Changes in intraocular pressure and optic nerve sheath diameter in patients undergoing robotic-assisted laparoscopic prostatectomy in steep 45° Trendelenburg position

Sebastian Blecha, Marion Harth, Felix Schlachetzki, Florian Zeman, Christiane Blecha, Pierre Flora, Maximilian Burger, Stefan Denzinger, Bernhard M Graf, Horst Helbig, Michael T Pawlik, Sebastian Blecha, Marion Harth, Felix Schlachetzki, Florian Zeman, Christiane Blecha, Pierre Flora, Maximilian Burger, Stefan Denzinger, Bernhard M Graf, Horst Helbig, Michael T Pawlik

Abstract

Background: To evaluate changes in intraocular pressure (IOP) and intracerebral pressure (ICP) reflected by the optic nerve sheath diameter (ONSD) in patients undergoing robotic-assisted laparoscopic prostatectomy (RALP) in permanent 45° steep Trendelenburg position (STP).

Methods: Fifty-one patients undergoing RALP under a standardised anaesthesia. IOP was perioperatively measured in awake patients (T0) and IOP and ONSD 20 min after induction of anaesthesia (T1), after insufflation of the abdomen in supine position (T2), after 30 min in STP (T3), when controlling Santorini's plexus in STP (T4) and before awakening while supine (T5). We investigated the influence of respiratory and circulatory parameters as well as patient-specific and time-dependent factors on IOP and ONSD.

Results: Average IOP values (mmHg) were T0 = 19.9, T1 = 15.9, T2 = 20.1, T3 = 30.7, T4 = 33.9 and T5 = 21.8. IOP was 14.0 ± 7.47 mmHg (mean ± SD) higher at T4 than T0 (p = 0.013). Univariate mixed effects models showed peak inspiratory pressure (PIP) and mean arterial blood pressure (MAP) to be significant predictors for IOP increase. Mean ONSD values (mm) were T1 = 5.88, T2 = 6.08, T3 = 6.07, T4 = 6.04 and T5 = 5.96. The ONSD remained permanently >6.0 mm during RALP. Patients aged <63 years showed a 0.21 mm wider ONSD on average (p = 0.017) and greater variations in diameter than older patients.

Conclusions: The combination of STP and capnoperitoneum during RALP has a pronounced influence on IOP and, to a lesser degree, on ICP. IOP is directly correlated with increasing PIP and MAP. IOP doubled and the ONSD rose to values indicating increased intracranial pressure. Differences in the ONSD were age-related, showing higher output values as well as better autoregulation and compliance in STP for patients aged <63 years. Despite several ocular changes during RALP, visual function was not significantly impaired postoperatively.

Trial registration: Z-2014-0387-6 . Registered 8 July 2014.

Keywords: Intraocular pressure; Optic nerve sheath diameter; Robotic-assisted laparoscopic prostatectomy; steep Trendelenburg position.

Figures

Fig. 1
Fig. 1
Preparation and test of 45° Trendelenburg position before start of RALP
Fig. 2
Fig. 2
Measurement of the optic nerve sheath diameter
Fig. 3
Fig. 3
Mean IOP for each time point (±SD)
Fig. 4
Fig. 4
Mean PIP for each time point (±SD)
Fig. 5
Fig. 5
Mean MAP for each time point (±SD)
Fig. 6
Fig. 6
Mean ONSD for each time point all patients (±SD)
Fig. 7
Fig. 7
Age differences of changes in the ONSD (±SD)

References

    1. German Centre for Cancer Registry Data (ZfKD) in Robert Koch-Institute. Cancer in Germany 2009/2010. . Accessed 25 Jul 2014.
    1. Porpiglia F, Morra I, Lucci Chiarissi M, Manfredi M, Mele F, Grande S, Ragni F, Poggio M, Fiori C. Randomised controlled trial comparing laparoscopic and robot-assisted radical prostatectomy. Eur Urol. 2013;63:606–614. doi: 10.1016/j.eururo.2012.07.007.
    1. Ficarra V, Novara G, Artibani W, Cestari A, Galfano A, Graefen M, Guazzoni G, Guillonneau B, Menon M, Montorsi F, Patel V, Rassweiler J, Van Poppel H. Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol. 2009;55(5):1037–63. doi: 10.1016/j.eururo.2009.01.036.
    1. Koch MO. Robotic versus open prostatectomy: end of the controversy. J Urol. 2016;196(1):9–10. doi: 10.1016/j.juro.2016.04.047.
    1. Pearce SM, Pariser JJ, Karrison T, Patel SG, Eggener SE. Comparison of perioperative and early oncologic outcomes between open and robotic assisted laparoscopic prostatectomy in a contemporary population-based cohort. J Urol. 2016;196(1):76–81. doi: 10.1016/j.juro.2016.01.105.
    1. Gainsburg DM. Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy. Minerva Anestesiol. 2012;78:596–604.
    1. Weber E, Coyler M, Lesser R, Subramanian P. Posterior ischaemic optic neuropathy after minimally invasive prostatectomy. J Neuroophthalmol. 2007;27:285–7. doi: 10.1097/WNO.0b013e31815b9f67.
    1. Lee LA. Perioperative visual loss and anesthetic management. Curr Opin Anaesthesiol. 2013;26(3):375–81. doi: 10.1097/ACO.0b013e328360dcd9.
    1. Ertl M, Barinka F, Torka E, Altmann M, Pfister K, Helbig H, Bogdahn U, Gamulescu MA, Schlachetzki F. Ocular color-coded sonography - a promising tool for neurologists and intensive care physicians. Ultraschall Med. 2014;35(5):422–31. doi: 10.1055/s-0034-1366113.
    1. Moretti R, Pizzi B. Ultrasonography of the optic nerve in neurocritically ill patients. Acta Anaesthesiol Scand. 2011;55:644–652. doi: 10.1111/j.1399-6576.2011.02432.x.
    1. Tranquart F, Berges O, Koskas P, Arsene S, Rossazza C, Pisella PJ, Pourcelot L. Color Doppler imaging of orbital vessels: personal experience and literature review. J Clin Ultrasound. 2003;31:258–273. doi: 10.1002/jcu.10169.
    1. Hoshikawa Y, Tsutsumi N, Ohkoshi K, Serizawa S, Hamada M, Inagaki K, Tsuzuki K, Koshimizu J, Echizen N, Fujitani S, Takahashi O, Deshpande GA. The effect of steep Trendelenburg positioning on intraocular pressure and visual function during robotic-assisted radical prostatectomy. Br J Ophthalmol. 2014;98(3):305–8. doi: 10.1136/bjophthalmol-2013-303536.
    1. Taketani Y, Mayama C, Suzuki N, Wada A, Oka T, Inamochi K, Nomoto Y. Transient but significant visual field defects after robot-assisted laparoscopic radical prostatectomy in deep Trendelenburg position. PLoS One. 2015;10(4):e0123361. doi: 10.1371/journal.pone.0123361.
    1. Murphy DF. Anesthesia and intraocular pressure. Anesth Analg. 1985;64(5):520–30. doi: 10.1213/00000539-198505000-00013.
    1. Sator S, Wildling E, Schabernig C, Akramian J, Zulus E, Winkler M. Desflurane maintains intraocular pressure at an equivalent level to isoflurane and propofol during unstressed non-ophthalmic surgery. Br J Anaesth. 1998;80(2):243–4. doi: 10.1093/bja/80.2.243.
    1. Schäfer R, Klett J, Auffarth G, Polarz H, Völcker HE, Martin E, Böttiger BW. Intraocular pressure more reduced during anesthesia with propofol than with sevoflurane: both combined with remifentanil. Acta Anaesthesiol Scand. 2002;46(6):703–6. doi: 10.1034/j.1399-6576.2002.460612.x.
    1. Awad H, Santilli S, Ohr M, Roth A, Yan W, Fernandez S, Roth S, Patel V. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg. 2009;109(2):473–8. doi: 10.1213/ane.0b013e3181a9098f.
    1. Molloy BL. Implications for postoperative visual loss: steep Trendelenburg position and effects on intraocular pressure. AANA J. 2011;79:115.
    1. Raz O, Boesel TW, Arianayagam M, Lau H, Vass J, Huynh CC, Graham SL, Varol C. The effect of the modified Z trendelenburg position on intraocular pressure during robotic assisted laparoscopic radical prostatectomy: a randomized, controlled study. J Urol. 2015;193(4):1213–9. doi: 10.1016/j.juro.2014.10.094.
    1. Molloy B, Cong X. Perioperative dorzolamide-timolol intervention for rising intraocular pressure during steep Trendelenburg positioned surgery. AANA J. 2014;82(3):203–11.
    1. Kim MS, Bai SJ, Lee JR, Choi YD, Kim YJ, Choi SH. Increase in intracranial pressure during carbon dioxide pneumoperitoneum with steep trendelenburg positioning proven by ultrasonographic measurement of optic nerve sheath diameter. J Endourol. 2014;28(7):801–6. doi: 10.1089/end.2014.0019.
    1. Chin JH, Seo H, Lee EH, Lee J, Hong JH, Hwang JH, Kim YK. Sonographic optic nerve sheath diameter as a surrogate measure for intracranial pressure in anesthetized patients in the Trendelenburg position. BMC Anesthesiol. 2015;15:43. doi: 10.1186/s12871-015-0025-9.
    1. Soldatos T, Chatzimichail K, Papathanasiou M, Gouliamos A. Optic nerve sonography: a new window for the non-invasive evaluation of intracranial pressure in brain injury. Emerg Med J. 2009;26(9):630–4. doi: 10.1136/emj.2008.058453.
    1. Moretti R, Pizzi B. Optic nerve ultrasound for detection of intracranial hypertension in intracranial hemorrhage patients: Confirmation of previous findings in a different patient population. J Neurosurg Anesthesiol. 2009;21:16–20. doi: 10.1097/ANA.0b013e318185996a.
    1. Geeraerts T, Merceron S, Benhamou D, Vigué B, Duranteau J. Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med. 2008;34:2062–2067. doi: 10.1007/s00134-008-1149-x.
    1. Fichtner J, Ulrich CT, Fung C, Knüppel C, Veitweber M, Jilch A, Schucht P, Ertl M, Schömig B, Gralla J, Z'Graggen WJ, Bernasconi C, Mattle HP, Schlachetzki F, Raabe A, Beck J. Management of spontaneous intracranial hypotension - Transorbital ultrasound as discriminator. J Neurol Neurosurg Psychiatry. 2016;87(6):650–5.
    1. Whiteley JR, Taylor J, Henry M, Epperson TI, Hand WR. Detection of elevated intracranial pressure in robot-assisted laparoscopic radical prostatectomy using ultrasonography of optic nerve sheath diameter. J Neurosurg Anesthesiol. 2015;27(2):155–9. doi: 10.1097/ANA.0000000000000106.
    1. Hansen HC, Lagrèze W, Krueger O, Helmke K. Dependence of the optic nerve sheath diameter on acutely applied subarachnoidal pressure - an experimental ultrasound study. Acta Ophthalmol. 2011;89(6):e528–32. doi: 10.1111/j.1755-3768.2011.02159.x.

Source: PubMed

3
Abonnieren