of galcanezumab for the prevention of episodic migraine: the EVOLVE-1 randomized clinical trial. JAMA Neurol. 75 1080–1088. 10.1001/jamaneurol.2018.1212
    1. Steiner T. J., Stovner L. J., Vos T., Jensen R., Katsarava Z. (2018). Migraine is first cause of disability in under 50s: will health politicians now take notice? J. Headache Pain 19:17. 10.1186/s10194-018-0846-2
    1. Taylor F. R. (2018). CGRP, amylin, immunology, and headache medicine. Headache 59 131–150. 10.1111/head.13432
    1. van Dongen R. M., Zielman R., Noga M., Dekkers O. M., Hankemeier T., van den Maagdenberg A. M., et al. (2017). Migraine biomarkers in cerebrospinal fluid: a systematic review and meta-analysis. Cephalalgia 37 49–63. 10.1177/0333102415625614
    1. Vollesen A. L. H., Snoer A., Beske R. P., Guo S., Hoffmann J., Jensen R. H., et al. (2018). Effect of infusion of calcitonin gene-related peptide on cluster headache attacks: a randomized clinical trial. JAMA Neurol. 75 1187–1197. 10.1001/jamaneurol.2018.1675
    1. Walker C. S., Conner A. C., Poyner D. R., Hay D. L. (2010). Regulation of signal transduction by calcitonin gene-related peptide receptors. Trends Pharmacol. Sci. 31 476–483. 10.1016/j.tips.2010.06.006
    1. Wang W., Wang E. Q., Balthasar J. P. (2008). Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 84 548–558. 10.1038/clpt.2008.170
    1. Xanthos D. N., Sandkuhler J. (2014). Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat. Rev. Neurosci. 15 43–53. 10.1038/nrn3617
    1. Yuan H., Lauritsen C. G., Kaiser E. A., Silberstein S. D. (2017). CGRP monoclonal antibodies for migraine: rationale and progress. BioDrugs 31 487–501. 10.1007/s40259-017-0250-5

Source: PubMed

3
Abonnieren