Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer

Boris I Gramatikov, Boris I Gramatikov

Abstract

This review article is meant to help biomedical engineers and nonphysical scientists better understand the principles of, and the main trends in modern scanning and imaging modalities used in ophthalmology. It is intended to ease the communication between physicists, medical doctors and engineers, and hopefully encourage "classical" biomedical engineers to generate new ideas and to initiate projects in an area which has traditionally been dominated by optical physics. Most of the methods involved are applicable to other areas of biomedical optics and optoelectronics, such as microscopic imaging, spectroscopy, spectral imaging, opto-acoustic tomography, fluorescence imaging etc., all of which are with potential biomedical application. Although all described methods are novel and important, the emphasis of this review has been placed on three technologies introduced in the 1990's and still undergoing vigorous development: Confocal Scanning Laser Ophthalmoscopy, Optical Coherence Tomography, and polarization-sensitive retinal scanning.

Figures

Figure 1
Figure 1
The human eye. The object being observed is projected onto the macula, the central part of which is the fovea, the spot of the sharpest vision.
Figure 2
Figure 2
Fundus images taken with the FF450 Fundus Camera from Carl Zeiss Meditec, Inc. Left: color image; Middle: fluorescein angiography image; Right: zoom in the macular region. Courtesy of Carl Zeiss Meditec, Inc.
Figure 3
Figure 3
The principle of confocal microscopy. Only light reflected by structures very close to the focal plane can be detected.
Figure 4
Figure 4
A generalized diagram of a multispectral confocal scanning laser ophthalmoscope (cSLO).
Figure 5
Figure 5
Three-dimensional view of the retina reconstructed with the Heidelberg Retinal Tomograph (HRT). Left: 3-D view of optic nerve drusen. Right: 3-D image from a person with advanced glaucoma. Note the depth of the cup, steepness of the walls, and reduced rim tissue. Courtesy of Heidelberg Engineering.
Figure 6
Figure 6
A simplified general diagram of a scanning laser polarimeter (SLP), consisting of a scanning laser ophthalmoscope (SLO), a polarization-state generator (PSG) and a polarization-state detector (PSD). The SLP sends a laser beam to the posterior retina and assesses the change in polarization of the reflected beam. This birefringence in the case of the RNFL is caused by neurotubules within the ganglion cell axons.
Figure 7
Figure 7
Images generated by the GDx VCC. Left: the reflectance image, displayed as a color map; Right: the retardation map converted to color-coded RNFL thickness, with thinner regions displayed in blue or green, while thicker regions are displayed in yellow or red. Courtesy of Carl Zeiss Meditec, Inc.
Figure 8
Figure 8
Compensating the anterior segment birefringence in the GDx VCC (macula and optic nerve head). Left: The uncompensated retardation image, which includes the retardation from the cornea, lens and RNFL. The retardation profile in the macula is due to the cornea, lens, and macula itself (Henle fiber layer). The axis of birefringence is shown as a dashed line. Once the axis and the magnitude values are known, the variable compensator VCC can be set to compensate for the anterior segment birefringence. Right: The resulting compensated image. The retardation profile in the macula is now uniform due to compensation.
Figure 9
Figure 9
GDxVCC – exam printout of a normal subject. Key elements: a) the fundus image (top row; useful to check for image quality); b) the thickness map (second row) showing the thickness of the RNFL on a scale of 0 (dark blue) to 120 μm (red), with yellow-red colors for a healthy eye; c) the deviation maps (third row) revealing the location and severity of RNFL loss over the thickness map in serial comparison of thickness maps; d) the Temporal-Superior-Nasal-Inferior-Temporal (TSNIT) maps (bottom row), displaying the thickness values along the calculation circle starting temporally and moving superiorly, nasally, inferiorly and ending temporally, along with the shaded areas representing the 95% normal range for the patient’s particular age. The printout also includes parameters, such as the TSNIT average, Superior average, Inferior average, TSNIT standard deviation and Inter-eye Symmetry.
Figure 10
Figure 10
Retinal Birefringence Scanning (RBS). A birefringence image of the fovea with the scanning circle (3° of visual angle). The circle can be centered on the fovea during central fixation as in (a), or to the side of the center of the fovea during para-central fixation – as in (b).
Figure 11
Figure 11
Signals produced by RBS: a) during central fixation and b) during para-central fixation. The power spectrum (c) contains two peaks – one at 2fs, characteristic of central fixation, and one at fs, characteristic of para-central fixation.
Figure 12
Figure 12
Basic design of an RBS system. The light retro-reflected from the retina is of changed polarization, which is measured by a polarization-sensitive detector.
Figure 13
Figure 13
Typical optical setup of an OCT system containing a moving reference mirror (Time-Domain OCT). Free space design with no fiber optics.
Figure 14
Figure 14
A generalized design of a fiber-based Time-Domain OCT system.
Figure 15
Figure 15
Pathology examples detected with the TD OCT instrument STRATUS OCT™, courtesy of Carl Zeiss Meditec. The left panel shows a macular hole with posterior vitreous detachment. The right panel presents pigment epithelial detachment. The structures of the retina are color-coded.
Figure 16
Figure 16
A typical fiber-optic implementation of the Fourier domain OCT (FD OCT). The slow mechanical depth scan is replaced by a spectral measurement consisting of diffraction grating and photodetector array.
Figure 17
Figure 17
Pathology examples detected with the CIRRUS HD-OCT™ FD OCT, courtesy of Carl Zeiss Meditec. The left panel shows age-related macular degeneration. The right panel presents a lamellar macular hole.
Figure 18
Figure 18
Photoreceptor disruption of the retina (right), observed in a section marked with a green line on the transversal image (left). The image was obtained with the SPECTRALIS® FD OCT, courtesy of Heidelberg Engineering.
Figure 19
Figure 19
A Swept Source OCT system – typical design.
Figure 20
Figure 20
A simplified configuration of a Polarization Sensitive OCT (time-domain).

References

    1. Brink HB, van Blokland GJ. Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J Opt Soc Am A Opt Image Sci. 1988;5:49–57. doi: 10.1364/JOSAA.5.000049.
    1. Cope WT, Wolbarsht ML, Yamanashi BS. The corneal polarization cross. J Opt Soc Am. 1978;68:1139–1141. doi: 10.1364/JOSA.68.001139.
    1. Dreher A, Reiter K. Scanning laser polarimetry of the retinal nerve fiber layer. Proceedings SPIE. pp. 34–41.
    1. Dreher AW, Reiter K, Weinreb RN. Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer. Appl Opt. 1992;31:3730–3735. doi: 10.1364/AO.31.003730.
    1. Weinreb RN, Dreher AW, Coleman A, Quigley H, Shaw B, Reiter K. Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness. Arch Ophthalmol. 1990;108:557–560. doi: 10.1001/archopht.1990.01070060105058.
    1. Knighton RW, Huang XR, Cavuoto LA. Corneal birefringence mapped by scanning laser polarimetry. Opt Express. 2008;16:13738–13751. doi: 10.1364/OE.16.013738.
    1. DeHoog E, Schwiegerling J. Fundus camera systems: a comparative analysis. Appl Opt. 2009;48:221–228. doi: 10.1364/AO.48.000221.
    1. Delori FC, Parker JS, Mainster MA. Light levels in fundus photography and fluorescein angiography. Vis Res. 1980;20:1099–1104. doi: 10.1016/0042-6989(80)90046-2.
    1. Lu G, Fei B. Medical hyperspectral imaging: a review. J Biomed Opt. 2014;19:10901. doi: 10.1117/1.JBO.19.1.010901. doi: 10.1117/1.JBO.19.1.010901.
    1. Riesenberg R, Dillner U. HADAMARD imaging spectrometer with micro slit matrix. P Soc Photo-Opt Ins. 1999;3753:203–213.
    1. Morris HR, Hoyt CC, Treado PJ. Imaging Spectrometers for Fluorescence and Raman Microscopy - Acoustooptic and Liquid-Crystal Tunable Filters. Appl Spectrosc. 1994;48:857–866. doi: 10.1366/0003702944029820.
    1. Chao TH, Zhou HY, Xia XW, Serati S. Hyperspectral Imaging using Electro-Optic Fourier Transform Spectrometer. Opt Pattern Recognit Xv. 2004;5437:163–170. doi: 10.1117/12.548075.
    1. Murguia JE, Reeves TD, Mooney JM, Ewing WS, Shepherd FD, Brodzik A. A compact visible/near infrared hyperspectral imager. Infrared Detectors Focal Plane Arrays Vi. 2000;4028:457–468. doi: 10.1117/12.391760.
    1. Liu WH, Barbastathis G, Psaltis D. Volume holographic hyperspectral imaging. Appl Opt. 2004;43:3581–3599. doi: 10.1364/AO.43.003581.
    1. Patel SR, Flanagan JG, Shahidi AM, Sylvestre JP, Hudson C. A prototype hyperspectral system with a tunable laser source for retinal vessel imaging. Invest Ophthalmol Vis Sci. 2013;54:5163–5168. doi: 10.1167/iovs.13-12124.
    1. Kester RT, Bedard N, Gao L, Tkaczyk TS. Real-time snapshot hyperspectral imaging endoscope. J Biomed Opt. 2011;16:056005. doi: 10.1117/1.3574756.
    1. Bernhardt PA. Direct Reconstruction Methods for Hyperspectral Imaging with Rotational Spectrotomography. J Opt Soc Am a-Opt Image Sci Vis. 1995;12:1884–1901. doi: 10.1364/JOSAA.12.001884.
    1. Johnson WR, Wilson DW, Fink W, Humayun M, Bearman G. Snapshot hyperspectral imaging in ophthalmology. J Biomed Opt. 2007;12:014036. doi: 10.1117/1.2434950.
    1. Okamoto T, Yamaguchi I. Simultaneous acquisition of spectral image-information. Opt Lett. 1991;16:1277–1279. doi: 10.1364/OL.16.001277.
    1. Bulygin FV, Vishnyakov GN, Levin GG, Karpukhin DV. Spectrotomography - a New Method for Production of 2d-Object Spectrograms. Opt Spektrosk+ 1991;71:974–978.
    1. Johnson WR, Wilson DW, Bearman G. All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications. Opt Lett. 2005;30:1464–1466. doi: 10.1364/OL.30.001464.
    1. Descour M, Dereniak E. Computed-Tomography Imaging Spectrometer - Experimental Calibration and Reconstruction Results. Appl Opt. 1995;34:4817–4826. doi: 10.1364/AO.34.004817.
    1. Descour MR, Volin CE, Dereniak EL, Gleeson TM, Hopkins MF, Wilson DW, Maker PD. Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser. Appl Opt. 1997;36:3694–3698. doi: 10.1364/AO.36.003694.
    1. Elliott AD, Gao L, Ustione A, Bedard N, Kester R, Piston DW, Tkaczyk TS. Real-time hyperspectral fluorescence imaging of pancreatic beta-cell dynamics with the image mapping spectrometer. J Cell Sci. 2012;125:4833–4840. doi: 10.1242/jcs.108258.
    1. Fawzi AA, Lee N, Acton JH, Laine AF, Smith RT. Recovery of macular pigment spectrum in vivo using hyperspectral image analysis. J Biomed Opt. 2011;16:106008. doi: 10.1117/1.3640813.
    1. Gao L, Smith RT, Tkaczyk TS. Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS) Biomed Opt Exp. 2012;3:48–54. doi: 10.1364/BOE.3.000048.
    1. Kester RT, Gao L, Tkaczyk TS. Development of image mappers for hyperspectral biomedical imaging applications. Appl Opt. 2010;49:1886–1899. doi: 10.1364/AO.49.001886.
    1. Kester RT, Bedard N, Tkaczyk TS. Image mapping spectrometry - a novel hyperspectral platform for rapid snapshot imaging. Proc SPIE. 2011;8048 Accession number: WOS:000292737000018, Section: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVII, abstract 80480J. (May 13, 2011) doi: 10.1117/12.884627.
    1. Cheung LK, Eaton A. Age-related macular degeneration. Pharmacotherapy. 2013;33:838–855. doi: 10.1002/phar.1264.
    1. Schweizer J, Hollmach J, Steiner G, Knels L, Funk RH, Koch E. Hyperspectral imaging - A new modality for eye diagnostics. Biomedizinische Technik (Biomedical engineering) 2012;57(Suppl.1):293–296.
    1. Alabboud I. Human retinal oximetry using hyperspectral imaging. Ph.D. Thesis. Edinburgh, United Kingdom: Heriot-Watt University, School of Engineering and Physical Sciences; 2009. p. 280.
    1. Harvey AR, Lawlor A, McNaught AI, Williams JW, Fletcher-Holmes DW. Hyperspectral imaging for the detection of retinal diseases. Imaging Spectrom Viii. 2002;4816:325–335. doi: 10.1117/12.451693.
    1. Lawlor J, Fletcher-Holmes DW, Harvey AR, McNaught AI. In vivo hyperspectral imaging of human retina and optic disc. Invest Ophthalmol Vis Sci. 2002;43:U1257–U1257.
    1. Khoobehi B, Beach JM, Kawano H. Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head. Invest Ophthalmol Vis Sci. 2004;45:1464–1472. doi: 10.1167/iovs.03-1069.
    1. Beach J, Ning J, Khoobehi B. Oxygen saturation in optic nerve head structures by hyperspectral image analysis. Curr Eye Res. 2007;32:161–170. doi: 10.1080/02713680601139192.
    1. Hirohara Y, Okawa Y, Mihashi T, Yamaguchi T, Nakazawa N, Tsuruga Y, Aoki H, Maeda N, Uchida I, Fujikado T. Validity of retinal oxygen saturation analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter. Opt Rev. 2007;14:151–158. doi: 10.1007/BF02919416.
    1. Hardarson SH. Retinal Oxymetry. Ph.D. Thesis. Reykjavík: University of Iceland, Faculty of Medicine, School of Health Sciences; 2013. p. 47.
    1. Minsky M. Memoir on Inventing the Confocal Scanning Microscope. 1988.
    1. Laser Scanning Confocal Microscopy. [ ]
    1. Webb RH, Hughes GW, Pomerantzeff O. Flying spot TV ophthalmoscope. Appl Opt. 1980;19:2991–2997. doi: 10.1364/AO.19.002991.
    1. Webb RH, Hughes GW. Scanning laser ophthalmoscope. IEEE Trans Bio-Med Eng. 1981;28:488–492.
    1. Webb RH. Optics for laser rasters. Appl Opt. 1984;23:3680. doi: 10.1364/AO.23.003680.
    1. Plesch A, Klingbeil U, Rappl W, Schroedel C. In: Laser Scanning Ophthalmoscopy and Tomography. Nasemann JE, Burk ROW, editor. Munich, Germany: Quintessenz; 1990. Scanning Ophthalmic Imaging; pp. 109–121.
    1. Vieira P, Manivannan A, Sharp PF, Forrester JV. True colour imaging of the fundus using a scanning laser ophthalmoscope. Physiol Meas. 2002;23:1–10. doi: 10.1088/0967-3334/23/1/301.
    1. Webb RH, Hughes GW, Delori FC. Confocal scanning laser ophthalmoscope. Appl Opt. 1987;26:1492–1499. doi: 10.1364/AO.26.001492.
    1. Sharp PF, Manivannan A. The scanning laser ophthalmoscope. Phys Med Biol. 1997;42:951–966. doi: 10.1088/0031-9155/42/5/014.
    1. Vieira P, Manivannan A, Lim CS, Sharp P, Forrester JV. Tomographic reconstruction of the retina using a confocal scanning laser ophthalmoscope. Physiol Meas. 1999;20:1–19. doi: 10.1088/0967-3334/20/1/001.
    1. Sharp PF, Manivannan A, Vieira P, Hipwell JH. Laser imaging of the retina. Br J Ophthalmol. 1999;83:1241–1245. doi: 10.1136/bjo.83.11.1241.
    1. Elsner AE, Burns SA, Hughes GW, Webb RH. Reflectometry with a scanning laser ophthalmoscope. Appl Opt. 1992;31:3697–3710. doi: 10.1364/AO.31.003697.
    1. Remky A, Beausencourt E, Elsner AE. Angioscotometry with the scanning laser ophthalmoscope. Comparison of the effect of different wavelengths. Invest Ophthalmol Vis Sci. 1996;37:2350–2355.
    1. Lompado A, Smith MH, Hillman LW, Denninghoff KR. Multispectral confocal scanning laser ophthalmoscope for retinal vessel oxymetry. Proc. SPIE. p. 3920. Spectral Imaging: Instrumentation, Applications, and Analysis, 67. (March 14, 2000) doi: 10.1117/12.379584.
    1. Remky A, Elsner AE, Morandi AJ, Beausencourt E, Trempe CL. Blue-on-yellow perimetry with a scanning laser ophthalmoscope: small alterations in the central macula with aging. J Opt Soc Am A Opt Image Sci Vis. 2001;18:1425–1436. doi: 10.1364/JOSAA.18.001425.
    1. Sliney D, Wolbarsht M. Safety with Lasers and Other Optical Sources. New York and London: Plenum Press; 1980.
    1. Klingbeil U. Safety aspects of laser scanning ophthalmoscopes. Health Phys. 1986;51:81–93. doi: 10.1097/00004032-198607000-00006.
    1. de Wit GC. Safety norms for Maxwellian view laser scanning devices based on the ANSI standards. Health Phys. 1996;71:766–769. doi: 10.1097/00004032-199611000-00020.
    1. Manivannan A, Kirkpatrick JN, Sharp PF, Forrester JV. Novel approach towards colour imaging using a scanning laser ophthalmoscope. Br J Ophthalmol. 1998;82:342–345. doi: 10.1136/bjo.82.4.342.
    1. Wykes WN, Pyott AA, Ferguson VG. Detection of diabetic retinopathy by scanning laser ophthalmoscopy. Eye. 1994;8(Pt 4):437–439.
    1. Manivannan A, Kirkpatrick JN, Sharp PF, Forrester JV. Clinical investigation of an infrared digital scanning laser ophthalmoscope. Br J Ophthalmol. 1994;78:84–90. doi: 10.1136/bjo.78.2.84.
    1. Seymenoglu G, Baser E, Ozturk B. Comparison of spectral-domain optical coherence tomography and Heidelberg retina tomograph III optic nerve head parameters in glaucoma. Ophthalmologica. 2013;229:101–105. doi: 10.1159/000341574.
    1. Chan EW, Liao J, Wong R, Loon SC, Aung T, TY W, Cheng C-Y. Diagnostic Performance of the ISNT Rule for Glaucoma Based on the Heidelberg Retinal Tomograph. Trans Vis Sci Technol (TVST) 2013;2:1–10.
    1. Hammer DX, Ferguson RD, Magill JC, White MA, Elsner AE, Webb RH. Compact scanning laser ophthalmoscope with high-speed retinal tracker. Appl Opt. 2003;42:4621–4632. doi: 10.1364/AO.42.004621.
    1. LaRocca F, Dhalla AH, Kelly MP, Farsiu S, Izatt JA. Optimization of confocal scanning laser ophthalmoscope design. J Biomed Opt. 2013;18:076015. doi: 10.1117/1.JBO.18.7.076015.
    1. Beckers JM. Adaptive optics for astronomy: principles, performance, and applications. Annu Rev Astron Astrophys. 1993;31:13–62. doi: 10.1146/annurev.aa.31.090193.000305.
    1. Adaptive Optics. [ ]
    1. Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997;14:2884–2892. doi: 10.1364/JOSAA.14.002884.
    1. Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature. 1999;397:520–522. doi: 10.1038/17383.
    1. Roorda A. Adaptive optics ophthalmoscopy. J Refract Surg. 2000;16:S602–S607.
    1. Roorda A, Williams DR. In: Customized Corneal Ablation: The Quest for SuperVision. MacRae S, Krueger R, Applegate RA, editor. Thorofare, NJ: SLACK, Inc; 2001. Retinal imaging using adaptive optics.
    1. Roorda A, Romero-Borja F, Donnelly Iii W, Queener H, Hebert T, Campbell M. Adaptive optics scanning laser ophthalmoscopy. Opt Express. 2002;10:405–412. doi: 10.1364/OE.10.000405.
    1. Zhang Y, Roorda A. Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope. J Biomed Opt. 2006;11:014002. doi: 10.1117/1.2166434.
    1. Burns SA, Marcos S, Elsner AE, Bara S. Contrast improvement of confocal retinal imaging by use of phase-correcting plates. Opt Lett. 2002;27:400–402. doi: 10.1364/OL.27.000400.
    1. Hammer DX, Ferguson RD, Bigelow CE, Iftimia NV, Ustun TE, Burns SA. Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging. Opt Express. 2006;14:3354–3367. doi: 10.1364/OE.14.003354.
    1. Zhang Y, Poonja S, Roorda A. MEMS-based adaptive optics scanning laser ophthalmoscopy. Opt Lett. 2006;31:1268–1270. doi: 10.1364/OL.31.001268.
    1. Burns SA, Tumbar R, Elsner AE, Ferguson D, Hammer DX. Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. J Opt Soc Am A Opt Image Sci Vis. 2007;24:1313–1326. doi: 10.1364/JOSAA.24.001313.
    1. Vogel CR, Arathorn DW, Roorda A, Parker A. Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy. Opt Express. 2006;14:487–497. doi: 10.1364/OPEX.14.000487.
    1. Arathorn DW, Yang Q, CR V, Zhang Y, Tiruveedhula P, Roorda A. Retinally stabilized cone-targeted stimulus delivery. Opt Express. 2007;15:13731–13744. doi: 10.1364/OE.15.013731.
    1. Yang Q, Arathorn DW, Tiruveedhula P, Vogel CR, Roorda A. Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery. Opt Express. 2010;18:17841–17858. doi: 10.1364/OE.18.017841.
    1. Sheehy CK, Yang Q, Arathorn DW, Tiruveedhula P, de Boer JF, Roorda A. High-speed, image-based eye tracking with a scanning laser ophthalmoscope. Biomed Opt Express. 2012;3:2611–2622. doi: 10.1364/BOE.3.002611.
    1. Weale RA. On the birefringence of rods and cones. Pflugers Arch - Eur J Physiol. 1971;329:244–257. doi: 10.1007/BF00586618.
    1. Delori FC, Webb RH, Parker JS. Macular birefringence. Invest Ophthalmol Vis Sci. 1979;19(Suppl):Issue 53, ARVO abstract. Issue 53, ARVO abstract.
    1. Hochheimer BF, Kues HA. Retinal polarization effects. Appl Opt. 1982;21:3811–3818. doi: 10.1364/AO.21.003811.
    1. Klein Brink HB, Van Blokland GJ. Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J Opt Soc Am A Opt Image Sci. 1988;5:49–57. doi: 10.1364/JOSAA.5.000049.
    1. Hauge PS. Mueller matrix ellipsometry with imperfect compensators. J Opt Soc Am. 1978;68:1519–1528. doi: 10.1364/JOSA.68.001519.
    1. Azzam RMA. Photopolarimetric Measurement of Mueller Matrix by Fourier-Analysis of a Single Detected Signal. Opt Lett. 1978;2:148–150. doi: 10.1364/OL.2.000148.
    1. Shurcliff WA. Polarized Light: Production and Use. Cambridge, Massachusetts: Harvard University Press; 1962.
    1. Collett E, Schaeffer B. Polarized Light for Scientists and Engineers. 1. Long Branch, New Jersey: The PolaWave Group; 2012.
    1. RNFL Analysis with GDxVCC. A primer and Clinical Guide. Dublin, CA: Carl Zeiss Meditec, Inc. / Laser Diagnostic Technologies; 2004.
    1. Zhou Q, Weinreb RN. Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest Ophthalmol Vis Sci. 2002;43:2221–2228.
    1. Knighton RW, Huang XR, Greenfield DS. Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment. Invest Ophthalmol Vis Sci. 2002;43:383–392.
    1. Knighton R, Huang XR. Analytical methods for scanning laser polarimetry. Opt Express. 2002;10:1179–1189. doi: 10.1364/OE.10.001179.
    1. Reus NJ, Zhou Q, Lemij HG. Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci. 2006;47:3870–3877. doi: 10.1167/iovs.05-0067.
    1. Sehi M, Ume S, Greenfield DS. Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 2007;48:2099–2104. doi: 10.1167/iovs.06-1087.
    1. Knighton RW, Huang XR. Corneal compensation in scanning laser polarimetry: characterization and analysis. Invest Ophth Vis Sci. 2000;41(4):S92.
    1. Bagga H, Greenfield DS, Knighton RW. Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease. Invest Ophthalmol Vis Sci. 2003;44:1969–1976. doi: 10.1167/iovs.02-0923.
    1. Toth M, Hollo G. Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern. Br J Ophthalmol. 2005;89:1139–1142. doi: 10.1136/bjo.2005.070011.
    1. Hunter DG, Patel SN, Guyton DL. Automated detection of foveal fixation by use of retinal birefringence scanning. Appl Opt. 1999;38:1273–1279. doi: 10.1364/AO.38.001273.
    1. Hunter DG, Sandruck JC, Sau S, Patel SN, Guyton DL. Mathematical modeling of retinal birefringence scanning. J Opt Soc Am A Opt Image Sci. 1999;16:2103–2111. doi: 10.1364/JOSAA.16.002103.
    1. Guyton DL, Hunter DG, Patel SN, Sandruck JC, Fry RL. Eye Fixation Monitor and Tracker. U.S. Patent No. 6,027,216. 2000.
    1. Hunter DG, Nassif DS, Piskun NV, Winsor R, Gramatikov BI, Guyton DL. Pediatric Vision Screener 1: instrument design and operation. J Biomed Opt. 2004;9:1363–1368. doi: 10.1117/1.1805560.
    1. Gramatikov B, Irsch K, Mullenbroich M, Frindt N, Qu Y, Gutmark R, Wu YK, Guyton D. A device for continuous monitoring of true central fixation based on foveal birefringence. Ann Biomed Eng. 2013;41:1968–1978. doi: 10.1007/s10439-013-0818-2.
    1. Gramatikov B. Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal. Biomed Eng Online. 2013;12:41. doi: 10.1186/1475-925X-12-41.
    1. Hunter DG, Piskun NV, Guyton DL, Gramatikov BI, Nassif D. Clinical performance of the Pediatric Vision Screener. Ft. Lauderdale, FL: ARVO Conference; 2004. Invest Ophthalmol Vis Sci. 2004;45:ARVO abstract accession number 3488.
    1. Nassif DS, Piskun NV, Gramatikov BI, Guyton DL, Hunter DG. Pediatric Vision Screener 2: pilot study in adults. J Biomed Opt. 2004;9:1369–1374. doi: 10.1117/1.1805561.
    1. Nassif DS, Piskun NV, Hunter DG. The Pediatric Vision Screener III: detection of strabismus in children. Arch Ophthalmol. 2006;124:509–513. doi: 10.1001/archopht.124.4.509.
    1. Loudon SE, Rook CA, Nassif DS, Piskun NV, Hunter DG. Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner. Invest Ophthalmol Vis Sci. 2011;52:5043–5048. doi: 10.1167/iovs.11-7503.
    1. Gramatikov BI, Zalloum OHY, Wu YK, Hunter DG, Guyton DL. Birefringence-based eye fixation monitor with no moving parts. J Biomed Opt. 2006;11:034025–034021. doi: 10.1117/1.2209003. 034025–034011.
    1. Gramatikov BI, Zalloum OH, Wu YK, Hunter DG, Guyton DL. Directional eye fixation sensor using birefringence-based foveal detection. Appl Opt. 2007;46:1809–1818. doi: 10.1364/AO.46.001809.
    1. Irsch K, Gramatikov B, Wu YK, Guyton D. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection. Biomed Opt Express. 2011;2:1955–1968. doi: 10.1364/BOE.2.001955.
    1. Agopov M, Gramatikov BI, Wu YK, Irsch K, Guyton DL. Use of retinal nerve fiber layer birefringence as an addition to absorption in retinal scanning for biometric purposes. Appl Opt. 2008;47:1048–1053. doi: 10.1364/AO.47.001048.
    1. Chen Y, Bousi E, Pitris C, Fujimoto J. In: Handbook of Biomedical Optics. Boas DA, Pitris C, Ramanujam N, editor. Boca Raton, London, New York: CRC Press, Taylor and Francis Group; 2011. Optical Coherence Tomography: Introduction and Theory.
    1. Pan Y, Birngruber R, Rosperich J, Engelhardt R. Low-coherence optical tomography in turbid tissue: theoretical analysis. Appl Opt. 1995;34:6564–6574. doi: 10.1364/AO.34.006564.
    1. Schmitt JM. Optical Coherence Tomography (OCT): A review. IEEE J Select Topics Quantum Electron. 1999;5:1205–1215. doi: 10.1109/2944.796348.
    1. Hee MR. In: Handbook of Optical Coherence Tomography. Bouma BE, Tearney GJ, editor. New York, Basel: Marcel Dekker; 2002. Optical Coherence Tomography: Theory.
    1. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett. 1988;13:186–188. doi: 10.1364/OL.13.000186.
    1. Riederer SJ. Current technical development of magnetic resonance imaging. IEEE Eng Med Biol Mag. 2000;19:34–41.
    1. Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge: Cambridge University Press; 1999.
    1. Bouma BE, Tearney GJ. Handbook of Optical Coherence Tomography. New York, Basel: Marcel Dekker; 2002.
    1. Bizheva K, Povazay B, Hermann B, Sattmann H, Drexler W, Mei M, Holzwarth R, Hoelzenbein T, Wacheck V, Pehamberger H. Compact, broad-bandwidth fiber laser for sub-2-microm axial resolution optical coherence tomography in the 1300-nm wavelength region. Opt Lett. 2003;28:707–709. doi: 10.1364/OL.28.000707.
    1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science. 1991;254:1178–1181. doi: 10.1126/science.1957169.
    1. Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, Puliafito CA, Fujimoto JG. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112:1584–1589. doi: 10.1001/archopht.1994.01090240090031.
    1. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113:325–332. doi: 10.1001/archopht.1995.01100030081025.
    1. Drexler W, Morgner U, Kartner FX, Pitris C, Boppart SA, Li XD, Ippen EP, Fujimoto JG. In vivo ultrahigh-resolution optical coherence tomography. Opt Lett. 1999;24:1221–1223. doi: 10.1364/OL.24.001221.
    1. Fujimoto JG. In: Handbook of Optical Coherence Tomography. Bouma BE, Tearney GJ, editor. New York, Basel: Marcel Dekker; 2002. Optical Coherence Tomography: Introduction.
    1. Drexler W, Fujimoto JG. State-of-the-art retinal optical coherence tomography. Prog Retin Eye Res. 2008;27:45–88. doi: 10.1016/j.preteyeres.2007.07.005.
    1. Drexler W, Morgner U, Ghanta RK, Kartner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med. 2001;7:502–507. doi: 10.1038/86589.
    1. Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt. 2004;9:47–74. doi: 10.1117/1.1629679.
    1. Kowalevicz AM Jr, Schibli TR, Kartner FX, Fujimoto JG. Ultralow-threshold Kerr-lens mode-locked Ti:Al(2)O(3) laser. Opt Lett. 2002;27:2037–2039. doi: 10.1364/OL.27.002037.
    1. Unterhuber A, Povazay B, Hermann B, Sattmann H, Drexler W, Yakovlev V, Tempea G, Schubert C, Anger EM, Ahnelt PK, Stur M, Morgan JE, Cowey A, Jung G, Le T, Stingl A. Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography. Opt Lett. 2003;28:905–907. doi: 10.1364/OL.28.000905.
    1. Unterhuber A, Povazay B, Bizheva K, Hermann B, Sattmann H, Stingl A, Le T, Seefeld M, Menzel R, Preusser M, Budka H, Schubert C, Reitsamer H, Ahnelt PK, Morgan JE, Cowey A, Drexler W. Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. Phys Med Biol. 2004;49:1235–1246. doi: 10.1088/0031-9155/49/7/011.
    1. Adler DS, Ko TH, Konorev AK, Mamedov DS, Prokhorov VV, Fujimoto JJ, Yakubovich SD. Broadband light source based on quantum-well superluminescent diodes for high-resolution optical coherence tomography. Quantum Electron+ 2004;34:915–918. doi: 10.1070/QE2004v034n10ABEH002799.
    1. Ko TH, Adler DC, Fujimoto JG, Mamedov D, Prokhorov V, Shidlovski V, Yakubovich S. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source. Opt Express. 2004;12:2112–2119. doi: 10.1364/OPEX.12.002112.
    1. Wojtkowski M, Srinivasan VJ, Ko TH, Fujimoto JG, Kowalczyk A, Duker JS. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express. 2004;12:2404–2422. doi: 10.1364/OPEX.12.002404.
    1. Cense B, Chen TC, Nassif N, Pierce MC, Yun SH, Park BH, Bouma BE, Tearney GJ, de Boer JF. Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology. Bulletin de la Societe belge d'ophtalmologie. 2006. pp. 123–132.
    1. Fercher AF, Hitzenberger CK, Kamp G, Elzaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun. 1995;117:43–48. doi: 10.1016/0030-4018(95)00119-S.
    1. Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography - principles and applications. Rep Prog Phys. 2003;66:239–303. doi: 10.1088/0034-4885/66/2/204.
    1. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett. 1997;22:340–342. doi: 10.1364/OL.22.000340.
    1. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia. 2000;2:9–25. doi: 10.1038/sj.neo.7900071.
    1. Hee MR, Huang D, Swanson EA, Fujimoto JG. Polarization-sensitive Low-coherence reflectometer for birefringence characterization and ranging. J Opt Soc Am B. 1992;9:903–908.
    1. de Boer JF, Milner TE, van Gemert MJC, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett. 1997;22:934–936. doi: 10.1364/OL.22.000934.
    1. de Boer JF, Milner TE, Nelson JS. Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography. Opt Lett. 1999;24:300–302. doi: 10.1364/OL.24.000300.
    1. Weinreb RN, Zangwill L, Berry CC, Bathija R, Sample PA. Detection of glaucoma with scanning laser polarimetry. Arch Ophthalmol. 1998;116:1583–1589. doi: 10.1001/archopht.116.12.1583.
    1. Pircher M, Gotzinger E, Leitgeb R, Sattmann H, Findl O, Hitzenberger CK. Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Opt Express. 2004;12:5940–5951. doi: 10.1364/OPEX.12.005940.
    1. Pircher M, Gotzinger E, Findl O, Michels S, Geitzenauer W, Leydolt C, Schmidt-Erfurth U, Hitzenberger CK. Human macula investigated in vivo with polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci. 2006;47:5487–5494. doi: 10.1167/iovs.05-1589.
    1. De Boer JF, Srinivas SM, Nelson JS, Milner TE, Ducros MG. In: Handbook of Optical Coherence Tomography. Bouma BE, Tearney GJ, editor. New York, Basel: Marcel Dekker; 2002. Polarization-Sensitive Optical Coherence Tomography; pp. 237–274.
    1. Hitzenberger C, Goetzinger E, Sticker M, Pircher M, Fercher A. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt Express. 2001;9:780–790. doi: 10.1364/OE.9.000780.
    1. Cense B, Chen HC, Park BH, Pierce MC, de Boer JF. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. J Biomed Opt. 2004;9:121–125. doi: 10.1117/1.1627774.
    1. Pircher M, Gotzinger E, Baumann B, Hitzenberger CK. Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina. J Biomed Opt. 2007;12:041210. doi: 10.1117/1.2771560.
    1. Pircher M, Hitzenberger CK, Schmidt-Erfurth U. Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res. 2011;30:431–451. doi: 10.1016/j.preteyeres.2011.06.003.
    1. Gotzinger E, Baumann B, Pircher M, Hitzenberger CK. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography. Opt Express. 2009;17:22704–22717. doi: 10.1364/OE.17.022704.
    1. Zotter S, Pircher M, Torzicky T, Baumann B, Yoshida H, Hirose F, Roberts P, Ritter M, Schutze C, Gotzinger E, Trasischker W, Vass C, Schmidt-Erfurth U, Hitzenberger CK. Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology. Biomed Opt Express. 2012;3:2720–2732. doi: 10.1364/BOE.3.002720.
    1. Torzicky T, Marschall S, Pircher M, Baumann B, Bonesi M, Zotter S, Gotzinger E, Trasischker W, Klein T, Wieser W, Biedermann B, Huber R, Andersen P, Hitzenberger CK. Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser. J Biomed Opt. 2013;18:26008. doi: 10.1117/1.JBO.18.2.026008.
    1. Choplin NT, Zhou Q, Knighton RW. Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry. Ophthalmology. 2003;110:719–725. doi: 10.1016/S0161-6420(02)01899-7.
    1. Cense B, Wang Q, Lee S, Zhao L, Elsner AE, Hitzenberger CK, Miller DT. Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography. Biomed Biomedical Opt. 2013;4:2296–2306.
    1. Jiao SL, Yao G, Wang LHV. Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Appl Opt. 2000;39:6318–6324. doi: 10.1364/AO.39.006318.
    1. de Boer JF, Srinivas SM, Malekafzali A, Chen ZP, Nelson JS. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt Express. 1998;3:212–218. doi: 10.1364/OE.3.000212.
    1. Agopov M. In: Biometrics, Ch. 5. Yang J, editor. Rijeka, Croatia: InTech; 2011. Retinal Identification; pp. 99–112.
    1. Hill R. Apparatus and method for identifying individuals through their retinal vasculature patterns. US patent No. US 4,109,237. 1978.
    1. Hill R. Rotating beam ocular identification apparatus and method. US patent No. US 4,393,366. 1986.
    1. Maldonado RS, Yuan E, Tran-Viet D, Rothman AL, Tong AY, Wallace DK, Freedman SF, Toth CA. Three-Dimensional Assessment of Vascular and Perivascular Characteristics in Subjects with Retinopathy of Prematurity. Ophthalmology. 2014. 2014 Jan 21. doi: 10.1016/j.ophtha.2013.12.004. [Epub ahead of print]
    1. Allingham MJ, Cabrera MT, O'Connell RV, Maldonado RS, Tran-Viet D, Toth CA, Freedman SF, El-Dairi MA. Racial variation in optic nerve head parameters quantified in healthy newborns by handheld spectral domain optical coherence tomography. J AAPOS. 2013;17:501–506. doi: 10.1016/j.jaapos.2013.06.014.
    1. Cabrera MT, Maldonado RS, Toth CA, O'Connell RV, Chen BB, Chiu SJ, Farsiu S, Wallace DK, Stinnett SS, Panayotti GM, Swamy GK, Freedman SF. Subfoveal fluid in healthy full-term newborns observed by handheld spectral-domain optical coherence tomography. Am J Ophthalmol. 2012;153:167–175. doi: 10.1016/j.ajo.2011.06.017. e163.
    1. Chavala SH, Farsiu S, Maldonado R, Wallace DK, Freedman SF, Toth CA. Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging. Ophthalmology. 2009;116:2448–2456. doi: 10.1016/j.ophtha.2009.06.003.
    1. Dayani PN, Maldonado R, Farsiu S, Toth CA. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina. 2009;29:1457–1468. doi: 10.1097/IAE.0b013e3181b266bc.

Source: PubMed

3
Abonnieren