Interstitial pneumonia pattern on day 7 chest radiograph predicts bronchopulmonary dysplasia in preterm infants

Hye-Rim Kim, Ji Young Kim, Bo La Yun, Byoungkook Lee, Chang Won Choi, Beyong Il Kim, Hye-Rim Kim, Ji Young Kim, Bo La Yun, Byoungkook Lee, Chang Won Choi, Beyong Il Kim

Abstract

Background: Early identification of infants at higher risk of developing bronchopulmonary dysplasia (BPD) may enable a targeted approach to reduce BPD. We aimed to evaluate the hypothesis that the interstitial pneumonia pattern on the day 7 chest radiograph predicts BPD or death before 36 weeks postmenstrual age (PMA).

Methods: A retrospective cohort study was performed on 336 preterm infants (birth weight < 1500 g and gestational age < 32 postmenstrual weeks) who were admitted to a single tertiary academic center between January 2008 and December 2014. Day 7 chest radiographs were independently reviewed by two pediatric radiologists who were unaware of the clinical information regarding each individual infant.

Results: Data from 304 infants who survived more than 7 days after birth were collected. The interstitial pneumonia pattern on the day 7 chest radiograph was independently associated with BPD or death before 36 weeks PMA (odds ratio [OR] 4.0, 95% confidence interval [CI] 1.1-14.4). The interstitial pneumonia pattern on the day 7 chest radiograph predicted BPD or death with a specificity of 98%. Histologic chorioamnionitis was a preceding factor that was independently associated with the interstitial pneumonia pattern on the day 7 chest radiograph (OR 3.7, 95% CI 1.3-10.3).

Conclusions: The interstitial pneumonia pattern on the day 7 chest radiograph has a high specificity for predicting BPD or death and can be utilized to select high-risk preterm infants who will benefit from potentially preventive interventions against BPD.

Keywords: Bronchopulmonary dysplasia; Chest radiograph; Interstitial pneumonia; Predictor.

Figures

Fig. 1
Fig. 1
Chest radiographs representing each grade. a No demonstrable abnormality (grade 1). b Granular infiltration (grade 2). c Diffuse streaky interstitial thickening (grade 3). d Diffuse coarse interstitial thickening (grade 4)
Fig. 2
Fig. 2
Study subject. VLBW = very low birth weight; GA = gestational age; SNUBH = Seoul National University Bundang Hospital; PMA = postmenstrual age; BWT = birth weight
Fig. 3
Fig. 3
Multivariate modeling with adjusted odds ratios for BPD or death before 36 weeks postmenstrual age
Fig. 4
Fig. 4
Multivariate modeling with adjusted odds ratios for the interstitial pneumonia pattern on the day 7 chest radiograph

References

    1. Jobe AH. The new bronchopulmonary dysplasia. Curr Opin Pediatr. 2011;23:167–172. doi: 10.1097/MOP.0b013e3283423e6b.
    1. Smith VC, Zupancic JA, McCormick MC, Croen LA, Greene J, Escobar GJ, et al. Trends in severe bronchopulmonary dysplasia rates between 1994 and 2002. J Pediatr. 2005;146:469–473. doi: 10.1016/j.jpeds.2004.12.023.
    1. Manktelow BN, Draper ES, Annamalai S, Field D. Factors affecting the incidence of chronic lung disease of prematurity in 1987, 1992, and 1997. Arch Dis Child Fetal Neonatal Ed. 2001;85(1):F33–F35. doi: 10.1136/fn.85.1.F33.
    1. Lemons JA, Bauer CR, Oh W, Korones SB, Papile LA, Stoll BJ, et al. Very low birth weight outcomes of the National Institute of Child Health and Human Development neonatal research network, January 1995 through December 1996. Pediatrics. 2001;107(1):e1. doi: 10.1542/peds.107.1.e1.
    1. Shah PS, Sankaran K, Aziz K, Allen AC, Seshia M, Ohlsson A, et al. Outcomes of preterm infants <29 weeks gestation over 10-year period in Canada: a cause for concern? J Perinatol. 2012;32(2):132–138. doi: 10.1038/jp.2011.68.
    1. Ambalavanan N, Walsh M, Bobashev G, Das A, Levine B, Carlo WA, et al. Intercenter differences in bronchopulmonary dysplasia or death among very low birth weight infants. Pediatrics. 2011;127:106–116. doi: 10.1542/peds.2010-0648.
    1. Klinger G, Sirota L, Lusky A, Reichman B. Bronchopulmonary dysplasia in very low birth weight infants is associated with prolonged hospital stay. J Pediatr. 2006;26(10):640–644.
    1. Trembath A, Laughon MM. Predictors of bronchopulmonary dysplasia. Clin Perinatol. 2012;39(3):585–601. doi: 10.1016/j.clp.2012.06.014.
    1. Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183:1715–1722. doi: 10.1164/rccm.201101-0055OC.
    1. Yuksel B, Greenough A, Karani J. Prediction of chronic lung disease from the chest radiograph appearance at seven days of age. Acta Paediatr. 1993;82:944–947. doi: 10.1111/j.1651-2227.1993.tb12605.x.
    1. Greenough A, Thomas M, Dimitriou G, Williams O, Johnson A, Limb E, et al. Prediction of outcome from the chest radiograph appearance on day 7 of very prematurely born infants. Eur J Pediatr. 2004;163(1):14–18. doi: 10.1007/s00431-003-1332-6.
    1. Shennan AT, Dunn MS, Ohlsson A, Lennox K, Hopkins EM. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics. 1988;82:527–532.
    1. Salafia CM, Weigl C, Silberman L. The prevalence and distribution of acute placental inflammation in uncomplicated term pregnancies. Obstet Gynecol. 1989;73:383–389.
    1. Edwards DK. Radiology of hyaline membrane disease, transient tachypnea of the newborn, and bronchopulmonary dysplasia. Lung development: biological and clinical perspectives: Academic. 1982. pp. 47–89.
    1. Toce SS, Farrell PM, Leavitt LA, Samuels DP, Edwards DK. Clinical and roentgenographic scoring systems for assessing bronchopulmonary dysplasia. Am J Dis Child. 1984;138:581–585.
    1. Hyödynmaa E, Korhonen P, Ahonen S, Luukkaala T, Tammela O. Frequency and clinical correlates of radiographic patterns of bronchopulmonary dysplasia in very low birth weight infants by term age. Eur J Pediatr. 2012;171:95–102. doi: 10.1007/s00431-011-1486-6.
    1. Swischuk LE, Shetty BP, John SD. The lungs in immature infants: how important is surfactant therapy in preventing chronic lung problems? Pediatr Radiol. 1996;26:508–511. doi: 10.1007/BF01372230.
    1. Greenough A, Kavvadia V, Johnson A, Calvert S, Peacock J, Karani J. A simple chest radiograph score to predict chronic lung disease in prematurely born infants. Br J Radiol. 1999;72:530–533. doi: 10.1259/bjr.72.858.10560333.
    1. Yuksel B, Greenough A, Karani J, Page A. Chest radiograph scoring system for use in preterm infants. Br J Radiol. 1991;64:1015–1018. doi: 10.1259/0007-1285-64-767-1015.
    1. Wilson AC. What does imaging of the chest tell us about bronchopulmonary dysplasia? Pediat Respir Rev. 2010;11:158–161. doi: 10.1016/j.prrv.2010.05.005.
    1. Schmolzer GM, Kumar M, Pichler G, Aziz K, O'Reilly M, Cheung PY. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ. 2013;347:f5980. doi: 10.1136/bmj.f5980.
    1. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;362(21):1959–1969. doi: 10.1056/NEJMoa0911781.
    1. Doyle LW, Ehrenkranz RA, Halliday HL. Early (< 8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2014;5:CD001146.
    1. Doyle LW, Ehrenkranz RA, Halliday HL. Late (> 7 days) postnatal corticosteroids for chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2014;5:CD001145.
    1. Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase I dose-escalation clinical trial. J Pediatr. 2014;164:966–972. doi: 10.1016/j.jpeds.2013.12.011.
    1. Park WS. Stem cells for the prevention of bronchopulmonary dysplasia. In: Bhandari V, editor. Bronchopulmonary dysplasia. Philadelphia: Humana Press; 2016. pp. 299–314.
    1. Rojas MA, Gonzalez A, Bancalari E, Claure N, Poole C, Silva-Neto G. Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J Pediatr. 1995;126:605–610. doi: 10.1016/S0022-3476(95)70362-4.
    1. Marshall DD, Kotelchuck M, Young TE, Bose CL, Kruyer L, O’Shea TM. Risk factors for chronic lung disease in the surfactant era: a North Carolina population-based study of very low birth weight infants. North Carolina Neonatologists Association. Pediatrics. 1999;104:1345–1350. doi: 10.1542/peds.104.6.1345.
    1. Oh W, Poindexter BB, Perritt R, Lemons JA, Bauer CR, Ehrenkranz RA, et al. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J Pediatr. 2005;147:786–790. doi: 10.1016/j.jpeds.2005.06.039.
    1. Moya MP, Bisset GS, Auten RL, Miller C, Hollingworth C, Frush DP. Reliability of CXR for the diagnosis of bronchopulmonary dysplasia. Pediatr Radiol. 2001;31:339–342. doi: 10.1007/s002470000420.
    1. Speer CP. Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology. 2009;95(4):353–361. doi: 10.1159/000209301.
    1. Viscardi RM. Perinatal inflammation and lung injury. Semin Fetal Neonatal Med. 2012;17(1):30–35. doi: 10.1016/j.siny.2011.08.002.
    1. Kramer BW, Kallapur S, Newnham J, Jobe AH. Prenatal inflammation and lung development. Semin Fetal and Neonatal Med. 2009;14:2–7. doi: 10.1016/j.siny.2008.08.011.
    1. Kim DH, Choi CW, Kim EK, Kim HS, Kim BI, Choi JH, et al. Association of increased pulmonary interleukin-6 with the priming effect of intra-amniotic lipopolysaccharide on hyperoxic lung injury in a rat model of bronchopulmonary dysplasia. Neonatology. 2010;98(1):23–32. doi: 10.1159/000263056.
    1. Choi CW, Lee J, Oh JY, Lee SH, Lee HJ, Kim BI. Protective effect of chorioamnionitis on the development of bronchopulmonary dysplasia triggered by postnatal systemic inflammation in neonatal rats. Pediatr Res. 2015;79(2):287–294. doi: 10.1038/pr.2015.224.
    1. Hartling L, Liang Y, Lacaze-Masmonteil T. Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2012;97:F8–17. doi: 10.1136/adc.2010.210187.
    1. Hardy RD, Ramilo O. Mycoplasmal infections. In: Remington JS, Klein JO, Wilson CB, Nizet V, Maldonado YA, eds. Infectious Diseases of the Fetus and Newborn Infant, 7th edn. Philadelphia: Elsevier. 2011:607–20.
    1. Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA. Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med. 1999;160:1333–1346. doi: 10.1164/ajrccm.160.4.9810071.

Source: PubMed

3
Abonnieren