The Influence of Probiotic Lactobacillus casei in Combination with Prebiotic Inulin on the Antioxidant Capacity of Human Plasma

Paulina Kleniewska, Arkadiusz Hoffmann, Ewa Pniewska, Rafał Pawliczak, Paulina Kleniewska, Arkadiusz Hoffmann, Ewa Pniewska, Rafał Pawliczak

Abstract

The aim of the present study was to assess whether probiotic bacteria Lactobacillus casei (4 × 10(8) CFU) influences the antioxidant properties of human plasma when combined with prebiotic Inulin (400 mg). Experiments were carried out on healthy volunteers (n = 32). Volunteers were divided according to sex (16 male and 16 female) and randomly assigned to synbiotic and control groups. Blood samples were collected before synbiotic supplementation and after 7 weeks, at the end of the study. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, and the ferric reducing ability of plasma (FRAP) in human plasma were examined. The administration of synbiotics containing L. casei plus Inulin resulted in a significant increase in FRAP values (p = 0.00008) and CAT activity (p = 0.02) and an insignificant increase in SOD and GPx activity compared to controls. Synbiotics containing L. casei (4 × 10(8) CFU) with prebiotic Inulin (400 mg) may have a positive influence on human plasma antioxidant capacity and the activity of selected antioxidant enzymes.

Figures

Figure 1
Figure 1
The influence of combination of probiotic Lactobacillus casei (4 × 108 CFU) and prebiotic Inulin (400 mg) on the FRAP values. Data is shown as mean ± SEM. #p = 0.00008; &p = 0.008; ∧p = 0.004 versus control group.
Figure 2
Figure 2
The influence of combination of probiotic Lactobacillus casei (4 × 108 CFU) and prebiotic Inulin (400 mg) on the CAT activity. Data is shown as mean ± SEM. p = 0.02; ∗∗p = 0.007 versus control group.
Figure 3
Figure 3
The influence of combination of probiotic Lactobacillus casei (4 × 108 CFU) and prebiotic Inulin (400 mg) on the SOD activity. Data is shown as mean ± SEM.

References

    1. Ray P. D., Huang B.-W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling. 2012;24(5):981–990. doi: 10.1016/j.cellsig.2012.01.008.
    1. Klaunig J. E., Wang Z., Pu X., Zhou S. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicology and Applied Pharmacology. 2011;254(2):86–99. doi: 10.1016/j.taap.2009.11.028.
    1. Valko M., Rhodes C. J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. 2006;160(1):1–40. doi: 10.1016/j.cbi.2005.12.009.
    1. Song P., Zou M. H. Roles of reactive oxygen species in physiology and pathology. In: Wang H., Patterson C., editors. Atherosclerosis: Risks, Mechanisms, and Therapies. Hoboken, NJ, USA: John Wiley & Sons; 2015. pp. 379–392.
    1. Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701.
    1. Fukai T., Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxidants and Redox Signaling. 2011;15(6):1583–1606. doi: 10.1089/ars.2011.3999.
    1. Zelko I. N., Mariani T. J., Folz R. J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biology and Medicine. 2002;33(3):337–349. doi: 10.1016/s0891-5849(02)00905-x.
    1. Chen S., Sayana P., Zhang X., Le W. Genetics of amyotrophic lateral sclerosis: an update. Molecular Neurodegeneration. 2013;28(8):1–15. doi: 10.1186/1750-1326-8-28.
    1. Miriyala S., Spasojevic I., Tovmasyan A., et al. Manganese superoxide dismutase, MnSOD and its mimics. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease. 2012;1822(5):794–814. doi: 10.1016/j.bbadis.2011.12.002.
    1. Putnam C. D., Arvai A. S., Bourne Y., Tainer J. A. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. Journal of Molecular Biology. 2000;296(1):295–309. doi: 10.1006/jmbi.1999.3458.
    1. Chelikani P., Fita I., Loewen P. C. Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences. 2004;61(2):192–208. doi: 10.1007/s00018-003-3206-5.
    1. Francik R., Krośniak M., Sanocka I., Bartoń H., Hebda T., Francik S. Aronia melanocarpa treatment and antioxidant status in selected tissues in wistar rats. BioMed Research International. 2014;2014:9. doi: 10.1155/2014/457085.457085
    1. Lubos E., Loscalzo J., Handy D. E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxidants and Redox Signaling. 2011;15(7):1957–1997. doi: 10.1089/ars.2010.3586.
    1. Gibson G. R., Roberfroid M. B. Dietary modulation of the human colonic microbiota. Introducing the concept of prebiotics. Journal of Nutrition. 1995;125(6):1401–1412.
    1. Poljsak B. Strategies for reducing or preventing the generation of oxidative stress. Oxidative Medicine and Cellular Longevity. 2011;2011:15. doi: 10.1155/2011/194586.194586
    1. Hybertson B. M., Gao B., Bose S. K., McCord J. M. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Molecular Aspects of Medicine. 2011;32(4–6):234–246. doi: 10.1016/j.mam.2011.10.006.
    1. Benzie I. F. F., Strain J. J. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Analytical Biochemistry. 1996;239(1):70–76. doi: 10.1006/abio.1996.0292.
    1. .
    1. .
    1. .
    1. Martarelli D., Verdenelli M. C., Scuri S., et al. Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Current Microbiology. 2011;62(6):1689–1696. doi: 10.1007/s00284-011-9915-3.
    1. An H., Zhou H., Huang Y., et al. High-level expression of heme-dependent catalase gene katA from Lactobacillus sakei protects Lactobacillus rhamnosus from oxidative stress. Molecular Biotechnology. 2010;45(2):155–160. doi: 10.1007/s12033-010-9254-9.
    1. Hütt P., Andreson H., Kullisaar T., et al. Effects of a synbiotic product on blood antioxidative activity in subjects colonized with Helicobacter pylori . Letters in Applied Microbiology. 2009;48(6):797–800. doi: 10.1111/j.1472-765x.2009.02607.x.
    1. Kullisaar T., Songisepp E., Mikelsaar M., Zilmer K., Vihalemm T., Zilmer M. Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects. British Journal of Nutrition. 2003;90(2):449–456. doi: 10.1079/bjn2003896.
    1. Mikelsaar M., Zilmer M. Lactobacillus fermentum ME-3—an antimicrobial and antioxidative probiotic. Microbial Ecology in Health and Disease. 2009;21(1):1–27. doi: 10.1080/08910600902815561.
    1. Songisepp E., Kals J., Kullisaar T., et al. Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutrition Journal. 2005;4, article 22 doi: 10.1186/1475-2891-4-22.
    1. Uskova M. A., Kravchenko L. V. Antioxidant properties of lactic acid bacteria—probiotic and yogurt strains. Voprosy Pitaniia. 2009;78(2):18–23.
    1. Amaretti A., di Nunzio M., Pompei A., Raimondi S., Rossi M., Bordoni A. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Applied Microbiology and Biotechnology. 2013;97(2):809–817. doi: 10.1007/s00253-012-4241-7.
    1. Hathout A. S., Mohamed S. R., El-Nekeety A. A., Hassan N. S., Aly S. E., Abdel-Wahhab M. A. Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon. 2011;58(2):179–186. doi: 10.1016/j.toxicon.2011.05.015.
    1. Gagnon M., Savard P., Rivière A., Lapointe G., Roy D. Bioaccessible antioxidants in milk fermented by Bifidobacterium longum subsp. longum strains. BioMed Research International. 2015;2015:12. doi: 10.1155/2015/169381.169381
    1. Shen Q., Shang N., Li P. In vitro and in vivo antioxidant activity of bifidobacterium animalis 01 isolated from centenarians. Current Microbiology. 2011;62(4):1097–1103. doi: 10.1007/s00284-010-9827-7.
    1. Chamari M., Djazayery A., Jalali M., Sadrzadeh Yeganeh H., Hosseini S., Heshmat R. The effect of daily consumption of probiotic and conventional yogurt on some oxidative stress factors in plasma of young healthy women. ARYA Atherosclerosis Journal. 2008;4(4):175–179.
    1. Shen X., Yi D., Ni X., et al. Effects of lactobacillus plantarum on production performance, immune characteristics, antioxidant status, and intestinal microflora of bursin-immunized broilers. Canadian Journal of Microbiology. 2014;60(4):193–202. doi: 10.1139/cjm-2013-0680.
    1. Yadav H., Jain S., Sinha P. R. Oral administration of dahi containing probiotic Lactobacillus acidophilus and Lactobacillus casei delayed the progression of streptozotocin-induced diabetes in rats. Journal of Dairy Research. 2008;75(2):189–195. doi: 10.1017/s0022029908003129.
    1. Rajpal S., Kansal V. K. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum stimulates antioxidant enzyme pathways in rats. Milchwissenschaft. 2009;64(3):287–290.
    1. Balog T., Sobočanec S., Šverko V., et al. The influence of season on oxidant-antioxidant status in trained and sedentary subjects. Life Sciences. 2006;78(13):1441–1447. doi: 10.1016/j.lfs.2005.07.039.
    1. Kodydková J., Vávrová L., Kocík M., Žák A. Human catalase, its polymorphisms regulation and changes of its activity in different diseases. Folia Biologica. 2014;60(4):153–167.
    1. Rönnberg L., Kauppila A., Leppäluoto J., Martikainen H., Vakkuri O. Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. Journal of Clinical Endocrinology and Metabolism. 1990;71(2):493–496. doi: 10.1210/jcem-71-2-493.
    1. Ito Y., Iida T., Yamamura Y., et al. Relationships between salivary melatonin levels, quality of sleep, and stress in young Japanese females. International Journal of Tryptophan Research. 2013;6(supplement 1):75–85. doi: 10.4137/ijtr.s11760.
    1. Schröder J., Dören M., Schneider B., Oettel M. Are the antioxidative effects of 17β-estradiol modified by concomitant administration of a progestin? Maturitas. 1996;25(2):133–139. doi: 10.1016/0378-5122(96)01049-3.
    1. Góth L., Lenkey A, Bigler W. N. Blood catalase deficiency and diabetes in Hungary. Diabetes Care. 2001;24(10):1839–1840. doi: 10.2337/diacare.24.10.1839.
    1. Niikawa N., Fukushima Y., Taniguchi N., Iizuka S., Kajii T. Chromosome abnormalities involving 11p13 and low erythrocyte catalase activity. Human Genetics. 1982;60(4):373–375. doi: 10.1007/BF00569223.
    1. Omar R. A., Chyan Y.-J., Andorn A. C., Poeggeler B., Robakis N. K., Pappolla M. A. Increased expression but reduced activity of antioxidant enzymes in Alzheimer's disease. Journal of Alzheimer's Disease. 1999;1(3):139–145.
    1. Gao D., Gao Z., Zhu G. Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2. Food and Function. 2013;4(6):982–989. doi: 10.1039/c3fo30316k.
    1. Wang A. N., Yi X. W., Yu H. F., Dong B., Qiao S. Y. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing-finishing pigs. Journal of Applied Microbiology. 2009;107(4):1140–1148. doi: 10.1111/j.1365-2672.2009.04294.x.
    1. Ejtahed H. S., Mohtadi-Nia J., Homayouni-Rad A., Niafar M., Asghari-Jafarabadi M., Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012;28(5):539–543. doi: 10.1016/j.nut.2011.08.013.
    1. Gan F., Chen X., Liao S. F., et al. Selenium-enriched probiotics improve antioxidant status, immune function, and selenoprotein gene expression of piglets raised under high ambient temperature. Journal of Agricultural and Food Chemistry. 2014;62(20):4502–4508. doi: 10.1021/jf501065d.
    1. Pandey S., Singh A., Kumar P., Chaudhari A., Nareshkumar G. Probiotic Escherichia coli CFR 16 producing pyrroloquinoline quinone (PQQ) ameliorates 1,2-dimethylhydrazine-induced oxidative damage in colon and liver of rats. Applied Biochemistry and Biotechnology. 2014;173(3):775–786. doi: 10.1007/s12010-014-0897-z.
    1. Ghoneim M. A., Moselhy S. S. Antioxidant status and hormonal profile reflected by experimental feeding of probiotics. Toxicology and Industrial Health. 2013 doi: 10.1177/0748233713506768.
    1. Kapila S., Kapila R., Reddi S., Sinha P. R. Oral administration of probiotic Lactobacillus casei spp. casei ameliorates oxidative stress in rats. International Journal of Current Microbiology and Applied Sciences. 2014;3(9):670–684.
    1. Fabian E., Elmadfa I. The effect of daily consumption of probiotic and conventional yoghurt on oxidant and anti-oxidant parameters in plasma of young healthy women. International Journal for Vitamin and Nutrition Research. 2007;77(2):79–88. doi: 10.1024/0300-9831.77.2.79.
    1. Vaghef-Mehrabany E., Homayouni-Rad A., Alipour B., Sharif S. K., Vaghef-Mehrabany L., Alipour-Ajiry S. Effects of probiotic supplementation on oxidative stress indices in women with rheumatoid arthritis: a randomized double-blind clinical trial. Journal of the American College of Nutrition. 2015 doi: 10.1080/07315724.2014.959208.
    1. Stecchini M. L., Del Torre M., Munari M. Determination of peroxy radical-scavenging of lactic acid bacteria. International Journal of Food Microbiology. 2001;64(1-2):183–188. doi: 10.1016/s0168-1605(00)00456-6.
    1. Chauhan R., Vasanthakumari A. S., Panwar H., et al. Amelioration of colitis in mouse model by exploring antioxidative potentials of an indigenous probiotic strain of Lactobacillus fermentum Lf1. BioMed Research International. 2014;2014:12. doi: 10.1155/2014/206732.206732
    1. Cecchi T., Savini M., Silvi S., Verdenelli M. C., Cresci A. Optimisation of the measurement of the antioxidant activity of probiotics and pathogens: a crucial step towards evidence-based assessment of health claims and production of effective functional foods. Food Analytical Methods. 2014;8(2):312–320. doi: 10.1007/s12161-014-9886-7.
    1. Ishii Y., Sugimoto S., Izawa N., Sone T., Chiba K., Miyazaki K. Oral administration of Bifidobacterium breve attenuates UV-induced barrier perturbation and oxidative stress in hairless mice skin. Archives of Dermatological Research. 2014;306(5):467–473. doi: 10.1007/s00403-014-1441-2.
    1. Farvin K. H. S., Baron C. P., Nielsen N. S., Jacobsen C. Antioxidant activity of yoghurt peptides: part 1-in vitro assays and evaluation in ω-3 enriched milk. Food Chemistry. 2010;123(4):1081–1089. doi: 10.1016/j.foodchem.2010.05.067.
    1. Farvin K. H. S., Baron C. P., Nielsen N. S., Otte J., Jacobsen C. Antioxidant activity of yoghurt peptides: part 2—characterisation of peptide fractions. Food Chemistry. 2010;123(4):1090–1097. doi: 10.1016/j.foodchem.2010.05.029.
    1. Korhonen H., Pihlanto A. Bioactive peptides: production and functionality. International Dairy Journal. 2006;16(9):945–960. doi: 10.1016/j.idairyj.2005.10.012.
    1. Hayes M., Stanton C., Fitzgerald G. F., Ross R. P. Putting microbes to work: diary fermentation, cell factories and bioactive peptides. Part II: bioactive peptide functions. Biotechnology Journal. 2007;2(4):435–449. doi: 10.1002/biot.200700045.
    1. Lin M.-Y., Chang F.-J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive Diseases and Sciences. 2000;45(8):1617–1622. doi: 10.1023/a:1005577330695.
    1. Koller V. J., Marian B., Stidl R., et al. Impact of lactic acid bacteria on oxidative DNA damage in human derived colon cells. Food and Chemical Toxicology. 2008;46(4):1221–1229. doi: 10.1016/j.fct.2007.09.005.
    1. Choi S. S., Kim Y., Han K. S., You S., Oh S., Kim S. H. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Letters in Applied Microbiology. 2006;42(5):452–458. doi: 10.1111/j.1472-765x.2006.01913.x.
    1. Duman D. G., Kumral Z. N. Ö., Ercan F., Deniz M., Can G., Çağlayan Yeğen B. Saccharomyces boulardii ameliorates clarithromycin- and methotrexate-induced intestinal and hepatic injury in rats. British Journal of Nutrition. 2013;110(3):493–499. doi: 10.1017/s000711451200517x.
    1. Şahin T., Aydin S., Yüksel O., et al. Effects of the probiotic agent Saccharomyces boulardii on the DNA damage in acute necrotizing pancreatitis induced rats. Human and Experimental Toxicology. 2007;26(8):653–661. doi: 10.1177/0960327107077596.
    1. Suryavanshi A., Agarwal A., Kaler A., et al. Comparative studies on the antioxidant potential of vanillin-producing Saccharomyces boulardii extracts. Oxidants and Antioxidants in Medical Science. 2013;2(3):201–209. doi: 10.5455/oams.190413.or.040.
    1. Annuk H., Shchepetova J., Kullisaar T., Songisepp E., Zilmer M., Mikelsaar M. Characterization of intestinal lactobacilli as putative probiotic candidates. Journal of Applied Microbiology. 2003;94(3):403–412. doi: 10.1046/j.1365-2672.2003.01847.x.
    1. Kumar M., Kumar A., Nagpal R., et al. Cancer-preventing attributes of probiotics: an update. International Journal of Food Sciences and Nutrition. 2010;61(5):473–496. doi: 10.3109/09637480903455971.
    1. Najgebauer-Lejko D. Effect of green tea supplementation on the microbiological, antioxidant, and sensory properties of probiotic milks. Dairy Science and Technology. 2014;94(4):327–339. doi: 10.1007/s13594-014-0165-6.
    1. Grompone G., Martorell P., Llopis S., et al. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans . PLoS ONE. 2012;7(12) doi: 10.1371/journal.pone.0052493.e52493
    1. Kapila S., Vibha, Sinha P. Antioxidative and hypocholesterolemic effect of Lactobacillus casei ssp casei (biodefensive properties of lactobacilli) Indian Journal of Medical Sciences. 2006;60(9):361–370. doi: 10.4103/0019-5359.27220.
    1. Spyropoulos B. G., Misiakos E. P., Fotiadis C., Stoidis C. N. Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis. Digestive Diseases and Sciences. 2011;56(2):285–294. doi: 10.1007/s10620-010-1307-1.
    1. Lee J., Hwang K.-T., Chung M.-Y., Cho D.-H., Park C.-S. Resistance of Lactobacillus casei KCTC 3260 to reactive oxygen species (ROS): role for a metal ion chelating effect. Journal of Food Science. 2005;70(8):M388–M391. doi: 10.1111/j.1365-2621.2005.tb11524.x.
    1. Sun J., Hu X.-L., Le G.-W., Shi Y.-H. Lactobacilli prevent hydroxy radical production and inhibit Escherichia coli and Enterococcus growth in system mimicking colon fermentation. Letters in Applied Microbiology. 2010;50(3):264–269. doi: 10.1111/j.1472-765x.2009.02786.x.
    1. Wang Y.-C., Yu R.-C., Chou C.-C. Antioxidative activities of soymilk fermented with lactic acid bacteria and bifidobacteria. Food Microbiology. 2006;23(2):128–135. doi: 10.1016/j.fm.2005.01.020.
    1. Kodali V. P., Sen R. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnology Journal. 2008;3(2):245–251. doi: 10.1002/biot.200700208.
    1. Şengül N., Aslım B., Uçar G., et al. Effects of exopolysaccharide-producing probiotic strains on experimental colitis in rats. Diseases of the Colon and Rectum. 2006;49(2):250–258. doi: 10.1007/s10350-005-0267-6.
    1. Han W., Mercenier A., Ait-Belgnaoui A., et al. Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflammatory Bowel Diseases. 2006;12(11):1044–1052. doi: 10.1097/01.mib.0000235101.09231.9e.
    1. Carroll I. M., Andrus J. M., Bruno-Bárcena J. M., Klaenhammer T. R., Hassan H. M., Threadgill D. S. Anti-inflammatory properties of Lactobacillus gasseri expressing manganese superoxide dismutase using the interleukin 10-deficient mouse model of colitis. The American Journal of Physiology—Gastrointestinal and Liver Physiology. 2007;293(4):G729–G738. doi: 10.1152/ajpgi.00132.2007.
    1. Kullisaar T., Zilmer M., Mikelsaar M., et al. Two antioxidative lactobacilli strains as promising probiotics. International Journal of Food Microbiology. 2002;72(3):215–224. doi: 10.1016/S0168-1605(01)00674-2.
    1. Chang S. K., Hassan H. M. Characterization of superoxide dismutase in Streptococcus thermophilus . Applied and Environmental Microbiology. 1997;63(9):3732–3735.
    1. de Moreno de LeBlanc A., LeBlanc J. G., Perdigón G., et al. Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice. Journal of Medical Microbiology. 2008;57(1):100–105. doi: 10.1099/jmm.0.47403-0.
    1. An H., Zhai Z., Yin S., Luo Y., Han B., Hao Y. Coexpression of the superoxide dismutase and the catalase provides remarkable oxidative stress resistance in lactobacillus rhamnosus. Journal of Agricultural and Food Chemistry. 2011;59(8):3851–3856. doi: 10.1021/jf200251k.
    1. Wang L.-X., Liu K., Gao D.-W., Hao J.-K. Protective effects of two Lactobacillus plantarum strains in hyperlipidemic mice. World Journal of Gastroenterology. 2013;19(20):3150–3156. doi: 10.3748/wjg.v19.i20.3150.
    1. Lutgendorff F., Nijmeijer R. M., Sandström P. A., et al. Probiotics prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal glutathione biosynthesis. PLoS ONE. 2009;4(2) doi: 10.1371/journal.pone.0004512.e4512
    1. van Minnen L. P., Timmerman H. M., Lutgendorff F., et al. Modification of intestinal flora with multispecies probiotics reduces bacterial translocation and improves clinical course in a rat model of acute pancreatitis. Surgery. 2007;141(4):470–480. doi: 10.1016/j.surg.2006.10.007.

Source: PubMed

3
Abonnieren