Multicentric study on surgical information and early safety and performance results with the Bonebridge BCI 602: an active transcutaneous bone conduction hearing implant

Georg Sprinzl, Joseph Toner, Assen Koitschev, Nadine Berger, Thomas Keintzel, Thomas Rasse, Wolf-Dieter Baumgartner, Clemens Honeder, Astrid Magele, Stefan Plontke, Gerrit Götze, Joachim Schmutzhard, Philipp Zelger, Stephanie Corkill, Thomas Lenarz, Rolf Salcher, Georg Sprinzl, Joseph Toner, Assen Koitschev, Nadine Berger, Thomas Keintzel, Thomas Rasse, Wolf-Dieter Baumgartner, Clemens Honeder, Astrid Magele, Stefan Plontke, Gerrit Götze, Joachim Schmutzhard, Philipp Zelger, Stephanie Corkill, Thomas Lenarz, Rolf Salcher

Abstract

Aim: This European multicentric study aimed to prove safety and performance of the Bonebridge BCI 602 in children and adults suffering from either conductive hearing loss (CHL), mixed hearing loss (MHL), or single-sided sensorineural deafness (SSD).

Methods: 33 patients (13 adults and 10 children with either CHL or MHL and 10 patients with SSD) in three study groups were included. Patients were their own controls (single-subject repeated measures), comparing the unaided or pre-operative to the 3-month post-operative outcomes. Performance was evaluated by sound field thresholds (SF), word recognition scores (WRS) and/or speech reception thresholds in quiet (SRT) and in noise (SNR). Safety was demonstrated with a device-specific surgical questionnaire, adverse event reporting and stable pure-tone measurements.

Results: The Bonebridge BCI 602 significantly improved SF thresholds (+ 25.5 dB CHL/MHL/SSD), speech intelligibility in WRS (+ 68.0% CHL/MHL) and SRT in quiet (- 16.5 dB C/MHL) and in noise (- 3.51 dB SNR SSD). Air conduction (AC) and bone conduction (BC) thresholds remained stable over time. All adverse events were resolved, with none unanticipated. Mean audio processor wearing times in hours [h] per day for the CHL/MHL group were ~ 13 h for adults, ~ 11 h for paediatrics and ~ 6 h for the SSD group. The average surgical length was 57 min for the CHL/MHL group and 42 min for the SSD group. The versatility of the BCI 602 (reduced drilling depth and ability to bend the transition for optimal placement) allows for treatment of normal, pre-operated and malformed anatomies. All audiological endpoints were reached.

Conclusions: The Bonebridge BCI 602 significantly improved hearing thresholds and speech understanding. Since implant placement follows the patient's anatomy instead of the shape of the device and the duration of surgery is shorter than with its predecessor, implantation is easier with the BCI 602. Performance and safety were proven for adults and children as well as for the CHL/MHL and SSD indications 3 months post-operatively.

Keywords: Bone conduction; Bone conduction implant; Bonebridge; Conductive hearing loss; Mixed hearing loss; Single-sided sensorineural deafness; Transcutaneous hearing implant.

Conflict of interest statement

This study was sponsored by MED-EL Medical Electronics, Innsbruck, Austria. The authors disclose no conflicts of interest.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
Schematics for placement evaluation: a BCI 602 dimensions and horizontal bending angles; b BCI 602 dimensions and vertical bending angles. Index fingers and thumbs should be placed at the FMT and the positioning aid, respectively; c BC-FMT (Bone Conduction—Floating Mass Transducer) placement areas (1, 2, 3, 4) temporal bone; d coil section placement areas (A, B, C)
Fig. 2
Fig. 2
a AC and BC thresholds: CHL/MHL adults and paediatrics; b AC thresholds: SSD NH; c BC thresholds: SSD NH; square = mean AC; circle = mean BC; white = pre-operative; grey = 3-month post-operative; outer lines = standard deviations
Fig. 3
Fig. 3
a SF thresholds: all subjects; inverted triangle and white = mean unaided; triangle and grey = mean aided; outer lines = standard deviations. b SF PTA 4 thresholds: Box Plots, median = horizontal lines, +  = mean, circles = individual values; * = significance
Fig. 4
Fig. 4
WRS CHL/MHL: Box Plots, median = horizontal lines, +  = mean, circle = individual values; * = significance
Fig. 5
Fig. 5
SRT in quiet CHL/MHL: Box Plots, median = horizontal lines, +  = mean, circle = individual values; * = significance
Fig. 6
Fig. 6
SRT in noise a CHL/MHL in S0°N0°; b SSD in SSSDNNH and in S0°NNH; Box Plots: median = horizontal lines, +  = mean, circle = individual values; * = significance

References

    1. Kochkin MarkeTrak V: "Why my hearing aids are in the drawer": the consumers' perspective. Hear J. 2000;53:3469-41. doi: 10.1097/00025572-200002000-00004.
    1. Kochkin MarkeTrak V: consumer satisfaction revisited. Heari J. 2000;53:384025-65025.
    1. Rahne T, Plontke SK. Systematic and audiological indication criteria for bone conduction devices and active middle ear implants. Hear Res. 2022;421:108424. doi: 10.1016/j.heares.2021.108424.
    1. Zernotti ME, Di Gregorio MF, Galeazzi P, et al. Comparative outcomes of active and passive hearing devices by transcutaneous bone conduction. Acta Otolaryngol. 2016;136:556–558. doi: 10.3109/00016489.2016.1143119.
    1. Kiringoda R, Lustig LR. A meta-analysis of the complications associated with osseointegrated hearing aids. Otol Neurotol. 2013;34:790–794. doi: 10.1097/MAO.0b013e318291c651.
    1. Wenzel C, Schilde S, Plontke SK, et al. Changes in bone conduction implant geometry improve the bone fit in mastoids of children and young adults. Otol Neurotol. 2020;41:1406–1412. doi: 10.1097/MAO.0000000000002798.
    1. Plontke SK, Gotze G, Wenzel C, et al. Implantation of a new active bone conduction hearing device with optimized geometry. HNO. 2020;68:106–115. doi: 10.1007/s00106-020-00877-2.
    1. Cywka KB, Skarzynski PH, Krol B, et al. Evaluation of the Bonebridge BCI 602 active bone conductive implant in adults: efficacy and stability of audiological, surgical, and functional outcomes. Eur Arch Otorhinolaryngol. 2022 doi: 10.1007/s00405-022-07265-2.
    1. Sprinzl G, Lenarz T, Ernst A, et al. First European multicenter results with a new transcutaneous bone conduction hearing implant system: short-term safety and efficacy. Otol Neurotol. 2013;34:1076–1083. doi: 10.1097/MAO.0b013e31828bb541.
    1. Baumgartner WD, Hamzavi JS, Boheim K, et al. A new transcutaneous bone conduction hearing implant: short-term safety and efficacy in children. Otol Neurotol. 2016;37:713–720. doi: 10.1097/MAO.0000000000001038.
    1. Huber AM, Strauchmann B, Caversaccio MD, et al. Multicenter results with an active transcutaneous bone conduction implant in patients with single-sided deafness. Otol Neurotol. 2022;43:227–235. doi: 10.1097/MAO.0000000000003418.
    1. Sprinzl G, Lenarz T, Hagen R, et al. Long-term, multicenter results with the first transcutaneous bone conduction implant. Otol Neurotol. 2021 doi: 10.1097/MAO.0000000000003159.
    1. Zokoll MA, Hochmuth S, Warzybok A, et al. Speech-in-noise tests for multilingual hearing screening and diagnostics1. Am J Audiol. 2013;22:175–178. doi: 10.1044/1059-0889(2013/12-0061).
    1. Stuart A, Stenstrom R, Tompkins C, et al. Test-retest variability in audiometric threshold with supraaural and insert earphones among children and adults. Audiology. 1991;30:82–90. doi: 10.3109/00206099109072873.
    1. Landry JA, Green WB. Pure-tone audiometric threshold test-retest variability in young and elderly adults. J Speech-Lang Pathol Audiol. 1999;23:6.
    1. ANSI (2004) Methods for Manual Pure-Tone Threshold Audiometry AMERICAN NATIONAL STANDARD ANSI S3.21–2004
    1. Kollmeier B, Warzybok A, Hochmuth S, et al. The multilingual matrix test: Principles, applications, and comparison across languages: a review. Int J Audiol. 2015;54(Suppl 2):3–16. doi: 10.3109/14992027.2015.1020971.
    1. Goldstein MR, Bourn S, Jacob A. Early Osia(R) 2 bone conduction hearing implant experience: Nationwide controlled-market release data and single-center outcomes. Am J Otolaryngol. 2021;42:102818. doi: 10.1016/j.amjoto.2020.102818.
    1. Cushing SL, Gordon KA, Purcell PL, et al. surgical considerations for an osseointegrated steady state implant (OSIA2(R)) in children. Laryngoscope. 2022;132:1088–1092. doi: 10.1002/lary.29892.
    1. Arndt S, Rauch AK, Speck I. Active transcutaneous bone-anchored hearing implant: how I do it. Eur Arch Otorhinolaryngol. 2021;278:4119–4122. doi: 10.1007/s00405-021-06946-8.
    1. Siegert R. Partially implantable bone conduction hearing aids without a percutaneous abutment (Otomag): technique and preliminary clinical results. Adv Otorhinolaryngol. 2011;71:41–46. doi: 10.1159/000323720.
    1. Der C, Bravo-Torres S, Pons N. Active transcutaneous bone conduction implant: middle fossa placement technique in children with bilateral microtia and external auditory canal atresia. Otol Neurotol. 2018;39:e342–e348. doi: 10.1097/MAO.0000000000001809.
    1. Carnevale C, Tomas-Barberan M, Til-Perez G, et al. The Bonebridge active bone conduction system: a fast and safe technique for a middle fossa approach. J Laryngol Otol. 2019;133:344–347. doi: 10.1017/S0022215119000501.
    1. Yang J, Zhao C, Liu Y, et al. The effect of anatomical variables and use of the Lifts system on hearing outcomes after implantation of an active transcutaneous bone conduction device in bilateral congenital conductive hearing loss. J Otolaryngol Head Neck Surg. 2020;49:57. doi: 10.1186/s40463-020-00452-3.
    1. Brkic FF, Riss D, Arnoldner C, et al. Safety and efficacy of implantation of the Bonebridge active transcutaneous bone-conduction device using implant lifts. J Am Acad Audiol. 2021;32:290–294. doi: 10.1055/s-0041-1723038.
    1. Rohani SA, Bartling ML, Ladak HM, et al. The BONEBRIDGE active transcutaneous bone conduction implant: effects of location, lifts and screws on sound transmission. J Otolaryngol Head Neck Surg. 2020;49:58. doi: 10.1186/s40463-020-00454-1.
    1. Loader B, Sterrer E, Reichmayr C, et al. Direct comparison of mastoidal and retrosigmoidal placement of a transcutaneous bone conduction device after canal wall down tympanoplasty. Clin Otolaryngol. 2018;43:1603–1606. doi: 10.1111/coa.13187.
    1. Kulasegarah J, Burgess H, Neeff M, et al. Comparing audiological outcomes between the Bonebridge and bone conduction hearing aid on a hard test band: Our experience in children with atresia and microtia. Int J Pediatr Otorhinolaryngol. 2018;107:176–182. doi: 10.1016/j.ijporl.2018.01.032.
    1. Chan KC, Wallace CG, Wai-Yee Ho V, et al. Simultaneous auricular reconstruction and transcutaneous bone conduction device implantation in patients with microtia. J Formos Med Assoc. 2019 doi: 10.1016/j.jfma.2019.01.013.
    1. Wang Y, Xing W, Liu T, et al. Simultaneous auricular reconstruction combined with bone bridge implantation-optimal surgical techniques in bilateral microtia with severe hearing impairment. Int J Pediatr Otorhinolaryngol. 2018;113:82–87. doi: 10.1016/j.ijporl.2018.07.004.
    1. Seiwerth I, Plossl S, Herzog M, et al. Individual computer-assisted 3D planning for placement of auricular prosthesis anchors in combination with an implantable transcutaneous bone conduction hearing device in patients with aural atresia. HNO. 2022 doi: 10.1007/s00106-022-01190-w.
    1. Ihler F, Volbers L, Blum J, et al. Preliminary functional results and quality of life after implantation of a new bone conduction hearing device in patients with conductive and mixed hearing loss Otol. Neurotol. 2014;35:211–215. doi: 10.1097/MAO.0000000000000208.
    1. Eberhard KE, Olsen SO, Miyazaki H, et al. Objective and Subjective Outcome of a New Transcutaneous Bone Conduction Hearing Device: Half-year Follow-up of the First 12 Nordic Implantations. Otol Neurotol. 2016;37:267–275. doi: 10.1097/MAO.0000000000000969.
    1. Gerdes T, Salcher RB, Schwab B, et al. Comparison of audiological results between a transcutaneous and a percutaneous bone conduction instrument in conductive hearing loss. Otol Neurotol. 2016;37:685–691. doi: 10.1097/MAO.0000000000001010.
    1. Schmerber S, Deguine O, Marx M, et al. Safety and effectiveness of the Bonebridge transcutaneous active direct-drive bone-conduction hearing implant at 1-year device use. Eur Arch Otorhinolaryngol. 2016 doi: 10.1007/s00405-016-4228-6.
    1. Weiss R, Leinung M, Baumann U, et al. Improvement of speech perception in quiet and in noise without decreasing localization abilities with the bone conduction device Bonebridge. Eur Arch Otorhinolaryngol. 2016 doi: 10.1007/s00405-016-4434-2.
    1. Ihler F, Blum J, Berger MU, et al. The prediction of speech recognition in noise with a semi-implantable bone conduction hearing system by external bone conduction stimulation with headband: a prospective study. Trends Hear. 2016 doi: 10.1177/2331216516669330.
    1. Lassaletta L, Calvino M, Zernotti M, et al. Postoperative pain in patients undergoing a transcutaneous active bone conduction implant (Bonebridge) Eur Arch Otorhinolaryngol. 2016;273:4103–4110. doi: 10.1007/s00405-016-3972-y.
    1. Manrique M, Sanhueza I, Manrique R, et al. A new bone conduction implant: surgical technique and results. Otol Neurotol. 2014;35:216–220. doi: 10.1097/MAO.0000000000000253.
    1. Rahne T, Seiwerth I, Gotze G, et al. Functional results after Bonebridge implantation in adults and children with conductive and mixed hearing loss. Eur Arch Otorhinolaryngol. 2015;272:3263–3269. doi: 10.1007/s00405-014-3403-x.
    1. Riss D, Arnoldner C, Baumgartner WD, et al. Indication criteria and outcomes with the Bonebridge transcutaneous bone-conduction implant. Laryngoscope. 2014;124:2802–2806. doi: 10.1002/lary.24832.
    1. Wimmer W, Gerber N, Guignard J, et al. Topographic bone thickness maps for Bonebridge implantations. Eur Arch Otorhinolaryngol. 2015;272:1651–1658. doi: 10.1007/s00405-014-2976-8.
    1. Vyskocil E, Riss D, Arnoldner C, et al. Dura and sinus compression with a transcutaneous bone conduction device - hearing outcomes and safety in 38 patients. Clin Otolaryngol. 2016 doi: 10.1111/coa.12793.
    1. Yang J, Chen P, Zhao C, et al. Audiological and subjective outcomes of 100 implanted transcutaneous bone conduction devices and preoperative bone conduction hearing aids in patients with bilateral microtia-atresia. Acta Otolaryngol. 2020;140:675–681. doi: 10.1080/00016489.2020.1762929.
    1. Fan X, Ping L, Yang T, et al. Comparative effects of unilateral and bilateral bone conduction hearing devices on functional hearing and sound localization abilities in patients with bilateral microtia-atresia. Acta Otolaryngol. 2020;140:575–582. doi: 10.1080/00016489.2020.1745883.
    1. Gao M, Zhao C, Yang J, et al. Bone-conduction hearing aid is effective in congenital oval window atresia. Acta Otolaryngol. 2021 doi: 10.1080/00016489.2020.1866211.
    1. Pepe G, Negri M, Falcioni M, et al. Bonebridge implantation for mixed hearing loss in a patient with Kabuki syndrome. Acta Biomed. 2020;91:e2020079. doi: 10.23750/abm.v91i3.8257.
    1. Ratuszniak A, Skarzynski PH, Gos E, et al. The Bonebridge implant in older children and adolescents with mixed or conductive hearing loss: audiological outcomes. Int J Pediatr Otorhinolaryngol. 2019;118:97–102. doi: 10.1016/j.ijporl.2018.12.026.
    1. Zernotti ME, Chiaraviglio MM, Mauricio SB, et al. Audiological outcomes in patients with congenital aural atresia implanted with transcutaneous active bone conduction hearing implant. Int J Pediatr Otorhinolaryngol. 2019;119:54–58. doi: 10.1016/j.ijporl.2019.01.016.
    1. Fan X, Yang T, Niu X, et al. Long-term outcomes of bone conduction hearing implants in patients with bilateral microtia-atresia. Otol Neurotol. 2019;40:998–1005. doi: 10.1097/MAO.0000000000002370.
    1. Fan X, Wang Y, Wang P, et al. Aesthetic and hearing rehabilitation in patients with bilateral microtia-atresia. Int J Pediatr Otorhinolaryngol. 2017;101:150–157. doi: 10.1016/j.ijporl.2017.08.008.
    1. Ngui LX, Tang IP. Bonebridge transcutaneous bone conduction implant in children with congenital aural atresia: surgical and audiological outcomes. J Laryngol Otol. 2018;132:693–697. doi: 10.1017/S0022215118001123.
    1. Sprinzl GM, Schoerg P, Ploder M, et al. Surgical experience and early audiological outcomes with new active transcutaneous bone conduction implant. Otol Neurotol. 2021;42:1208–1215. doi: 10.1097/MAO.0000000000003230.
    1. Sikolova S, Urik M, Hosnova D, et al. Two Bonebridge bone conduction hearing implant generations: audiological benefit and quality of hearing in children. Eur Arch Otorhinolaryngol. 2021 doi: 10.1007/s00405-021-07068-x.
    1. Lee HJ, Kahinga AA, Moon IS. Clinical effect of an active transcutaneous bone-conduction implant on tinnitus in patients with ipsilateral sensorineural hearing loss. Auris Nasus Larynx. 2021;48:394–399. doi: 10.1016/j.anl.2020.09.009.
    1. Han JJ, Park HR, Song JJ, et al. A comparison study of audiological outcome and compliance of bone conduction implantable hearing implants. Eur Arch Otorhinolaryngol. 2020;277:3003–3012. doi: 10.1007/s00405-020-06025-4.
    1. Oh SJ, Goh EK, Choi SW, et al. Audiologic, surgical and subjective outcomes of active transcutaneous bone conduction implant system (Bonebridge) Int J Audiol. 2019;58:956–963. doi: 10.1080/14992027.2019.1657242.
    1. Koro E, Werner M. Outcomes after application of active bone conducting implants. Audiol Neurootol. 2019;24:197–205. doi: 10.1159/000502052.
    1. Brkic FF, Riss D, Scheuba K, et al. Medical, technical and audiological outcomes of hearing rehabilitation with the Bonebridge transcutaneous bone-conduction implant: a single-center experience. J Clin Med. 2019 doi: 10.3390/jcm8101614.
    1. Salcher R, Zimmermann D, Giere T, et al. Audiological results in SSD with an active transcutaneous bone conduction implant at a retrosigmoidal position. Otol Neurotol. 2017;38:642–647. doi: 10.1097/MAO.0000000000001394.
    1. Plontke SK, Radetzki F, Seiwerth I, et al. Individual computer-assisted 3D planning for surgical placement of a new bone conduction hearing device. Otol Neurotol. 2014;35:1251–1257. doi: 10.1097/MAO.0000000000000405.
    1. Hassepass F, Bulla S, Aschendorff A, et al. The bonebridge as a transcutaneous bone conduction hearing system: preliminary surgical and audiological results in children and adolescents. Eur Arch Otorhinolaryngol. 2014 doi: 10.1007/s00405-014-3137-9.
    1. Laske RD, Roosli C, Pfiffner F, et al. Functional results and subjective benefit of a transcutaneous bone conduction device in patients with single-sided deafness. Otol Neurotol. 2015;36:1151–1156. doi: 10.1097/MAO.0000000000000791.
    1. Zhao C, Yang J, Liu Y, et al. Horizontal sound localisation and speech perception in Bonebridge-implanted single-sided deafness patients. J Laryngol Otol. 2020 doi: 10.1017/S0022215120001899.

Source: PubMed

3
Abonnieren