Twelve months of exercise training did not halt abdominal aortic calcification in patients with CKD - a sub-study of RENEXC-a randomized controlled trial

Yunan Zhou, Matthias Hellberg, Thomas Hellmark, Peter Höglund, Naomi Clyne, Yunan Zhou, Matthias Hellberg, Thomas Hellmark, Peter Höglund, Naomi Clyne

Abstract

Background: Arteriosclerosis is prevalent in patients with chronic kidney disease (CKD). Our aims were to investigate (1) the effects of 12 months of either balance- or strength- both in combination with endurance training on abdominal aortic calcification (AAC); on some lipids and calcific- and inflammatory markers; and (2) the relationships between the change in AAC score and these markers in non-dialysis dependent patients with CKD stages 3 to 5.

Methods: One hundred twelve patients (mean age 67 ± 13 years), who completed 12 months of exercise training; comprising either balance- or strength training, both in combination with endurance training; with a measured glomerular filtration rate (mGFR) 22.6 ± 8 mL/min/1.73m2, were included in this study. AAC was evaluated with lateral lumbar X-ray using the scoring system described by Kauppila. Plasma fetuin-A, fibroblast growth factor 23 (FGF23) and interleukin 6 (IL6) were measured with Enzyme-linked immunosorbent assay (ELISA) kits.

Results: After 12 months of exercise training, the AAC score increased significantly in both groups; mGFR and lipoprotein (a) decreased significantly in both groups; parathyroid hormone (PTH) and 1,25(OH)2D3 increased significantly only in the strength group; fetuin-A increased significantly only in the balance group. Plasma triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, FGF23, phosphate, calcium, IL6, C-reactive protein (CRP), albumin were unchanged. The increase in AAC score was positively related to ageing and the levels of baseline triglycerides and lipoprotein (a).

Conclusions: Exercise training did not prevent the progression of AAC; it might have contributed to the reduced levels of lipoprotein (a) and unchanged levels of calcific- and inflammatory markers in these patients with non-dialysis dependent CKD. Hypertriglyceridemia, high levels of lipoprotein (a) and ageing emerged as longitudinal predictors of vascular calcification in these patients.

Trial registration: NCT02041156 at www.ClinicalTrials.gov. Date of registration: January 20, 2014. Retrospectively registered.

Keywords: Abdominal aortic calcification; Arteriosclerosis; CKD; Exercise training; Lipids.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
CONSORT flow of 12 months

References

    1. Vervloet M, Cozzolino M. Vascular calcification in chronic kidney disease: different bricks in the wall? Kidney Int. 2017;91(4):808–817. doi: 10.1016/j.kint.2016.09.024.
    1. Van Craenenbroeck AH, Van Craenenbroeck EM, Kouidi E, Vrints CJ, Couttenye MM, Conraads VM. Vascular effects of exercise training in CKD: current evidence and pathophysiological mechanisms. Clin J Am Soc Nephrol. 2014;9(7):1305–1318. doi: 10.2215/CJN.13031213.
    1. Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24(2):179–189. doi: 10.1681/ASN.2011121191.
    1. Henaut L, Massy ZA. New insights into the key role of interleukin 6 in vascular calcification of chronic kidney disease. Nephrol Dial Transplant. 2018;33(4):543–548. doi: 10.1093/ndt/gfx379.
    1. Hager MR, Narla AD, Tannock LR. Dyslipidemia in patients with chronic kidney disease. Rev Endocr Metab Disord. 2017;18(1):29–40. doi: 10.1007/s11154-016-9402-z.
    1. Fishbein MC, Fishbein GA. Arteriosclerosis: facts and fancy. Cardiovasc Pathol. 2015;24(6):335–342. doi: 10.1016/j.carpath.2015.07.007.
    1. Nordestgaard BG, Langsted A. Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res. 2016;57(11):1953–1975. doi: 10.1194/jlr.R071233.
    1. Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, Jahnen-Dechent W, Weissberg PL, Shanahan CM. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol. 2004;15(11):2857–2867. doi: 10.1097/01.ASN.0000141960.01035.28.
    1. Tilman B Drueke, Sharon M Moe, Geoffrey A Block, Jorge B Cannata-Andıa, Grahame J Elder, Masafumi Fukagawa, Vanda Jorgetti, Markus Ketteler, Craig B Langman, Adeera Levin, Alison M MacLeod, Linda McCann, Peter A McCullough, Susan M Ott, Angela Yee-Moon Wang, Jose R Weisinger, David C Wheeler. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130.
    1. Ikizler TA, Robinson-Cohen C, Ellis C, Headley SAE, Tuttle K, Wood RJ, Evans EE, Milch CM, Moody KA, Germain M, et al. Metabolic effects of diet and exercise in patients with moderate to severe CKD: a randomized clinical trial. J Am Soc Nephrol. 2018;29(1):250–259. doi: 10.1681/ASN.2017010020.
    1. Manfredini F, Rigolin GM, Malagoni AM, Soffritti S, Boari B, Conconi F, Castoldi GL, Catizone L, Zamboni P, Manfredini R. Exercise capacity and circulating endothelial progenitor cells in hemodialysis patients. Int J Sports Med. 2007;28(5):368–373. doi: 10.1055/s-2006-924363.
    1. Hellberg M, Hoglund P, Svensson P, Clyne N. Randomized controlled trial of exercise in CKD-the RENEXC study. Kidney Int Rep. 2019;4(7):963–976. doi: 10.1016/j.ekir.2019.04.001.
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. doi: 10.1249/00005768-198205000-00012.
    1. Kauppila LI, Polak JF, Cupples LA, Hannan MT, Kiel DP, Wilson PW. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis. 1997;132(2):245–250. doi: 10.1016/S0021-9150(97)00106-8.
    1. Bellasi A, Ferramosca E, Muntner P, Ratti C, Wildman RP, Block GA, Raggi P. Correlation of simple imaging tests and coronary artery calcium measured by computed tomography in hemodialysis patients. Kidney Int. 2006;70(9):1623–1628. doi: 10.1038/sj.ki.5001820.
    1. Krutzen E, Back SE, Nilsson-Ehle I, Nilsson-Ehle P. Plasma clearance of a new contrast agent, iohexol: a method for the assessment of glomerular filtration rate. J Lab Clin Med. 1984;104(6):955–961.
    1. Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82(7):737–747. doi: 10.1038/ki.2012.176.
    1. Ketteler M, Bongartz P, Westenfeld R, Wildberger JE, Mahnken AH, Bohm R, Metzger T, Wanner C, Jahnen-Dechent W, Floege J. Association of low fetuin-a (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet. 2003;361(9360):827–833. doi: 10.1016/S0140-6736(03)12710-9.
    1. Fernandez-Real JM, Vayreda M, Richart C, Gutierrez C, Broch M, Vendrell J, Ricart W. Circulating interleukin 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J Clin Endocrinol Metab. 2001;86(3):1154–1159. doi: 10.1210/jcem.86.3.7305.
    1. Zhou Y, Hellberg M, Hellmark T, Hoglund P, Clyne N. Muscle mass and plasma myostatin after exercise training: a substudy of Renal Exercise (RENEXC)-a randomized controlled trial. Nephrol Dial Transplant. 2019;1-9. 10.1093/ndt/gfz210.
    1. Walton KW, Hitchens J, Magnani HN, Khan M. A study of methods of identification and estimation of Lp(a) lipoprotein and of its significance in health, hyperlipidaemia and atherosclerosis. Atherosclerosis. 1974;20(2):323–346. doi: 10.1016/0021-9150(74)90016-1.
    1. LeMura LM, von Duvillard SP, Andreacci J, Klebez JM, Chelland SA, Russo J. Lipid and lipoprotein profiles, cardiovascular fitness, body composition, and diet during and after resistance, aerobic and combination training in young women. Eur J Appl Physiol. 2000;82(5–6):451–458. doi: 10.1007/s004210000234.
    1. Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, Bales CW, Henes S, Samsa GP, Otvos JD, et al. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347(19):1483–1492. doi: 10.1056/NEJMoa020194.
    1. Mackinnon LT, Hubinger LM. Effects of exercise on lipoprotein(a) Sports Med. 1999;28(1):11–24. doi: 10.2165/00007256-199928010-00002.
    1. Kadoglou NP, Fotiadis G, Athanasiadou Z, Vitta I, Lampropoulos S, Vrabas IS. The effects of resistance training on ApoB/ApoA-I ratio, Lp(a) and inflammatory markers in patients with type 2 diabetes. Endocrine. 2012;42(3):561–569. doi: 10.1007/s12020-012-9650-y.
    1. Toth PP, Barter PJ, Rosenson RS, Boden WE, Chapman MJ, Cuchel M, D'Agostino RB, Sr, Davidson MH, Davidson WS, Heinecke JW, et al. High-density lipoproteins: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7(5):484–525. doi: 10.1016/j.jacl.2013.08.001.
    1. Gardinier JD, Daly-Seiler C, Rostami N, Kundal S, Zhang C. Loss of the PTH/PTHrP receptor along the osteoblast lineage limits the anabolic response to exercise. PLoS One. 2019;14(1):e0211076. doi: 10.1371/journal.pone.0211076.
    1. Gardinier JD, Al-Omaishi S, Morris MD, Kohn DH. PTH signaling mediates perilacunar remodeling during exercise. Matrix Biol. 2016;52-54:162–175. doi: 10.1016/j.matbio.2016.02.010.
    1. Castaneda C, Gordon PL, Parker RC, Uhlin KL, Roubenoff R, Levey AS. Resistance training to reduce the malnutrition-inflammation complex syndrome of chronic kidney disease. Am J Kidney Dis. 2004;43(4):607–616. doi: 10.1053/j.ajkd.2003.12.025.
    1. Wilund KR, Tomayko EJ, Wu PT, Ryong Chung H, Vallurupalli S, Lakshminarayanan B, Fernhall B. Intradialytic exercise training reduces oxidative stress and epicardial fat: a pilot study. Nephrol Dial Transplant. 2010;25(8):2695–2701. doi: 10.1093/ndt/gfq106.
    1. Kleiven O, Bjorkavoll-Bergseth MF, Omland T, Aakre KM, Froysa V, Erevik CB, Greve OJ, Melberg TH, Auestad B, Skadberg O, et al. Endurance exercise training volume is not associated with progression of coronary artery calcification. Scand J Med Sci Sports. 2020;30(6):1024-32.
    1. Shigematsu T, Kazama JJ, Yamashita T, Fukumoto S, Hosoya T, Gejyo F, Fukagawa M. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis. 2004;44(2):250–256. doi: 10.1053/j.ajkd.2004.04.029.
    1. London GM, Guerin AP, Verbeke FH, Pannier B, Boutouyrie P, Marchais SJ, Metivier F. Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J Am Soc Nephrol. 2007;18(2):613–620. doi: 10.1681/ASN.2006060573.
    1. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Juppner H, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–592. doi: 10.1056/NEJMoa0706130.
    1. Zhou Y, Hellberg M, Kouidi E, Deligiannis A, Hoglund P, Clyne N. Relationships between abdominal aortic calcification, glomerular filtration rate, and cardiovascular risk factors in patients with non-dialysis dependent chronic kidney disease. Clin Nephrol. 2018;90(6):380–389. doi: 10.5414/CN109441.
    1. Demer LL. Cholesterol in vascular and valvular calcification. Circulation. 2001;104(16):1881–1883. doi: 10.1161/circ.104.16.1881.
    1. Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, Berliner JA, Demer LL. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol. 1997;17(4):680–687. doi: 10.1161/01.ATV.17.4.680.
    1. Jansson H, Saeed A, Svensson MK, Finnved K, Hellstrom M, Guron G. Impact of abdominal aortic calcification on central Haemodynamics and decline of glomerular filtration rate in patients with chronic kidney disease stages 3 and 4. Kidney Blood Press Res. 2019;44(5):950–960. doi: 10.1159/000501687.

Source: PubMed

3
Abonnieren