Associations between the morphological parameters of proximal tibiofibular joint (PTFJ) and changes in tibiofemoral joint structures in patients with knee osteoarthritis

Jun Chang, Tianyu Chen, Yizhu Yan, Zhaohua Zhu, Weiyu Han, Yi Zhao, Benny Antony, Anita Wluka, Tania Winzenberg, Flavia Cicuttini, Changhai Ding, Jun Chang, Tianyu Chen, Yizhu Yan, Zhaohua Zhu, Weiyu Han, Yi Zhao, Benny Antony, Anita Wluka, Tania Winzenberg, Flavia Cicuttini, Changhai Ding

Abstract

Background: To describe the longitudinal associations between the morphological parameters of proximal tibiofibular joint (PTFJ) and joint structural changes in tibiofemoral compartments in patients with knee osteoarthritis (OA).

Methods: The participants were selected from the Vitamin D Effects on Osteoarthritis (VIDEO) study. PTFJ morphological parameters were measured on coronal and sagittal MRI. The contacting area (S) of PTFJ and its projection areas onto the horizontal (load-bearing area, Sτ), sagittal (lateral stress-bolstering area, Sφ), and coronal plane (posterior stress-bolstering area, Sυ) were assessed. Knee structural abnormalities, including cartilage defects, bone marrow lesions (BMLs), and cartilage volume, were evaluated at baseline and after 2 years. Log binominal regression models and linear regression models were used to assess the associations between PTFJ morphological parameters and osteoarthritic structural changes.

Results: In the longitudinal analyses, the S (RR: 1.45) and Sτ (RR: 1.55) of PTFJ were significantly and positively associated with an increase in medial tibial (MT) cartilage defects. The Sτ (β: - 0.07), Sυ (β: - 0.07), and S (β: - 0.06) of PTFJ were significantly and negatively associated with changes in MT cartilage volume. The Sτ (RR: 1.55) of PTFJ was positively associated with an increase in MT BMLs, and Sφ (RR: 0.35) was negatively associated with an increase in medial femoral BMLs.

Conclusions: This longitudinal study suggests that higher load-bearing area of PTFJ could be a risk factor for structural changes in medial tibiofemoral (MTF) compartment in knee OA.

Trial registration: Clinicaltrials.gov Identifier: NCT01176344 Anzctr.org.au Identifier: ACTRN12610000495022 Date of registration: 7 May 2010.

Conflict of interest statement

None of the authors have any competing interest to declare.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Measures of proximal tibiofibular joint (PTFJ) morphological parameters. A T1-weighted coronal MRI slices of the knee. Point c is the outermost point of the fibular articular surface, and a is the innermost point of the articular surface in PTFJ. e is the lateral vertex of the tibial plateau, and f is the medial vertex of the tibial plateau. Line oa is drawn through a, which is parallel to line ef. The length of ac and the angle oac (α) are measured in each slice of MRI. B Sagittal fat-suppressed T1-weighted 3D gradient-echo MRI. Point b is the lowest point of the fibular articular surface, and c is the highest point of the fibular articular surface in PTFJ. e and f are points that connect the anterior and posterior horns of the lateral meniscus with the tibial plateau, respectively, and line ef is parallel to the tibial plateau. Line ob is drawn through b and is parallel to ef. The length between bc and the angle of obc (β) are then measured in each slice of MRI
Fig. 2
Fig. 2
Associations between the areas of PTFJ and change in tibial cartilage volume per annum. The contacting area and load-bearing area of PTFJ were significantly associated with increased loss of cartilage volume at the medial (A, B) but not the lateral (C, D) tibial site. Partial r and p values were obtained after adjustment for age, sex, height, weight, and total tibial bone size

References

    1. Cushnaghan J, Cooper C, Dieppe P, Kirwan J, McAlindon T, McCrae F. Clinical assessment of osteoarthritis of the knee. Ann Rheum Dis. 1990;49(10):768–770. doi: 10.1136/ard.49.10.768.
    1. Lambert KL. The weight-bearing function of the fibula. A strain gauge study. J Bone Joint Surg Am. 1971;53(3):507–513. doi: 10.2106/00004623-197153030-00007.
    1. Ledingham J, Regan M, Jones A, Doherty M. Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann Rheum Dis. 1993;52(7):520–526. doi: 10.1136/ard.52.7.520.
    1. Schipplein OD, Andriacchi TP. Interaction between active and passive knee stabilizers during level walking. J Orthop Res. 1991;9(1):113–119. doi: 10.1002/jor.1100090114.
    1. Tetsworth K, Paley D. Malalignment and degenerative arthropathy. Orthop Clin North Am. 1994;25(3):367–377. doi: 10.1016/S0030-5898(20)31921-0.
    1. Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. Jama. 2001;286(2):188–195. doi: 10.1001/jama.286.2.188.
    1. Cerejo R, Dunlop DD, Cahue S, Channin D, Song J, Sharma L. The influence of alignment on risk of knee osteoarthritis progression according to baseline stage of disease. Arthritis Rheum. 2002;46(10):2632–2636. doi: 10.1002/art.10530.
    1. Duivenvoorden T, Brouwer RW, Baan A, Bos PK, Reijman M, Bierma-Zeinstra SM, Verhaar JA. Comparison of closing-wedge and opening-wedge high tibial osteotomy for medial compartment osteoarthritis of the knee: a randomized controlled trial with a six-year follow-up. J Bone Joint Surg Am. 2014;96(17):1425–1432. doi: 10.2106/JBJS.M.00786.
    1. Saithna A, Kundra R, Getgood A, Spalding T. Opening wedge distal femoral varus osteotomy for lateral compartment osteoarthritis in the valgus knee. Knee. 2014;21(1):172–175. doi: 10.1016/j.knee.2013.08.014.
    1. Self BP, Greenwald RM, Pflaster DS. A biomechanical analysis of a medial unloading brace for osteoarthritis in the knee. Arthritis Care Res. 2000;13(4):191–197. doi: 10.1002/1529-0131(200008)13:4<191::AID-ANR3>;2-C.
    1. Yang ZY, Chen W, Li CX, Wang J, Shao DC, Hou ZY, Gao SJ, Wang F, Li JD, Hao JD, et al. Medial compartment decompression by fibular osteotomy to treat medial compartment knee osteoarthritis: a pilot study. Orthopedics. 2015;38(12):e1110–e1114. doi: 10.3928/01477447-20151120-08.
    1. Wilson DR, McWalter EJ, Johnston JD. The measurement of joint mechanics and their role in osteoarthritis genesis and progression. Rheum Dis Clin North Am. 2013;39(1):21–44. doi: 10.1016/j.rdc.2012.11.002.
    1. von Eisenhart-Rothe R, Siebert M, Bringmann C, Vogl T, Englmeier KH, Graichen H. A new in vivo technique for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint. J Biomech. 2004;37(6):927–934. doi: 10.1016/j.jbiomech.2003.09.034.
    1. Besier TF, Draper CE, Gold GE, Beaupre GS, Delp SL. Patellofemoral joint contact area increases with knee flexion and weight-bearing. J Orthop Res. 2005;23(2):345–350. doi: 10.1016/j.orthres.2004.08.003.
    1. Shin CS, Souza RB, Kumar D, Link TM, Wyman BT, Majumdar S. In vivo tibiofemoral cartilage-to-cartilage contact area of females with medial osteoarthritis under acute loading using MRI. J Magn Reson Imaging. 2011;34(6):1405–1413. doi: 10.1002/jmri.22796.
    1. Yao J, Lancianese SL, Hovinga KR, Lee J, Lerner AL. Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion. J Orthop Res. 2008;26(5):673–684. doi: 10.1002/jor.20553.
    1. Ogden JA. The anatomy and function of the proximal tibiofibular joint. Clin Orthop Relat Res. 1974;101:186–191.
    1. Eichenblat M, Nathan H. The proximal tibio fibular joint. An anatomical study with clinical and pathological considerations. Int Orthop. 1983;7(1):31–39. doi: 10.1007/BF00267557.
    1. Bozkurt M, Yilmaz E, Atlihan D, Tekdemir I, Havitçioğlu H, Günal I. The proximal tibiofibular joint: an anatomic study. Clin Orthop Relat Res. 2003;406:136–140. doi: 10.1097/00003086-200301000-00022.
    1. Burkhart TA, Asa B, Payne MW, Johnson M, Dunning CE, Wilson TD. Anatomy of the proximal tibiofibular joint and interosseous membrane, and their contributions to joint kinematics in below-knee amputations. J Anat. 2015;226(2):143–149. doi: 10.1111/joa.12263.
    1. Lu M, Han W, Wang K, Zhu Z, Antony B, Cicuttini F, Yin Z, Jones G, Ding C. Associations between proximal tibiofibular joint (PTFJ) types and knee osteoarthritic changes in older adults. Osteoarthritis Cartilage. 2017;25(9):1452–1458. doi: 10.1016/j.joca.2017.05.013.
    1. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M, et al. Development of criteria for the classification and reporting of osteoarthritis. classification of osteoarthritis of the knee. diagnostic and therapeutic criteria committee of the american rheumatism association. Arthritis Rheum. 1986;29(8):1039–1049. doi: 10.1002/art.1780290816.
    1. Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage. 2007;15(Suppl A):A1–56. doi: 10.1016/j.joca.2006.11.009.
    1. Chang J, Zhu Z, Liao Z, Meng T, Zheng S, Cicuttini F, Winzenberg T, Wluka A, Jiang D, Han W, et al. A novel method for assessing proximal tibiofibular joint on MR images in patients with knee osteoarthritis. Osteoarthritis Cartilage. 2018;26(12):1675–1682. doi: 10.1016/j.joca.2018.08.011.
    1. Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G. Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthritis Cartilage. 2005;13(3):198–205. doi: 10.1016/j.joca.2004.11.007.
    1. Peterfy CG, Guermazi A, Zaim S, Tirman PF, Miaux Y, White D, Kothari M, Lu Y, Fye K, Zhao S, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage. 2004;12(3):177–190. doi: 10.1016/j.joca.2003.11.003.
    1. Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Abram F, Choquette D, Haraoui B, Beary JF, Cline GA, Meyer JM, Pelletier JP. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Ann Rheum Dis. 2008;67(5):683–688. doi: 10.1136/ard.2007.073023.
    1. Cao Y, Jones G, Cicuttini F, Winzenberg T, Wluka A, Sharman J, Nguo K, Ding C. Vitamin D supplementation in the management of knee osteoarthritis: study protocol for a randomized controlled trial. Trials. 2012;13:131. doi: 10.1186/1745-6215-13-131.
    1. Scott J, Lee H, Barsoum W, van den Bogert AJ. The effect of tibiofemoral loading on proximal tibiofibular joint motion. J Anat. 2007;211(5):647–653. doi: 10.1111/j.1469-7580.2007.00803.x.
    1. Callaghan MJ, Parkes MJ, Hutchinson CE, Gait AD, Forsythe LM, Marjanovic EJ, Lunt M, Felson DT. A randomised trial of a brace for patellofemoral osteoarthritis targeting knee pain and bone marrow lesions. Ann Rheum Dis. 2015;74(6):1164–1170. doi: 10.1136/annrheumdis-2014-206376.
    1. Felson DT, Parkes MJ, Marjanovic EJ, Callaghan M, Gait A, Cootes T, Lunt M, Oldham J, Hutchinson CE. Bone marrow lesions in knee osteoarthritis change in 6-12 weeks. Osteoarthritis Cartilage. 2012;20(12):1514–1518. doi: 10.1016/j.joca.2012.08.020.
    1. Wang X, Wei L, Lv Z, Zhao B, Duan Z, Wu W, Zhang B, Wei X. Proximal fibular osteotomy: a new surgery for pain relief and improvement of joint function in patients with knee osteoarthritis. J Int Med Res. 2017;45(1):282–289. doi: 10.1177/0300060516676630.
    1. Ranstam J. Multiple P-values and Bonferroni correction. Osteoarthritis Cartilage. 2016;24(5):763–764. doi: 10.1016/j.joca.2016.01.008.

Source: PubMed

3
Abonnieren