Insecticide resistance status of Anopheles gambiae s.s population from M'Bé: a WHOPES-labelled experimental hut station, 10 years after the political crisis in Côte d'Ivoire

Alphonsine A Koffi, Ludovic P Ahoua Alou, Maurice A Adja, Fabrice Chandre, Cédric Pennetier, Alphonsine A Koffi, Ludovic P Ahoua Alou, Maurice A Adja, Fabrice Chandre, Cédric Pennetier

Abstract

Background: An experimental hut station built at M'Bé in 1998 was used for many years for the evaluation of insecticidal product for public health until the civil war broke out in 2002. Breeding sites of mosquitoes and selection pressure in the area were maintained by local farming practices and the West African Rice Development Association (WARDA, actually AfricaRice) in a large rice growing area. Ten years after the crisis, bioassays, molecular and biochemical analyses were conducted to update the resistance status and study the evolution of resistance mechanisms of Anopheles gambiae s.s population.

Methods: Anopheles gambiae s.s larvae from M'Bé were collected in breeding sites and reared until emergence. Resistance status of this population to conventional insecticides was assessed using WHO bioassay test kits for adult mosquitoes, with 10 insecticides belonging to pyrethroids, pseudo-pyrethroid, organochlorides, carbamates and organophosphates with and without the inhibitor piperonyl butoxyde (PBO). Molecular and biochemical assays were carried out to identify the L1014F kdr, L1014S kdr and ace-1(R) alleles in individual mosquitoes and to detect potential increase in mixed function oxidases (MFO) level, non-specific esterases (NSE) and glutathione S-transferases (GST) activities.

Results and discussion: Anopheles gambiae s.s from M'Bé exerted high resistance levels to organochlorides, pyrethroids, and carbamates. Mortalities ranged from 3% to 21% for organochlorides, from 50% to 75% for pyrethroids, 34% for etofenprox, the pseudo-pyrethroid, and from 7% to 80% for carbamates. Tolerance to organophosphates was observed with mortalities ranging from 95% to 98%. Bioassays run with a pre-exposition of mosquitoes to PBO induced very high levels of mortalities compared to the bioassays without PBO, suggesting that the resistance to pyrethroid and carbamate relied largely on detoxifying enzymes' activities. The L1014F kdr allelic frequency was 0.33 in 2012 compared to 0.05 before the crisis in 2002. Neither the L1014S kdr nor ace-1(R) mutations were detected. An increased activity of NSE and level of MFO was found relative to the reference strain Kisumu. This was the first evidence of metabolic resistance based resistance in An. gambiae s.s from M'Bé.

Conclusion: The An. gambiae s.s population showed very high resistance to organochlorides, pyrethroids and carbamates. This resistance level relied largely on two major types of resistance: metabolic and target-site mutation. This multifactorial resistance offers a unique opportunity to evaluate the impact of both mechanisms and their interaction with the vector control tools currently used or in development.

Figures

Figure 1
Figure 1
Insecticidal effects of diagnostic concentrations of insecticides (60 min contact in WHO tube tests) with or without a 60 min pre-exposition to PBO.

References

    1. RBM. Technical support network for insecticide-treated netting materials: scaling-up insecticide-treated netting programmes in Africa. In: Roll Back Malaria, editor. A strategic framework for coordinated national action. Geneva: WHO; 2002. p. 14.
    1. WHO. Pesticides and their application for the control of vectors and pests of public health importance. Geneva: WHO/CDS/NTD/WHOPES/GCDPP/2006.1; 2006.
    1. Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000;14:1–5. doi: 10.1046/j.1365-2915.2000.00211.x.
    1. Akogbeto MC, Djouaka R, Noukpo H. Utilisation des insecticides agricoles au Bénin. Bull Soc Pathol Exot. 2005;98:400–405.
    1. Yadouleton AW, Padonou G, Asidi A, Moiroux N, Bio-Banganna S, Corbel V, N’Guessan R, Gbenou D, Yacoubou I, Gazard K, Akogbeto MC. Insecticide resistance status in Anopheles gambiae in southern Benin. Malar J. 2010;9:83. doi: 10.1186/1475-2875-9-83.
    1. Czeher C, Labbo R, Arzika I, Duchemin JB. Evidence of increasing Leu-Phe knockdown resistance mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide-treated nets implementation. Malar J. 2008;7:189. doi: 10.1186/1475-2875-7-189.
    1. Trape JF, Tall A, Diagne N, Ndiath O, Ly AB, Faye J, Dieye-Ba F, Roucher C, Bouganali C, Badiane A, Sarr FD, Mazenot C, Touré-Baldé A, Raoult D, Druilhe P, Mercereau-Puijalon O, Rogier C, Sokhna C. Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. Lancet Infect Dis. 2011;11:925–932. doi: 10.1016/S1473-3099(11)70194-3.
    1. Chandre F, Darrier F, Manga L, Akogbeto M, Faye O, Mouchet J, Guillet P. Status of pyrethroid resistance in Anopheles gambiae sensu lato. Bull World Health Organ. 1999;77:230–234.
    1. Dabire KR, Diabate A, Djogbenou L, Ouari A, N’Guessan R, Ouedraogo JB, Hougard JM, Chandre F, Baldet T. Dynamics of multiple insecticide resistance in the malaria vector Anopheles gambiae in a rice growing area in South-Western Burkina Faso. Malar J. 2008;7:188. doi: 10.1186/1475-2875-7-188.
    1. Santolamazza F, Calzetta M, Etang J, Barrese E, Dia I, Caccone A, Donnelly MJ, Petrarca V, Simard F, Pinto J. della Torre A. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar J. 2008;7:74. doi: 10.1186/1475-2875-7-74.
    1. Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbe C, Yangalbe-Kalnone E, Sagnon N, Simard F, Coetzee M. Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J. 2009;8:299. doi: 10.1186/1475-2875-8-299.
    1. Hemingway J, Beaty BJ, Rowland M, Scott TW, Sharp BL. The Innovative Vector Control Consortium: improved control of mosquito-borne diseases. Trends Parasitol. 2006;22:308–312. doi: 10.1016/j.pt.2006.05.003.
    1. The malERA Consultative Group on Vector Control. A research agenda for malaria eradication: vector control. PLoS Med. 2011;8:e1000401.
    1. Hougard JM, Corbel V, N’Guessan R, Darriet F, Chandre F, Akogbeto M, Baldet T, Guillet P, Carnevale P, Traoré-Lamizana M. Efficacy of mosquito nets treated with insecticide mixtures or mosaics against insecticide resistant Anopheles gambiae and Culex quinquefasciatus (Diptera: Culicidae) in Cote d’Ivoire. Bull Entomol Res. 2003;93:491–498.
    1. Pennetier C, Costantini C, Corbel V, Licciardi S, Dabire RK, Lapied B, Chandre F, Hougard JM. Mixture for controlling insecticide-resistant malaria vectors. Emerg Infect Dis. 2008;14:1707–1714. doi: 10.3201/eid1411.071575.
    1. Pennetier C, Costantini C, Corbel V, Licciardi S, Dabire RK, Lapied B, Chandre F, Hougard JM. Synergy between repellents and organophosphates on bed nets: efficacy and behavioural response of natural free-flying An. gambiae mosquitoes. PLoS One. 2009;4:e7896. doi: 10.1371/journal.pone.0007896.
    1. Oxborough RM, Kitau J, Matowo J, Feston E, Mndeme R, Mosha FW, Rowland M. ITN mixtures of chlorfenapyr (pyrrole) and alphacypermethrin (pyrethroid) for control of pyrethroid resistant Anopheles arabiensis and Culex quinquefasciatus. PLoS One. 2013;8(2):e55781. doi: 10.1371/journal.pone.0055781.
    1. Corbel V, Chabi J, Dabire RD, Etang J, Nwane P, Pigeon O, Akogbeto M, Hougard JM. Field efficacy of a new mosaic long-lasting mosquito net (PermaNet 3.0) against pyrethroid-resistant malaria vectors: a multi-centre study in Western and Central Africa. Malar J. 2010;9:113. doi: 10.1186/1475-2875-9-113.
    1. N’Guessan R, Asidi A, Boko P, Odjo A, Akogbeto M, Pigeon O, Rowland M. An experimental hut evaluation of PermaNet® 3.0, a deltamethrin-piperonyl butoxide combination net, against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes in southern Benin. Trans R Soc Trop Med Hyg. 2010;104:758–765. doi: 10.1016/j.trstmh.2010.08.008.
    1. Tungu PK, Magesa S, Maxwell C, Masue D, Sudi W, Myamba J, Rowland M. Evaluation of PermaNet® 3.0 LN against Anopheles gambiae and Culex quinquefasciatus in experimental huts in Tanzania. London, UK: National Institute for Medical Research ARC, Muheza, Tanzania and London School of Hygiene and Tropical Medicine; 2008.
    1. Koudou BG, Koffi AA, Malone D, Hemingway J. Efficacy of PermaNet® 2.0 and PermaNet® 3.0 against insecticide-resistant Anopheles gambiae in experimental huts in Cote d’Ivoire. Malar J. 2011;10:172. doi: 10.1186/1475-2875-10-172.
    1. Darriet F, N’Guessan R, Hougard JM, Traoré-Lamizana M, Carnevale P. Un outil expérimental indispensable à l’évaluation des insecticides: les cases-pièges. Bull Soc Pathol Exot. 2002;95:299–303.
    1. Chandre F, Manguin S, Brengues C, Dossou Yovo J, Darriet F, Diabate A, Carnevale P, Guillet P. Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from West Africa and further evidence for reproductive isolation of the Mopti form. Parassitologia. 1999;41:319–322.
    1. Koffi AA, Ahoua Alou LP, Adja MA, Kone M, Chandre F, N’Guessan R. Update on resistance status of Anopheles gambiae s.s. to conventional insecticides at a previous WHOPES field site, “Yaokoffikro”, 6 years after the political crisis in Cote d’Ivoire. Parasit Vectors. 2012;5:68. doi: 10.1186/1756-3305-5-68.
    1. Darriet F, Koffi AA, Konan L, Doannio JMC, Chandre F, Carnevale P. N’ guessan R. [Impact of the resistance to pyrethroids on the efficacy of impregnated bednets used as a means of prevention against malaria: results of the evaluation carried out with deltamethrin SC in experimental huts](in French) Bull Soc Pathol Exot. 2000;93:131–134.
    1. Darriet F, N’Guessan R, Carnevale P. Evaluations en cases-pièges de l’effet protecteur de moustiquaires non imprégnées d’insecticide dans la prévention des piqûres d’Anopheles gambiae s.s. Sante. 2000;10:413–417.
    1. Koffi AA, Darriet F, N’Guessan R, Doannio JM, Carnevale P. Évaluation au laboratoire de l’efficacité insecticide de l’alpha-cyperméthrine sur les populations d’Anopheles gambiae de Côte d’Ivoire résistantes à la perméthrine et à la deltaméthrine. Bull Soc Pathol Exot. 1999;92:62–66.
    1. N’Guessan R, Darriet F, Guillet P, Carnevale P, Traore-Lamizana M, Corbel V, Koffi AA, Chandre F. Resistance to carbosulfan in Anopheles gambiae from Ivory Coast, based on reduced sensitivity of acetylcholinesterase. Med Vet Entomol. 2003;17:19–25. doi: 10.1046/j.1365-2915.2003.00406.x.
    1. Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M. della Torre A. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol. 2001;10:9–18. doi: 10.1046/j.1365-2583.2001.00235.x.
    1. Tu Z, Petrarca V. della Torre A. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem Mol Biol. 2005;35:755–769. doi: 10.1016/j.ibmb.2005.02.006.
    1. WHO. Guidelines for testing mosquito adulticides intended for Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITNs) Geneva: WHO/CDS/NTD/WHOPES/GCDDP/2006.3; 2006.
    1. Chandre F, Darriet F, Manguin S, Brengues C, Carnevale P, Guillet P. Pyrethroid cross resistance spectrum among populations of Anopheles gambiae s.s. from Cote d’Ivoire. J Am Mosq Control Assoc. 1999;15:53–59.
    1. Collins FH, Finnerty V, Petrarca V. Ribosomal DNA-probes differentiate five cryptic species in the Anopheles gambiae complex. Parassitologia. 1988;30:231–240.
    1. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. AmJTrop Med Hyg. 1993;49:520–529.
    1. Favia G, Lanfrancotti A, Spanos L, Siden Kiamos I, Louis C. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol. 2001;10:19–23. doi: 10.1046/j.1365-2583.2001.00236.x.
    1. Lynd A, Ranson H, McCall PJ, Randle NP, Black WC, Walker ED, Donnelly MJ. A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae. Malar J. 2005;4:16. doi: 10.1186/1475-2875-4-16.
    1. Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, Raymond M. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol Biol. 2004;13:1–7. doi: 10.1111/j.1365-2583.2004.00452.x.
    1. WHO. Techniques to detect resistance mechanisms (Field and laboratory manual) Geneva: WHO/CDS/CPC/MAL/98.6; 1998.
    1. WHO. Tests procedures for insecticide resistance monitoring in malaria vectors, bioefficacy and persistence of insecticides on treated surfaces. Geneva: WHO/CDS/CPC/MAL/98.12; 1998.
    1. Raymond M, Rousset F. GENEPOP (Version 1.2): a population genetics software for exact tests and ecumenicism. J Heredity. 1995;86:248–249.
    1. Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L, Dabire R, Aikpon R, Boko M, Glitho I, Akogbeto M. Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in northern Benin. Parasit Vectors. 2011;4:60. doi: 10.1186/1756-3305-4-60.
    1. Konan KG, Koné AB, Konan YL, Fofana D, Konan KL, Diallo A, Ziogba JC, Touré M, Kouassi KP, Doannio JM. Résistance d’Anopheles gambiae s.l. aux pyréthrinoïdes et au DDT à Tiassalékro, village de riziculture irriguée en zone sud forestière de Côte-d’Ivoire. Bull Soc Pathol Exot. 2011;104:303–306. doi: 10.1007/s13149-011-0176-y.
    1. Bigoga JD, Ndangoh DN, Awono-Ambene PH, Patchoke S, Fondjo E, Leke RG. Pyrethroid resistance in Anopheles gambiae from the rubber cultivated area of Niete, South Region of Cameroon. Acta Trop. 2012;124:210–214. doi: 10.1016/j.actatropica.2012.08.010.
    1. Doudou DT, Assi SB, Monnet AM, Diobo Doudou S, AMOIKON MI, Boza GS, Koffi SK. In: Evaluation de la couverture en MII et des connaissances, attitudes et pratiques (CAP) des ménages relatives à l’utilisation des MII dans les districts sanitaires de la Côte d’Ivoire. CRD, editor. Bouaké: Université de Bouaké; 2009. p. 79.
    1. Corbel V, Akogbeto M, Damien GB, Djenontin A, Chandre F, Rogier C, Moiroux N, Chabi J, Banganna B, Padonou GG, Henry MC. Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. Lancet Infect Dis. 2012;12:617–626. doi: 10.1016/S1473-3099(12)70081-6.
    1. Ranson H, N'Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–98. doi: 10.1016/j.pt.2010.08.004.
    1. Etang J, Manga L, Toto JC, Guillet P, Fondjo E, Chandre F. Spectrum of metabolic-based resistance to DDT and pyrethroids in Anopheles gambiae s.l. populations from Cameroon. J Vector Ecol. 2007;32:123–133. doi: 10.3376/1081-1710(2007)32[123:SOMRTD];2.
    1. Chouaibou M, Etang J, Brevault T, Nwane P, Hinzoumbe CK, Mimpfoundi R, Simard F. Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in Northern Cameroon. Trop Med Int Health. 2008;13:476–486. doi: 10.1111/j.1365-3156.2008.02025.x.
    1. Chouaibou M, Simard F, Chandre F, Etang J, Darriet F, Hougard JM. Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in North Cameroon. Malar J. 2006;5:77. doi: 10.1186/1475-2875-5-77.

Source: PubMed

3
Abonnieren