Different aspects of Alzheimer's disease-related amyloid β-peptide pathology and their relationship to amyloid positron emission tomography imaging and dementia

Dietmar Rudolf Thal, Alicja Ronisz, Thomas Tousseyn, Ajeet Rijal Upadhaya, Karthikeyan Balakrishnan, Rik Vandenberghe, Mathieu Vandenbulcke, Christine A F von Arnim, Markus Otto, Thomas G Beach, Johan Lilja, Kerstin Heurling, Aruna Chakrabarty, Azzam Ismail, Christopher Buckley, Adrian P L Smith, Sathish Kumar, Gill Farrar, Jochen Walter, Dietmar Rudolf Thal, Alicja Ronisz, Thomas Tousseyn, Ajeet Rijal Upadhaya, Karthikeyan Balakrishnan, Rik Vandenberghe, Mathieu Vandenbulcke, Christine A F von Arnim, Markus Otto, Thomas G Beach, Johan Lilja, Kerstin Heurling, Aruna Chakrabarty, Azzam Ismail, Christopher Buckley, Adrian P L Smith, Sathish Kumar, Gill Farrar, Jochen Walter

Abstract

Alzheimer's disease (AD)-related amyloid β-peptide (Aβ) pathology in the form of amyloid plaques and cerebral amyloid angiopathy (CAA) spreads in its topographical distribution, increases in quantity, and undergoes qualitative changes in its composition of modified Aβ species throughout the pathogenesis of AD. It is not clear which of these aspects of Aβ pathology contribute to AD progression and to what extent amyloid positron emission tomography (PET) reflects each of these aspects. To address these questions three cohorts of human autopsy cases (in total n = 271) were neuropathologically and biochemically examined for the topographical distribution of Aβ pathology (plaques and CAA), its quantity and its composition. These parameters were compared with neurofibrillary tangle (NFT) and neuritic plaque pathology, the degree of dementia and the results from [18F]flutemetamol amyloid PET imaging in cohort 3. All three aspects of Aβ pathology correlated with one another, the estimation of Aβ pathology by [18F]flutemetamol PET, AD-related NFT pathology, neuritic plaques, and with the degree of dementia. These results show that one aspect of Aβ pathology can be used to predict the other two, and correlates well with the development of dementia, advancing NFT and neuritic plaque pathology. Moreover, amyloid PET estimates all three aspects of Aβ pathology in-vivo. Accordingly, amyloid PET-based estimates for staging of amyloid pathology indicate the progression status of amyloid pathology in general and, in doing so, also of AD pathology. Only 7.75% of our cases deviated from this general association.

Trial registration: ClinicalTrials.gov NCT01165554 NCT02090855.

Keywords: Alzheimer’s disease; Amyloid PET; Amyloid load; Amyloid maturation; Amyloid β peptide; Insoluble amyloid; Soluble amyloid; Staging; [18F]flutemetamol.

Conflict of interest statement

DRT received consultancies from GE-Healthcare (UK) and Covance Laboratories (UK), speaker honorarium from Novartis Pharma Basel (Switzerland), travel reimbursement from GE-Healthcare (UK), and UCB (Belgium), and collaborated with GE-Healthcare (UK), Novartis Pharma Basel (Switzerland), Probiodrug (Germany), and Janssen Pharmaceutical Companies (Belgium). TGB received a consultancy from GE-Healthcare (UK). GF, CB, APLS are employees of GE-Healthcare (UK, USA). JL and KH were employees of GE-Healthcare (Sweden). JL is currently employee of Hermes Medical Solutions (Sweden). AC and AI received personal fees from GE-Healthcare via the University of Leeds. CAFvA received honoraria from serving on the scientific advisory board of Nutricia GmbH (2014), Roche (2018) and Hongkong University Research council (2014) and has received funding for travel and speaker honoraria from Nutricia GmbH (2014–2015), Lilly Deutschland GmbH (2013–2016), Desitin Arzneimittel GmbH (2014), Biogen (2016–2018), Roche (2017–2018) and Dr. Willmar Schwabe GmbH &Co. KG (2014–2015). MO received honoraria from serving on the advisory board of Axon and Fujirebio.

Figures

Fig. 1
Fig. 1
Comparison of the relationship of the Aβ phases (a), AβMTL phases (b), the A-scores (c), CAA stages (d) and CAA severities (e) with Aβ plaque loads for Aβ, AβN3pE, and AβpSer8-containig plaques in cohort 1, depicted by boxplot diagrams. a: The plaque-loads for Aβ (Spearman correlation analysis: r = 0.888) and AβN3pE (Spearman correlation analysis: r = 0.882) correlated better with the Aβ phases than that for AβpSer8-positive plaques (Spearman correlation analysis: r = 0.810). b-e: Likewise, the AβMTL phases (b), the A-scores (c), the CAA stage (d) and the CAA severity (e) correlated with the Aβ, AβN3pE, and AβpSer8 loads (r = 0.582–0.899; p < 0.001; for detailed statistical analysis see Additional file 1: Table S5a)
Fig. 2
Fig. 2
Boxplot diagrams representing the distribution of soluble (Sol.), dispersible (Disp.), membrane-associated (Memb. ass.), and plaque-associated (Plaq. Ass.) Aβ (a, d, g, j, m), AβN3pE (b, e, h, k, n), and AβpSer8 levels (c, f, i, l, o) in relation to the phase of Aβ plaque distribution (Aβ phase; a-c), the AβMTL phase (d-f), the A-score (g-i), the CAA stages (j-l) and the CAA severity (m-o) in cohort 1. The correlation for these three different forms of Aβ was best for Aβ detected with antibodies against non-modified forms of Aβ (Spearman correlation analysis: r = 0.603–0.809) followed by AβN3pE (Spearman correlation analysis: r = 0.572–0.756) whereas AβpSer8 was not detectable in soluble Aβ aggregates. Dispersible, membrane-associated and plaque-associated AβpSer8 showed a week correlation with the Aβ phases (Spearman correlation analysis: r = 0.324–0.556) due to the fact that it was seen only in Aβ phases 4 and 5 but not earlier, except for single cases. Increased levels of Aβ and AβN3pE were found already in cases without CAA (m, n). Cases with CAA showed high levels of soluble, dispersible, membrane-associated, and plaque-associated Aβ and AβN3pE in all stage and severity degrees of CAA. Only the presence of AβpSer8 was restricted to cases with CAA. The detailed correlation analysis is provided in Additional file 1: Table S5a
Fig. 3
Fig. 3
Boxplot diagram comparing the relationship of the Aβ phases (a), AβMTL phases (b), A-scores (c), CAA stages (d) and CAA severities (e) with the biochemical stages of Aβ aggregate maturation reflecting the hierarchical occurrence of Aβ, AβN3pE, and AβpSer8 in Aβ aggregates in brain homogenates (B-Aβ stages) or in Aβ plaques (B-Aβ plaque stage) in cohort 1. a: The B-Aβ stages and the B-Aβ plaque stages increased with increasing Aβ phase until Aβ phase 4 when the maximum B-Aβ and B-Aβ plaques stages were reached. b, c: AβMTL phases and A-scores also correlated with the B-Aβ stages and B-Aβ plaque stages but exhibiting no ceiling effect. d, e: In the presence of CAA regardless of the stage (d) or severity (e), end-stage B-Aβ stage and B-Aβ plaque stage were observed, probably indicative for a ceiling effect. (Spearman correlation analysis: r = 0.694–0.906) (for detailed statistical analysis see Additional file 1: Table S5a)
Fig. 4
Fig. 4
Boxplot diagrams representing the distribution of Aβ phase, AβMTL phase, A-score, CAA stage, CAA severity (a) and Aβ loads (b) in relation to the PET-Aβ phase estimate in cohort 3. All parameters correlated with the PET-Aβ phase estimates (r = 0.610–0.835; p < 0.001; for detailed statistical analysis see Additional file 1: Table S6). Note that the main increase in Aβ load occurs after Aβ became detectable in PET-Aβ phase estimate 1. The mean value of the Aβ load in PET-Aβ phase estimate 1 was 1.396% (median 1.42%) indicative for the threshold of Aβ detectability in the brain by PET
Fig. 5
Fig. 5
Boxplot and scatter diagrams depicting the correlation of the Braak NFT stages, CERAD-scores for neuritic plaque pathology, NIA-AA scores of AD pathology, and the clinical dementia scores (CDR for cohorts 1 and 2 and MMSE for cohort 3) with the topographical Aβ parameters Aβ phase (a-d) and CAA stage (e-h), the quantitative measure of the Aβ load (i-l), and the qualitative aspect provided by the B-Aβ plaque stages (m). The boxplots are depicted separately for cohorts 1 (a, e, i, k, m), 2 (b, f), and 3 (c, d, g, h, j, l). The Braak NFT stages, CERAD scores, NIA-AA degrees of AD pathology, and CDR scores correlated with all parameters depicted here (r = 0.287–0.920, p < 0.001). Likewise, the MMSE scores showed a negative correlation with the Aβ phase and the CAA stages in cohort 3 (r = − 0.514/− 0.315, p ≤ 0.012) except for the Aβ load (p = 0.051) which showed only a trend (for detailed statistical analysis see Additional file 1: Table S7)

References

    1. Alafuzoff I, Thal DR, Arzberger T, Bogdanovic N, Al-Sarraj S, Bodi I, Boluda S, Bugiani O, Duyckaerts C, Gelpi E, Gentleman S, Giaccone G, Graeber M, Hortobagyi T, Hoftberger R, Ince P, Ironside JW, Kavantzas N, King A, Korkolopoulou P, Kovacs GG, Meyronet D, Monoranu C, Nilsson T, Parchi P, Patsouris E, Pikkarainen M, Revesz T, Rozemuller A, Seilhean D, Schulz-Schaeffer W, Streichenberger N, Wharton SB, Kretzschmar H. Assessment of beta-amyloid deposits in human brain: a study of the BrainNet Europe consortium. Acta Neuropathol. 2009;117(3):309–320. doi: 10.1007/s00401-009-0485-4.
    1. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology. 1992;42(3 Pt 1):631–639. doi: 10.1212/WNL.42.3.631.
    1. Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology. 1992;42(9):1681–1688. doi: 10.1212/WNL.42.9.1681.
    1. Ashby EL, Miners JS, Kumar S, Walter J, Love S, Kehoe PG. Investigation of Abeta phosphorylated at serine 8 (pAbeta) in Alzheimer's disease, dementia with Lewy bodies and vascular dementia. Neuropathol Appl Neurobiol. 2014;41:428–444. doi: 10.1111/nan.12212.
    1. Attems J, Jellinger KA. The overlap between vascular disease and Alzheimer’s disease--lessons from pathology. BMC Med. 2014;12:206. doi: 10.1186/s12916-014-0206-2.
    1. Attems J, Neltner JH, Nelson PT. Quantitative neuropathological assessment to investigate cerebral multi-morbidity. Alzheimers Res Ther. 2014;6(9):85. doi: 10.1186/s13195-014-0085-y.
    1. Bancher C, Jellinger KA. Neurofibrillary tangle predominant form of senile dementia of Alzheimer type: a rare subtype in very old subjects. Acta Neuropathol. 1994;88(6):565–570. doi: 10.1007/BF00296494.
    1. Baron JC, Farid K, Dolan E, Turc G, Marrapu ST, O'Brien E, Aigbirhio FI, Fryer TD, Menon DK, Warburton EA, Hong YT. Diagnostic utility of amyloid PET in cerebral amyloid angiopathy-related symptomatic intracerebral hemorrhage. J Cereb Blood Flow Metab. 2014;34(5):753–758. doi: 10.1038/jcbfm.2014.43.
    1. Beach TG, Thal DR, Zanette M, Smith A, Buckley C. Detection of striatal amyloid plaques with [18F]flutemetamol: validation with postmortem histopathology. J Alzheimers Dis. 2016;52(3):863–873. doi: 10.3233/JAD-150732.
    1. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112(4):389–404. doi: 10.1007/s00401-006-0127-z.
    1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–259. doi: 10.1007/BF00308809.
    1. Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathological process in Alzheimer's disease: age categories 1 year to 100 years. J Neuropathol Exp Neurol. 2011;70:960–969. doi: 10.1097/NEN.0b013e318232a379.
    1. Braak H, Zetterberg H, Del Tredici K, Blennow K. Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-beta changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol. 2013;126(5):631–641. doi: 10.1007/s00401-013-1139-0.
    1. Charidimou A, Farid K, Baron JC. Amyloid-PET in sporadic cerebral amyloid angiopathy: a diagnostic accuracy meta-analysis. Neurology. 2017;89(14):1490–1498. doi: 10.1212/WNL.0000000000004539.
    1. Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, Fleisher AS, Reiman EM, Sabbagh MN, Sadowsky CH, Schneider JA, Arora A, Carpenter AP, Flitter ML, Joshi AD, Krautkramer MJ, Lu M, Mintun MA, Skovronsky DM, Group A-AS Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol. 2012;11(8):669–678. doi: 10.1016/S1474-4422(12)70142-4.
    1. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, Arnold SE, Attems J, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Gearing M, Grinberg LT, Hof PR, Hyman BT, Jellinger K, Jicha GA, Kovacs GG, Knopman DS, Kofler J, Kukull WA, Mackenzie IR, Masliah E, Mc Kee A, Montine TJ, Murray ME, Neltner JH, Santa-Maria I, Seeley WW, Serrano-Pozo A, Shelanski ML, Stein T, Takao M, Thal DR, Toledo JB, Troncoso JC, Vonsattel JP, White CL, 3rd, Wisniewski T, Woltjer RL, Yamada M, Nelson PT. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128:755–766. doi: 10.1007/s00401-014-1349-0.
    1. Curtis C, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN, Beach TG, Duara R, Fleisher AS, Frey KA, Walker Z, Hunjan A, Holmes C, Escovar YM, Vera CX, Agronin ME, Ross J, Bozoki A, Akinola M, Shi J, Vandenberghe R, Ikonomovic MD, Sherwin PF, Grachev ID, Farrar G, Smith AP, Buckley CJ, McLain R, Salloway S. Phase 3 trial of Flutemetamol labeled with radioactive fluorine 18 imaging and Neuritic plaque density. JAMA Neurol. 2015;72:287–294. doi: 10.1001/jamaneurol.2014.4144.
    1. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):32. doi: 10.1186/s13024-019-0333-5.
    1. Dierksen GA, Skehan ME, Khan MA, Jeng J, Nandigam RN, Becker JA, Kumar A, Neal KL, Betensky RA, Frosch MP, Rosand J, Johnson KA, Viswanathan A, Salat DH, Greenberg SM. Spatial relation between microbleeds and amyloid deposits in amyloid angiopathy. Ann Neurol. 2010;68(4):545–548. doi: 10.1002/ana.22099.
    1. Ducharme S, Guiot MC, Nikelski J, Chertkow H. Does a positive Pittsburgh compound B scan in a patient with dementia equal Alzheimer disease? JAMA Neurol. 2013;70(7):912–914. doi: 10.1001/jamaneurol.2013.420.
    1. Duyckaerts C, Braak H, Brion JP, Buee L, Del Tredici K, Goedert M, Halliday G, Neumann M, Spillantini MG, Tolnay M, Uchihara T. PART is part of Alzheimer disease. Acta Neuropathol. 2015;129(5):749–756. doi: 10.1007/s00401-015-1390-7.
    1. Farid K, Hong YT, Aigbirhio FI, Fryer TD, Menon DK, Warburton EA, Baron JC. Early-phase 11C-PiB PET in amyloid Angiopathy-related symptomatic cerebral hemorrhage: potential diagnostic value? PLoS One. 2015;10(10):e0139926. doi: 10.1371/journal.pone.0139926.
    1. Folstein MF, Folstein SE, McHugh PR. “mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Gerth J, Kumar S, Rijal Upadhaya A, Ghebremedhin E, von Arnim CAF, Thal DR, Walter J. Modified amyloid variants in pathological subgroups of beta-amyloidosis. Ann Clin Transl Neurol. 2018;5(7):815–831. doi: 10.1002/acn3.577.
    1. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120(3):885–890. doi: 10.1016/S0006-291X(84)80190-4.
    1. Gomes Luis Aragão, Hipp Silvia Andrea, Rijal Upadhaya Ajeet, Balakrishnan Karthikeyan, Ospitalieri Simona, Koper Marta J., Largo-Barrientos Pablo, Uytterhoeven Valerie, Reichwald Julia, Rabe Sabine, Vandenberghe Rik, von Arnim Christine A. F., Tousseyn Thomas, Feederle Regina, Giudici Camilla, Willem Michael, Staufenbiel Matthias, Thal Dietmar Rudolf. Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein. Acta Neuropathologica. 2019;138(6):913–941. doi: 10.1007/s00401-019-02053-5.
    1. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. 2011;42(9):2672–2713. doi: 10.1161/STR.0b013e3182299496.
    1. Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science. 2001;293(5534):1491–1495. doi: 10.1126/science.1062097.
    1. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101–112. doi: 10.1038/nrm2101.
    1. Hanseeuw Bernard J., Betensky Rebecca A., Jacobs Heidi I. L., Schultz Aaron P., Sepulcre Jorge, Becker J. Alex, Cosio Danielle M. Orozco, Farrell Michelle, Quiroz Yakeel T., Mormino Elizabeth C., Buckley Rachel F., Papp Kathryn V., Amariglio Rebecca A., Dewachter Ilse, Ivanoiu Adrian, Huijbers Willem, Hedden Trey, Marshall Gad A., Chhatwal Jasmeer P., Rentz Dorene M., Sperling Reisa A., Johnson Keith. Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease. JAMA Neurology. 2019;76(8):915. doi: 10.1001/jamaneurol.2019.1424.
    1. Hanseeuw BJ, Betensky RA, Mormino EC, Schultz AP, Sepulcre J, Becker JA, Jacobs HIL, Buckley RF, LaPoint MR, Vanini P, Donovan NJ, Chhatwal JP, Marshall GA, Papp KV, Amariglio RE, Rentz DM, Sperling RA, Johnson KA, Alzheimer’s Disease Neuroimaging I, Harvard Aging Brain S PET staging of amyloidosis using striatum. Alzheimers Dement. 2018;14(10):1281–1292. doi: 10.1016/j.jalz.2018.04.011.
    1. Hansen LA, Masliah E, Galasko D, Terry RD. Plaque-only Alzheimer disease is usually the lewy body variant, and vice versa. J Neuropathol Exp Neurol. 1993;52(6):648–654. doi: 10.1097/00005072-199311000-00012.
    1. Hatashita S, Yamasaki H, Suzuki Y, Tanaka K, Wakebe D, Hayakawa H. [18F] Flutemetamol amyloid-beta PET imaging compared with [11C] PIB across the spectrum of Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2014;41(2):290–300. doi: 10.1007/s00259-013-2564-y.
    1. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566–572. doi: 10.1192/bjp.140.6.566.
    1. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ. National Institute on Aging–Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012;8:1–13. doi: 10.1016/j.jalz.2011.10.007.
    1. Ikonomovic MD, Buckley CJ, Heurling K, Sherwin P, Jones PA, Zanette M, Mathis CA, Klunk WE, Chakrabarty A, Ironside J, Ismail A, Smith C, Thal DR, Beach TG, Farrar G, Smith AP. Post-mortem histopathology underlying beta-amyloid PET imaging following flutemetamol F 18 injection. Acta Neuropathol Commun. 2016;4(1):130. doi: 10.1186/s40478-016-0399-z.
    1. Irwin DJ, White MT, Toledo JB, Xie SX, Robinson JL, Van Deerlin V, Lee VM, Leverenz JB, Montine TJ, Duda JE, Hurtig HI, Trojanowski JQ. Neuropathologic substrates of Parkinson disease dementia. Ann Neurol. 2012;72(4):587–598. doi: 10.1002/ana.23659.
    1. Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of a beta 42(43) and a beta 40 in senile plaques with end-specific a beta monoclonals: evidence that an initially deposited species is a beta 42(43) Neuron. 1994;13(1):45–53. doi: 10.1016/0896-6273(94)90458-8.
    1. Jang H, Jang YK, Kim HJ, Werring DJ, Lee JS, Choe YS, Park S, Lee J, Kim KW, Kim Y, Cho SH, Kim SE, Kim SJ, Charidimou A, Na DL, Seo SW. Clinical significance of amyloid beta positivity in patients with probable cerebral amyloid angiopathy markers. Eur J Nucl Med Mol Imaging. 2019;46(6):1287–1298. doi: 10.1007/s00259-019-04314-7.
    1. Kumar S, Wirths O, Theil S, Gerth J, Bayer TA, Walter J. Early intraneuronal accumulation and increased aggregation of phosphorylated Abeta in a mouse model of Alzheimer's disease. Acta Neuropathol. 2013;125(5):699–709. doi: 10.1007/s00401-013-1107-8.
    1. Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, Ball MJ, Roher AE. Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem. 1996;271(8):4077–4081. doi: 10.1074/jbc.271.8.4077.
    1. La Joie Renaud, Ayakta Nagehan, Seeley William W., Borys Ewa, Boxer Adam L., DeCarli Charles, Doré Vincent, Grinberg Lea T., Huang Eric, Hwang Ji-Hye, Ikonomovic Milos D., Jack Clifford, Jagust William J., Jin Lee-Way, Klunk William E., Kofler Julia, Lesman-Segev Orit H., Lockhart Samuel N., Lowe Val J., Masters Colin L., Mathis Chester A., McLean Catriona L., Miller Bruce L., Mungas Daniel, O'Neil James P., Olichney John M., Parisi Joseph E., Petersen Ronald C., Rosen Howard J., Rowe Christopher C., Spina Salvatore, Vemuri Prashanthi, Villemagne Victor L., Murray Melissa E., Rabinovici Gil D. Multisite study of the relationships between antemortem [11C]PIB-PET Centiloid values and postmortem measures of Alzheimer's disease neuropathology. Alzheimer's & Dementia. 2019;15(2):205–216. doi: 10.1016/j.jalz.2018.09.001.
    1. Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, Pontecorvo M, Baker SL, Jagust WJ, Alzheimer’s Disease Neuroimaging I Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41(7):1398–1407. doi: 10.1007/s00259-014-2753-3.
    1. Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ. Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis. 1996;3(1):16–32. doi: 10.1006/nbdi.1996.0003.
    1. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001;293(5534):1487–1491. doi: 10.1126/science.1058189.
    1. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol. 1999;155(3):853–862. doi: 10.1016/S0002-9440(10)65184-X.
    1. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985;82(12):4245–4249. doi: 10.1073/pnas.82.12.4245.
    1. Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM, Selkoe DJ, Ince PG, Walsh DM. The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain. 2010;133(Pt 5):1328–1341. doi: 10.1093/brain/awq065.
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–269. doi: 10.1016/j.jalz.2011.03.005.
    1. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann Neurol. 1999;46(6):860–866. doi: 10.1002/1531-8249(199912)46:6<860::AID-ANA8>;2-M.
    1. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L. The consortium to establish a registry for Alzheimer's Disease (CERAD). Part II Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology. 1991;41(4):479–486. doi: 10.1212/WNL.41.4.479.
    1. Murray ME, Lowe VJ, Graff-Radford NR, Liesinger AM, Cannon A, Przybelski SA, Rawal B, Parisi JE, Petersen RC, Kantarci K, Ross OA, Duara R, Knopman DS, Jack CR, Jr, Dickson DW. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer's disease spectrum. Brain. 2015;138(Pt 5):1370–1381. doi: 10.1093/brain/awv050.
    1. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron. 2004;43(3):321–332. doi: 10.1016/j.neuron.2004.07.003.
    1. Price JL, Davis PB, Morris JC, White DL. The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer's disease. Neurobiol Aging. 1991;12(4):295–312. doi: 10.1016/0197-4580(91)90006-6.
    1. Rezaei-Ghaleh N, Amininasab M, Kumar S, Walter J, Zweckstetter M. Phosphorylation modifies the molecular stability of beta-amyloid deposits. Nat Commun. 2016;7:11359. doi: 10.1038/ncomms11359.
    1. Rijal Upadhaya A, Capetillo-Zarate E, Kosterin I, Abramowski D, Kumar S, Yamaguchi H, Walter J, Fändrich M, Staufenbiel M, Thal DR. Dispersible amyloid β-protein oligomers, protofibrils, and fibrils represent diffusible but not soluble aggregates: their role in neurodegeneration in amyloid precursor protein (APP) transgenic mice. Neurobiol Aging. 2012;33:2641–2660. doi: 10.1016/j.neurobiolaging.2011.12.032.
    1. Rijal Upadhaya A, Kosterin I, Kumar S, Von Arnim C, Yamaguchi H, Fändrich M, Walter J, Thal DR. Biochemical stages of amyloid β-peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically-preclinical Alzheimer’s disease. Brain. 2014;137:887–903. doi: 10.1093/brain/awt362.
    1. Rijal Upadhaya A, Lungrin I, Yamaguchi H, Fändrich M, Thal DR. High-molecular weight Aβ-oligomers and protofibrils are the predominant Aβ-species in the native soluble protein fraction of the AD brain. J Cell Mol Med. 2012;16:287–295. doi: 10.1111/j.1582-4934.2011.01306.x.
    1. Roberts BR, Lind M, Wagen AZ, Rembach A, Frugier T, Li QX, Ryan TM, McLean CA, Doecke JD, Rowe CC, Villemagne VL, Masters CL. Biochemically-defined pools of amyloid-beta in sporadic Alzheimer's disease: correlation with amyloid PET. Brain. 2017;140(5):1486–1498. doi: 10.1093/brain/awx057.
    1. Sabri Osama, Sabbagh Marwan N., Seibyl John, Barthel Henryk, Akatsu Hiroyasu, Ouchi Yasuomi, Senda Kohei, Murayama Shigeo, Ishii Kenji, Takao Masaki, Beach Thomas G., Rowe Christopher C., Leverenz James B., Ghetti Bernardino, Ironside James W., Catafau Ana M., Stephens Andrew W., Mueller Andre, Koglin Norman, Hoffmann Anja, Roth Katrin, Reininger Cornelia, Schulz-Schaeffer Walter J. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer's disease: Phase 3 study. Alzheimer's & Dementia. 2015;11(8):964–974. doi: 10.1016/j.jalz.2015.02.004.
    1. Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S. Dominant and differential deposition of distinct beta-amyloid peptide species, a beta N3(pE), in senile plaques. Neuron. 1995;14(2):457–466. doi: 10.1016/0896-6273(95)90301-1.
    1. Salloway S, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN, Beach TG, Duara R, Fleisher AS, Frey KA, Walker Z, Hunjan A, Escovar YM, Agronin ME, Ross J, Bozoki A, Akinola M, Shi J, Vandenberghe R, Ikonomovic MD, Sherwin PF, Farrar G, Smith APL, Buckley CJ, Thal DR, Zanette M, Curtis C. Performance of [(18) F] flutemetamol amyloid imaging against the neuritic plaque component of CERAD and the current (2012) NIA-AA recommendations for the neuropathologic diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 2017;9:25–34. doi: 10.1016/j.dadm.2017.06.001.
    1. Schlenzig D, Manhart S, Cinar Y, Kleinschmidt M, Hause G, Willbold D, Funke SA, Schilling S, Demuth HU. Pyroglutamate formation influences solubility and Amyloidogenicity of amyloid peptides. Biochemistry. 2009;48:7072–7078. doi: 10.1021/bi900818a.
    1. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608. doi: 10.15252/emmm.201606210.
    1. Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol. 2017;134(2):187–205. doi: 10.1007/s00401-017-1709-7.
    1. Thal DR, Beach TG, Zanette M, Heurling K, Chakrabarty A, Ismail A, Smith AP, Buckley C. [18F] flutemetamol amyloid PET in preclinical and symptomatic Alzheimer's disease: specific detection of advanced phases of Aβ pathology. Alzheimers Dement. 2015;11:975–985. doi: 10.1016/j.jalz.2015.05.018.
    1. Thal DR, Beach TG, Zanette M, Lilja J, Heurling K, Chakrabarty A, Ismail A, Farrar G, Buckley C, Smith APL. Estimation of amyloid distribution by [(18) F] flutemetamol PET predicts the neuropathological phase of amyloid beta-protein deposition. Acta Neuropathol. 2018;136(4):557–567. doi: 10.1007/s00401-018-1897-9.
    1. Thal DR, Ghebremedhin E, Orantes M, Wiestler OD. Vascular pathology in Alzheimer’s disease: correlation of cerebral amyloid angiopathy and arteriosclerosis / lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol. 2003;62(12):1287–1301. doi: 10.1093/jnen/62.12.1287.
    1. Thal DR, Griffin WS, Braak H. Parenchymal and vascular Abeta-deposition and its effects on the degeneration of neurons and cognition in Alzheimer's disease. J Cell Mol Med. 2008;12(5B):1848–1862. doi: 10.1111/j.1582-4934.2008.00411.x.
    1. Thal DR, Hartig W, Schober R. Stage-correlated distribution of type 1 and 2 dystrophic neurites in cortical and hippocampal plaques in Alzheimer's disease. J Hirnforsch. 1998;39(2):175–181.
    1. Thal DR, Rüb U, Orantes M, Braak H. Phases of Abeta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–1800. doi: 10.1212/WNL.58.12.1791.
    1. Thal DR, Rüb U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K, Braak E, Braak H. Sequence of Abeta-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol. 2000;59(8):733–748. doi: 10.1093/jnen/59.8.733.
    1. Thal DR, von Arnim C, Griffin WS, Yamaguchi H, Mrak RE, Attems J, Rijal Upadhaya A. Pathology of clinical and preclinical Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci. 2013;263(Suppl 2):S137–S145. doi: 10.1007/s00406-013-0449-5.
    1. Thal Dietmar Rudolf, von Arnim Christine A. F., Griffin W. Sue T., Mrak Robert E., Walker Lauren, Attems Johannes, Arzberger Thomas. Frontotemporal lobar degeneration FTLD-tau: preclinical lesions, vascular, and Alzheimer-related co-pathologies. Journal of Neural Transmission. 2015;122(7):1007–1018. doi: 10.1007/s00702-014-1360-6.
    1. Thal DR, Walter J, Saido TC, Fandrich M. Neuropathology and biochemistry of Abeta and its aggregates in Alzheimer's disease. Acta Neuropathol. 2015;129:167–182. doi: 10.1007/s00401-014-1375-y.
    1. Thurfjell L, Lilja J, Lundqvist R, Buckley C, Smith A, Vandenberghe R, Sherwin P. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med. 2014;55(10):1623–1628. doi: 10.2967/jnumed.114.142109.
    1. Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, Monsell SE, Kukull WA, Trojanowski JQ. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's coordinating Centre. Brain. 2013;136(Pt 9):2697–2706. doi: 10.1093/brain/awt188.
    1. Toledo JB, Gopal P, Raible K, Irwin DJ, Brettschneider J, Sedor S, Waits K, Boluda S, Grossman M, Van Deerlin VM, Lee EB, Arnold SE, Duda JE, Hurtig H, Lee VM, Adler CH, Beach TG, Trojanowski JQ. Pathological alpha-synuclein distribution in subjects with coincident Alzheimer’s and Lewy body pathology. Acta Neuropathol. 2016;131(3):393–409. doi: 10.1007/s00401-015-1526-9.
    1. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, Hasselbalch S, Law I, Andersen A, Korner A, Minthon L, Garraux G, Nelissen N, Bormans G, Buckley C, Owenius R, Thurfjell L, Farrar G, Brooks DJ. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68(3):319–329. doi: 10.1002/ana.22068.
    1. Vonsattel JP, Myers RH, Hedley-Whyte ET, Ropper AH, Bird ED, Richardson EP., Jr Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol. 1991;30(5):637–649. doi: 10.1002/ana.410300503.
    1. Wang J, Dickson DW, Trojanowski JQ, Lee VM. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol. 1999;158(2):328–337. doi: 10.1006/exnr.1999.7085.

Source: PubMed

3
Abonnieren