Effects of short-term mild hypercapnia during head-down tilt on intracranial pressure and ocular structures in healthy human subjects

Steven S Laurie, Gianmarco Vizzeri, Giovanni Taibbi, Connor R Ferguson, Xiao Hu, Stuart M C Lee, Robert Ploutz-Snyder, Scott M Smith, Sara R Zwart, Michael B Stenger, Steven S Laurie, Gianmarco Vizzeri, Giovanni Taibbi, Connor R Ferguson, Xiao Hu, Stuart M C Lee, Robert Ploutz-Snyder, Scott M Smith, Sara R Zwart, Michael B Stenger

Abstract

Many astronauts experience ocular structural and functional changes during long-duration spaceflight, including choroidal folds, optic disc edema, globe flattening, optic nerve sheath diameter (ONSD) distension, retinal nerve fiber layer thickening, and decreased visual acuity. The leading hypothesis suggests that weightlessness-induced cephalad fluid shifts increase intracranial pressure (ICP), which contributes to the ocular structural changes, but elevated ambient CO2 levels on the International Space Station may also be a factor. We used the spaceflight analog of 6° head-down tilt (HDT) to investigate possible mechanisms for ocular changes in eight male subjects during three 1-h conditions: Seated, HDT, and HDT with 1% inspired CO2 (HDT + CO2). Noninvasive ICP, intraocular pressure (IOP), translaminar pressure difference (TLPD = IOP-ICP), cerebral and ocular ultrasound, and optical coherence tomography (OCT) scans of the macula and the optic disc were obtained. Analysis of one-carbon pathway genetics previously associated with spaceflight-induced ocular changes was conducted. Relative to Seated, IOP and ICP increased and TLPD decreased during HDT During HDT + CO2 IOP increased relative to HDT, but there was no significant difference in TLPD between the HDT conditions. ONSD and subfoveal choroidal thickness increased during HDT relative to Seated, but there was no difference between HDT and HDT + CO2 Visual acuity and ocular structures assessed with OCT imaging did not change across conditions. Genetic polymorphisms were associated with differences in IOP, ICP, and end-tidal PCO2 In conclusion, acute exposure to mild hypercapnia during HDT did not augment cardiovascular outcomes, ICP, or TLPD relative to the HDT condition.

Keywords: NASA; Head‐down tilt; hypercapnia; one‐carbon metabolism; translaminar pressure difference.

Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

Figures

Figure 1
Figure 1
Schematic of study protocol depicting (A) the timeline and order in which measurements were obtained during each condition and (B) the (i) Seated, (ii) HDT, and (iii) HDT + CO2 conditions. IOP, intraocular pressure; OCT, optical coherence tomography; TCD, transcranial Doppler ultrasound; nICP, noninvasive measure of intracranial pressure; PETCO 2, end‐tidal partial pressure of carbon dioxide.
Figure 2
Figure 2
(A) Inspired PCO 2 (PICO 2) and (B) end‐tidal PCO 2 (PETCO 2) for all subjects in each of the three conditions. Values are means ± 95% confidence intervals. *P < 0.05 versus Seated, †P < 0.05 versus HDT. n = 8 subjects for all variables.
Figure 3
Figure 3
(A) Central retinal artery blood flow velocity (CRA vel) and (B) central retinal artery blood flow conductance index (CRAC i) for all subjects in each of the three conditions. Values are means ± 95% confidence intervals. *P < 0.05 versus Seated. n = 8 subjects for all variables.
Figure 4
Figure 4
(A) Intraocular pressure (IOP), (B) noninvasive estimate of intracranial pressure (nICP), and (C) the resulting translaminar pressure difference (TLPD = IOP–nICP) for all subjects in each of the three conditions. Values are means ± 95% confidence intervals. *P < 0.05 versus Seated, †P < 0.05 versus HDT. n = 8 subjects for all variables.
Figure 5
Figure 5
(A) IOP, (B) nICP, and (C) TLPD for SNP+ (filled) and SNP− (open) groups during each condition. Values are means ± 95% confidence intervals. P‐value indicates group by condition interaction. n = 4 subjects in each SNP+ and SNP‐ groups.
Figure 6
Figure 6
(A) PETCO 2 for SNP+ (filled) and SNP− (open) groups during each condition. (B) Change in MCA vel compared to Seated for SNP+ (filled, n = 4) and SNP− (open, n = 4) groups during head‐down tilt (HDT) and HDT + CO 2. (C) Change in MCA vel as a function of the change in PETCO 2 between Seated and HDT + CO 2 for SNP+ (filled, n = 4) and SNP− (open, n = 4) groups. Linear regression slopes for the SNP+ (dashed, r2=0.7256) and SNP− (dotted, r2 = 0.5077) groups were not significantly different.
Figure 7
Figure 7
PETCO 2 during HDT + CO 2 by MTRR 66 genotype. The subject indicated by the open circle had a B‐12 deficiency which could produce a similar phenotype as the GG subjects.
Figure 8
Figure 8
Optic nerve sheath diameter (ONSD) as a function of nICP during each condition for all eight subjects. Dashed lines represent linear regression of data for each subject.

References

    1. Alexander, D. J. , Gibson C. R., Hamilton D. R., Lee S. M. C., Mader T. H., Otto C., et al. 2012. Evidence report: risk of spaceflight‐induced intracranial hypertension and vision alterations [Online]. Human health and countermeasures, NASA human research program. Available at: (accessed 31 March 2017)
    1. Anderson, A. P. , Swan J. G., Phillips S. D., Knaus D. A., Kattamis N. T., Toutain‐Kidd C. M., et al. 2016. Acute effects of changes to the gravitational vector on the eye. J. Appl. Physiol. 120:939–946.
    1. Asgari, S. , Bergsneider M., Hamilton R., Vespa P., and Hu X.. 2011. Consistent changes in intracranial pressure waveform morphology induced by acute hypercapnic cerebral vasodilatation. Neurocrit. Care 15:55–62.
    1. Awad, H. , Santilli S., Ohr M., Roth A., Yan W., Fernandez S., et al. 2009. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth. Analg. 109:473–478.
    1. Berdahl, J. P. , Yu D. Y., and Morgan W. H.. 2012. The translaminar pressure gradient in sustained zero gravity, idiopathic intracranial hypertension, and glaucoma. Med. Hypotheses 79:719–724.
    1. Blomqvist, C. G. , Nixon J. V., Johnson R. L. Jr, and Mitchell J. H.. 1980. Early cardiovascular adaptation to zero gravity simulated by head‐down tilt. Acta Astronaut. 7:543–553.
    1. Chauhan, B. C. , and Burgoyne C. F.. 2013. From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am. J. Ophthalmol. 156: 218–227.e2.
    1. Chen, T. C. 2009. Spectral domain optical coherence tomography in glaucoma: qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis). Trans. Am. Ophthalmol. Soc. 107:254–281.
    1. Chiquet, C. , Custaud M.‐A., Le Traon A. P., Millet C., Gharib C., and Denis P.. 2003. Changes in intraocular pressure during prolonged (7‐day) head‐down tilt bedrest. J. Glaucoma 12:204–208.
    1. Crider, K. S. , Zhu J.‐H., Hao L., Yang Q.‐H., Yang T. P., Gindler J., et al. 2011. MTHFR 677C‐>T genotype is associated with folate and homocysteine concentrations in a large, population‐based, double‐blind trial of folic acid supplementation. Am. J. Clin. Nutr. 93:1365–1372.
    1. Davis, S. R. , Quinlivan E. P., Shelnutt K. P., Ghandour H., Capdevila A., Coats B. S., et al. 2005. Homocysteine synthesis is elevated but total remethylation is unchanged by the methylenetetrahydrofolate reductase 677C‐>T polymorphism and by dietary folate restriction in young women. J. Nutr. 135:1045–1050.
    1. Delaey, C. , and Van De Voorde J.. 2000. Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res. 32:249–256.
    1. Eklund, A. , Jóhannesson G., Johansson E., Holmlund P., Qvarlander S., Ambarki K., et al. 2016. Koskinen L‐OD, Malm J. The pressure difference between eye and brain changes with posture. Ann. Neurol. 80:269–276.
    1. Ellingsen, I. , Liestøl K., Sydnes G., Hauge A., and Nicolaysen G.. 1987a. Arterial PCO2 and lung ventilation in man exposed to 1–5% CO2 in the inspired gas. Acta Physiol. Scand. 129:269–276.
    1. Ellingsen, I. , Sydnes G., Hauge A., Zwart J. A., Liestøl K., and Nicolaysen G.. 1987b. CO2 sensitivity in humans breathing 1 or 2% CO2 in air. Acta Physiol. Scand. 129:195–202.
    1. Fleischman, D. , and Allingham R. R.. 2013. The role of cerebrospinal fluid pressure in glaucoma and other ophthalmic diseases: a review. Saudi J. Ophthalmol. 27:97–106.
    1. Friedman, E. , and Chandra S. R.. 1972. Choroidal blood flow. 3. Effects of oxygen and carbon dioxide. Arch. Ophthalmol. 87:70–71.
    1. Geinas, J. C. , Marsden K. R., Tzeng Y. C., Smirl J. D., Smith K. J., Willie C. K., et al. 2012. Influence of posture on the regulation of cerebral perfusion. Aviat. Space Environ. Med. 83:751–757.
    1. Hansen, H. C. , and Helmke K.. 1996. The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. Surg. Radiol. Anat. 18:323–328.
    1. Hargens, A. R. , and Vico L.. 2016. Long‐duration bed rest as an analog to microgravity. J. Appl. Physiol. 120:891–903.
    1. Harris, A. , Tippke S., Sievers C., Picht G., Lieb W., and Martin B.. 1996. Acetazolamide and CO2: acute effects on cerebral and retrobulbar hemodynamics. J. Glaucoma 5:39–45.
    1. Hosking, S. L. , Harris A., Chung H. S., Jonescu‐Cuypers C. P., Kagemann L., Hilton E. J. R., et al. 2004. Ocular haemodynamic responses to induced hypercapnia and hyperoxia in glaucoma. Br. J. Ophthalmol. 88:406–411.
    1. Hu, X. , Xu P., Wu S., Asgari S., and Bergsneider M.. 2010. A data mining framework for time series estimation. J. Biomed. Inform. 43:190–199.
    1. Hughson, R. L. , Yee N., and Greaves D. K.. 2016. Elevated end‐tidal PCO2 during long‐duration spaceflight. Aerosp. Med. Hum. Perform. 87.
    1. Hvidberg, A. , Kessing S. V., and Fernandes A.. 1981. Effect of changes in PCO2 and body positions on intraocular pressure during general anaesthesia. Acta Ophthalmol. (Copenh) 59:465–475.
    1. Jonas, J. B. , Ritch R., and Panda‐Jonas S.. 2015a. Cerebrospinal fluid pressure in the pathogenesis of glaucoma. Prog. Brain Res. 221:33–47.
    1. Jonas, J. B. , Wang N., Yang D., Ritch R., and Panda‐Jonas S.. 2015b. Facts and myths of cerebrospinal fluid pressure for the physiology of the eye. Prog. Retin. Eye Res. 46:67–83.
    1. Kergoat, H. , and Faucher C.. 1999. Effects of oxygen and carbogen breathing on choroidal hemodynamics in humans. Invest. Ophthalmol. Vis. Sci. 40:2906–2911.
    1. Kielar, R. A. , Teraslinna P., Kearney J. T., and Barker D.. 1977. Effect of changes in Pco2 on intraocular tension. Invest. Ophthalmol. Vis. Sci. 16:534–537.
    1. Kim, S. , Hamilton R., Pineles S., Bergsneider M., and Hu X.. 2013. Noninvasive intracranial hypertension detection utilizing semisupervised learning. IEEE Trans. Biomed. Eng. 60:1126–1133.
    1. Kim, J.‐Y. , Min H.‐G., Ha S.‐I., Jeong H.‐W., Seo H., and Kim J.‐U.. 2014. Dynamic optic nerve sheath diameter responses to short‐term hyperventilation measured with sonography in patients under general anesthesia. Korean J. Anesthesiol. 67:240–245.
    1. Kluijtmans, L. A. J. , Young I. S., Boreham C. A., Murray L., McMaster D., McNulty H., et al. 2003. Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 101:2483–2488.
    1. Kondo, T. , Kumagai M., Takei F., and Ohta Y.. 1999. A pharmacologic study on CO2 responsiveness of intracranial pressure in rats with chronic hypercapnia. Chest 115:1402–1406.
    1. Kramer, L. A. , Sargsyan A. E., Hasan K. M., Polk J. D., and Hamilton D. R.. 2012. Orbital and intracranial effects of microgravity: findings at 3‐T MR imaging. Radiology 263:819–827.
    1. Kramer, L. A. , Hasan K. M., Sargsyan A. E., Marshall‐Goebel K., Rittweger J., Donoviel D., et al. 2017. Quantitative MRI volumetry, diffusivity, cerebrovascular flow and cranial hydrodynamics during head down tilt and hypercapnia: the SPACECOT study. J. Appl. Physiol. 122:1155–1166.
    1. Lathers, C. M. , Diamandis P. H., Riddle J. M., Mukai C., Elton K. F., Bungo M. W., et al. 1990. Acute and intermediate cardiovascular responses to zero gravity and to fractional gravity levels induced by head‐down or head‐up tilt. J. Clin. Pharmacol. 30:494–523.
    1. Law, J. , Watkins S., and Alexander D.. 2010. In‐flight carbon dioxide exposures and related symptoms: association, susceptibility, and operational implications, TP‐2010‐216126. NASA Johnson Space Center, Houston, TX.
    1. Law, J. , Van Baalen M., Foy M., Mason S. S., Mendez C., Wear M. L., et al. 2014. Relationship between carbon dioxide levels and reported headaches on the international space station. J. Occup. Env. Med. 56:477–483.
    1. Lawley, J. S. , Petersen L. G., Howden E. J., Sarma S., Cornwell W. K., Zhang R., et al. 2017. Effect of gravity and microgravity on intracranial pressure. J. Physiol. 595:2115–2127.
    1. Macias, B. R. , Liu J. H. K., Grande‐Gutierrez N., and Hargens A. R.. 2015. Intraocular and intracranial pressures during head‐down tilt with lower body negative pressure. Aerosp. Med. Hum. Perform. 86:3–7.
    1. Mader, T. H. , Taylor G. R., Hunter N., Caputo M., and Meehan R. T.. 1990. Intraocular pressure, retinal vascular, and visual acuity changes during 48 hours of 10 degrees head‐down tilt. Aviat. Space Environ. Med. 61:810–813.
    1. Mader, T. H. , Gibson C. R., Pass A. F., Kramer L. A., Lee A. G., Fogarty J., et al. 2011. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long‐duration space flight. Ophthalmology 118:2058–2069.
    1. Mader, T. H. , Gibson C. R., Pass A. F., Lee A. G., Killer H. E., Hansen H.‐C., et al. 2013. Optic disc edema in an astronaut after repeat long‐duration space flight. J. Neuroophthalmol. 33:249–255.
    1. Mannix, S. E. , Bye P., Hughes J. M., Cover D., and Davies E. E.. 1984. Effect of posture on ventilatory response to steady‐state hypoxia and hypercapnia. Respir. Physiol. 58:87–99.
    1. Marshall‐Goebel, K. , Mulder E., Bershad E., Laing C., Eklund A., Malm J., et al. 2017. Intracranial and Intraocular Pressure During Various Degrees of Head‐Down Tilt. Aerosp. Med. Hum. Perform. 88:10–16.
    1. Moreno‐Montañés, J. , Martínez‐de‐la‐Casa J. M., Sabater A. L., Morales‐Fernandez L., Sáenz C., and Garcia‐Feijoo J.. 2015. Clinical evaluation of the new rebound tonometers Icare PRO and Icare ONE compared with the Goldmann tonometer. J. Glaucoma 24:527–532.
    1. Morgan, W. H. , Balaratnasingam C., Lind C. R. P., Colley S., Kang M. H., House P. H., et al. 2016. Cerebrospinal fluid pressure and the eye. Br. J. Ophthalmol. 100:71–77.
    1. Ozcimen, M. , Sakarya Y., Goktas S., Sakarya R., Alpfidan I., Yener H. I., et al. 2015. The effect of rebreathing and hyperventilation on retinal and choroidal vessels measured by spectral domain optical coherence tomography. Cutan. Ocul. Toxicol. 34:313–317.
    1. Pavy‐Le Traon, A. , Heer M., Narici M. V., Rittweger J., and Vernikos J.. 2007. From space to Earth: advances in human physiology from 20 years of bed rest studies (1986‐2006). Eur. J. Appl. Physiol. 101: 143–194.
    1. Petounis, A. D. , Chondreli S., and Vadaluka‐Sekioti A.. 1980. Effect of hypercapnea and hyperventilation on human intraocular pressure general anaesthesia following acetazolamide administration. Br. J. Ophthalmol. 64:422–425.
    1. Polska, E. , Simader C., Weigert G., Doelemeyer A., Kolodjaschna J., Scharmann O., et al. 2007. Regulation of choroidal blood flow during combined changes in intraocular pressure and arterial blood pressure. Invest. Ophthalmol. Vis. Sci. 48:3768–3774.
    1. Povazay, B. , Hofer B., Hermann B., Unterhuber A., Morgan J. E., Glittenberg C., et al. 2007. Minimum distance mapping using three‐dimensional optical coherence tomography for glaucoma diagnosis. J. Biomed. Opt. 12:041204.
    1. Prisk, G. K. , Guy H. J., Elliott A. R., Paiva M., and West J. B.. 1995. Ventilatory inhomogeneity determined from multiple‐breath washouts during sustained microgravity on Spacelab SLS‐1. J. Appl. Physiol. 78:597–607.
    1. Prisk, G. K. , Fine J. M., Cooper T. K., and West J. B.. 2006. Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long‐duration exposure to microgravity. J. Appl. Physiol. 101:439–447.
    1. Shinojima, A. , Iwasaki K.‐I., Aoki K., Ogawa Y., Yanagida R., and Yuzawa M.. 2012. Subfoveal choroidal thickness and foveal retinal thickness during head‐down tilt. Aviat. Space Environ. Med. 83:388–393.
    1. Siaudvytyte, L. , Januleviciene I., Ragauskas A., Bartusis L., Siesky B., and Harris A.. 2015. Update in intracranial pressure evaluation methods and translaminar pressure gradient role in glaucoma. Acta Ophthalmol. (Copenh) 93:9–15.
    1. Sirek, A. S. , Garcia K., Foy M., Ebert D., Sargsyan A., Wu J. H., et al. 2014. Doppler ultrasound of the central retinal artery in microgravity. Aviat. Space Environ. Med. 85:3–8.
    1. Smith, S. M. , Zwart S. R., Block G., Rice B. L., and Davis‐Street J. E.. 2005. The nutritional status of astronauts is altered after long‐term space flight aboard the International Space Station. J. Nutr. 135:437–443.
    1. Sofronova, S. I. , Tarasova O. S., Gaynullina D., Borzykh A. A., Behnke B. J., Stabley J. N., et al. 2015. Spaceflight on the Bion‐M1 biosatellite alters cerebral artery vasomotor and mechanical properties in mice. J. Appl. Physiol. 118:830–838.
    1. Taibbi, G. , Kaplowitz K., Cromwell R. L., Godley B. F., Zanello S. B., and Vizzeri G.. 2013. Effects of 30‐Day head‐down bed rest on ocular structures and visual function in a healthy subject. Aviat. Space Environ. Med. 84:148–154.
    1. Taibbi, G. , Cromwell R. L., Zanello S. B., Yarbough P. O., Ploutz‐Snyder R. J., Godley B. F., et al. 2014. Ocular outcomes evaluation in a 14‐day head‐down bed rest study. Aviat. Space Environ. Med. 85:983–992.
    1. Taibbi, G. , Cromwell R. L., Zanello S. B., Yarbough P. O., Ploutz‐Snyder R. J., Godley B. F., et al. 2016. Ocular outcomes comparison between 14‐ and 70‐day head‐down‐tilt bed rest. Invest. Ophthalmol. Vis. Sci. 57:495–501.
    1. Tymko, M. M. , Skow R. J., MacKay C. M., and Day T. A.. 2015. Steady‐state tilt has no effect on cerebrovascular CO2 reactivity in anterior and posterior cerebral circulations. Exp. Physiol. 100:839–851.
    1. Weissman, C. , Abraham B., Askanazi J., Milic‐Emili J., Hyman A. I., and Kinney J. M.. 1982. Effect of posture on the ventilatory response to CO2. J. Appl. Physiol. 53:761–765.
    1. Yan, X. , Li M., Song Y., Guo J., Zhao Y., Chen W., et al. 2016. Influence of exercise on intraocular pressure, Schlemm's canal, and the trabecular meshwork. Invest. Ophthalmol. Vis. Sci. 57:4733–4739.
    1. Yiu, G. , Pecen P., Sarin N., Chiu S. J., Farsiu S., Mruthyunjaya P., et al. 2014. Characterization of the choroid‐scleral junction and suprachoroidal layer in healthy individuals on enhanced‐depth imaging optical coherence tomography. JAMA Ophthalmol. 132:174–181.
    1. Zwart, S. R. , Gibson C. R., Mader T. H., Ericson K., Ploutz‐Snyder R., Heer M., et al. 2012. Vision changes after spaceflight are related to alterations in folate‐ and vitamin B‐12‐dependent one‐carbon metabolism. J. Nutr. 142:427–431.
    1. Zwart, S. R. , Gregory J. F., Zeisel S. H., Gibson C. R., Mader T. H., Kinchen J. M., et al. 2016. Genotype, B‐vitamin status, and androgens affect spaceflight‐induced ophthalmic changes. FASEB J. 30:141–148.

Source: PubMed

3
Abonnieren