The elevation of plasma concentrations of apoB-48-containing lipoproteins in familial hypercholesterolemia is independent of PCSK9 levels

Jean-Philippe Drouin-Chartier, Jean-Charles Hogue, André J Tremblay, Jean Bergeron, Benoît Lamarche, Patrick Couture, Jean-Philippe Drouin-Chartier, Jean-Charles Hogue, André J Tremblay, Jean Bergeron, Benoît Lamarche, Patrick Couture

Abstract

Background: Previous studies have reported high plasma concentrations of both intestinal apolipoprotein (apo) B-48-containing lipoproteins and PCSK9 in subjects with familial hypercholesterolemia (FH). However, the extent to which LDL receptor deficiency and PCSK9 levels influence plasma apoB-48 concentrations in humans remains to be fully characterized. The objective of the study was to assess the independent association between FH, PCSK9 concentrations and plasma apoB-48 levels in a large cohort of genetically defined FH heterozygotes (HeFH) and homozygotes (HoFH).

Methods: A total of 118 HeFH, 6 HoFH, and 117 controls were included in the study. Plasma PCSK9 and apoB-48 concentrations were measured in the fasting state.

Results: Plasma PCSK9 and apoB-48 levels were higher in FH subjects compared with controls (PCSK9: HoFH: 642.6 ± 246.9 vs. HeFH: 324.9 ± 119.8 vs.

Controls: 194.5 ± 65.9 ng/mL, P < 0.0001; apoB-48: HoFH: 14.71 ± 4.36 vs. HeFH: 6.55 ± 4.24 vs.

Controls: 3.03 ± 2.07 μg/mL; P < 0.0001). There were no correlations between apoB-48 and PCSK9 plasma levels in both controls (ρ = 0.06, P = 0.5) and HeFH subjects (ρ = 0.07, P = 0.4). Multiple linear regression analysis showed that the FH status was the only independent factor associated with apoB-48 levels, contributing to 28.7% of the variance (P < 0.0001).

Conclusions: These data indicate that the elevation in plasma apoB-48 levels associated with FH is independent of PCSK9 levels.

Trial registration: NCT02225340 .

Keywords: Apolipoprotein B-48; Atherosclerosis; Familial hypercholesterolemia; PCSK9.

Figures

Fig. 1
Fig. 1
Relative increase in concentrations of plasma PCSK9 and plasma apoB-48 in HeFH and HoFH subjects vs. control subjects. Values are presented as mean ± standard deviation. Ctrls: controls; HeFH: heterozygotes for familial hypercholesterolemia; HoFH: homozygotes for familial hypercholesterolemia; apo: apolipoprotein; PCSK9: proprotein convetase subtilisin/kexin type 9. †P < 0.05 vs. controls. ‡P < 0.05 vs. HeFH
Fig. 2
Fig. 2
Correlations between plasma apoB-48 and PCSK9 concentrations in control subjects and HeFH subjects. HeFH: heterozygotes for familial hypercholesterolemia; apo: apolipoprotein; PCSK9: proprotein convertase subtilisin/kexin type 9. NS: non-significant
Fig. 3
Fig. 3
Radar plot presenting the associations among fasting apolipoprotein B-48 levels, PCSK9 concentrations and various plasma lipids in control subjects and HeFH subjects. Radar lines represent Spearman’s correlation coefficient. Continuous lines represent apoB-48 concentrations. Dashed lines represent PCSK9 concentrations. Circles represent HeFH subjects. Squares represent control subjects. Filled marks identify significant association (P < 0.05), and white-filled marks represent non-significant association. Apo: apolipoprotein; C: cholesterol; HeFH: heterozygotes for familial hypercholesterolemia; TG: triglyceride

References

    1. Goldstein JL, Hobbs HH, Brown MS. The metabolic & molecular basis of inherited disease. Familial hypercholesterolemia. New York: McGraw-Hill Publishing Co.; 2001. pp. 2863–2913.
    1. Maxwell KN, Breslow JL. Proprotein convertase subtilisin kexin 9: the third locus implicated in autosomal dominant hypercholesterolemia. Curr Opin Lipidol. 2005;16:167–172. doi: 10.1097/01.mol.0000162321.31925.a3.
    1. Moorjani S, Roy M, Torres A, Betard C, Gagne C, Lambert M, et al. Mutations of low-density-lipoprotein-receptor gene, variation in plasma cholesterol, and expression of coronary heart disease in homozygous familial hypercholesterolaemia. Lancet. 1993;341:1303–6. doi: 10.1016/0140-6736(93)90815-X.
    1. Couture P, Vohl MC, Gagne C, Gaudet D, Torres AL, Lupien PJ, et al. Identification of three mutations in the low-density lipoprotein receptor gene causing familial hypercholesterolemia among French Canadians. Hum Mutat. 1998;(Suppl 1):S226–31.
    1. Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161:161–172. doi: 10.1016/j.cell.2015.01.036.
    1. Pal S, Semorine K, Watts GF, Mamo J. Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin Chem Lab Med. 2003;41:792–795. doi: 10.1515/CCLM.2003.120.
    1. Proctor SD, Mamo JC. Intimal retention of cholesterol derived from apolipoprotein B100- and apolipoprotein B48-containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol. 2003;23:1595–1600. doi: 10.1161/01.ATV.0000084638.14534.0A.
    1. McNamara JR, Shah PK, Nakajima K, Cupples LA, Wilson PW, Ordovas JM, et al. Remnant-like particle (RLP) cholesterol is an independent cardiovascular disease risk factor in women: results from the Framingham Heart Study. Atherosclerosis. 2001;154:229–36.
    1. Nordestgaard BG, Tybjaerg-Hansen A. IDL, VLDL, chylomicrons and atherosclerosis. Eur J Epidemiol. 1992;8(Suppl 1):92–98. doi: 10.1007/BF00145358.
    1. Doi H, Kugiyama K, Ohgushi M, Sugiyama S, Matsumura T, Ohta Y, et al. Remnants of chylomicron and very low density lipoprotein impair endothelium-dependent vasorelaxation. Atherosclerosis. 1998;137:341–9.
    1. Twickler TB, Dallinga-Thie GM, Cohn JS, Chapman MJ. Elevated remnant-like particle cholesterol concentration: a characteristic feature of the atherogenic lipoprotein phenotype. Circulation. 2004;109:1918–1925. doi: 10.1161/01.CIR.0000125278.58527.F3.
    1. Willnow TE, Sheng Z, Ishibashi S, Herz J. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science. 1994;264:1471–1474. doi: 10.1126/science.7515194.
    1. Mamo JC, Smith D, Yu KC, Kawaguchi A, Harada-Shiba M, Yamamura T, et al. Accumulation of chylomicron remnants in homozygous subjects with familial hypercholesterolaemia. Eur J Clin Investig. 1998;28:379–84. doi: 10.1046/j.1365-2362.1998.00284.x.
    1. Twickler TB, Dallinga-Thie GM, de Valk HW, Schreuder PC, Jansen H, Cabezas MC, et al. High dose of simvastatin normalizes postprandial remnant-like particle response in patients with heterozygous familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2000;20:2422–7.
    1. Dane-Stewart CA, Watts GF, Mamo JC, Dimmitt SB, Barrett PH, Redgrave TG. Elevated apolipoprotein B-48 and remnant-like particle-cholesterol in heterozygous familial hypercholesterolaemia. Eur J Clin Investig. 2001;31:113–117. doi: 10.1046/j.1365-2362.2001.00785.x.
    1. Tremblay AJ, Lamarche B, Ruel I, Hogue JC, Bergeron J, Gagne C, et al. Lack of evidence for reduced plasma apo B48 catabolism in patients with heterozygous familial hypercholesterolemia carrying the same null LDL receptor gene mutation. Atherosclerosis. 2004;172:367–73. doi: 10.1016/j.atherosclerosis.2003.11.011.
    1. Cabezas MC, de Bruin TW, Westerveld HE, Meijer E, Erkelens DW. Delayed chylomicron remnant clearance in subjects with heterozygous familial hypercholesterolaemia. J Intern Med. 1998;244:299–307. doi: 10.1046/j.1365-2796.1998.00367.x.
    1. Canuel M, Sun X, Asselin MC, Paramithiotis E, Prat A, Seidah NG. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1) PLoS One. 2013;8 doi: 10.1371/journal.pone.0064145.
    1. Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov. 2012;11:367–383. doi: 10.1038/nrd3699.
    1. Rashid S, Tavori H, Brown PE, Linton MF, He J, Giunzioni I, et al. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation. 2014;130:431–41. doi: 10.1161/CIRCULATIONAHA.113.006720.
    1. Levy E, Ben Djoudi Ouadda A, Spahis S, Sane AT, Garofalo C, Grenier E, et al. PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis. 2013;227:297–306.
    1. Le May C, Kourimate S, Langhi C, Chetiveaux M, Jarry A, Comera C, et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler Thromb Vasc Biol. 2009;29:684–90.
    1. Drouin-Chartier JP, Tremblay AJ, Hogue JC, Ooi TC, Lamarche B, Couture P. The contribution of PCSK9 levels to the phenotypic severity of familial hypercholesterolemia is independent of LDL receptor genotype. Metabolism. 2015;64:1541–1547. doi: 10.1016/j.metabol.2015.08.007.
    1. Lambert G, Petrides F, Chatelais M, Blom DJ, Choque B, Tabet F, et al. Elevated plasma PCSK9 level is equally detrimental for patients with nonfamilial hypercholesterolemia and heterozygous familial hypercholesterolemia, irrespective of low-density lipoprotein receptor defects. J Am Coll Cardiol. 2014;63:2365–73.
    1. Hobbs HH, Brown MS, Russell DW, Davignon J, Goldstein JL. Deletion in the gene for the low-density-lipoprotein receptor in a majority of French Canadians with familial hypercholesterolemia. N Engl J Med. 1987;317:734–737. doi: 10.1056/NEJM198709173171204.
    1. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat. 1992;1:445–466. doi: 10.1002/humu.1380010602.
    1. Ma YH, Betard C, Roy M, Davignon J, Kessling AM. Identification of a second "French Canadian" LDL receptor gene deletion and development of a rapid method to detect both deletions. Clin Genet. 1989;36:219–228.
    1. Simard J, Moorjani S, Vohl MC, Couture P, Torres AL, Gagne C, et al. Detection of a novel mutation (stop 468) in exon 10 of the low-density lipoprotein receptor gene causing familial hypercholesterolemia among French Canadians. Hum Mol Genet. 1994;3:1689–91.
    1. Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990;31:545–548.
    1. Leitersdorf E, Tobin EJ, Davignon J, Hobbs HH. Common low-density lipoprotein receptor mutations in the French Canadian population. J Clin Invest. 1990;85:1014–1023. doi: 10.1172/JCI114531.
    1. Reshef A, Meiner V, Dann EJ, Granat M, Leitersdorf E. Prenatal diagnosis of familial hypercholesterolemia caused by the "Lebanese" mutation at the low density lipoprotein receptor locus. Hum Genet. 1992;89:237–239. doi: 10.1007/BF00217130.
    1. Lemieux I, Almeras N, Mauriege P, Blanchet C, Dewailly E, Bergeron J, et al. Prevalence of 'hypertriglyceridemic waist' in men who participated in the Quebec Health Survey: association with atherogenic and diabetogenic metabolic risk factors. Can J Cardiol. 2002;18:725–32.
    1. Cardin AD, Witt KR, Chao J, Margolius HS, Donaldson VH, Jackson RL. Degradation of apolipoprotein B-100 of human plasma low density lipoproteins by tissue and plasma kallikreins. J Biol Chem. 1984;259:8522–8528.
    1. Moorjani S, Dupont A, Labrie F, Lupien PJ, Brun D, Gagne C, et al. Increase in plasma high-density lipoprotein concentration following complete androgen blockage in men with prostatic carcinoma. Metabolism. 1987;36:244–50.
    1. Kinoshita M, Kojima M, Matsushima T, Teramoto T. Determination of apolipoprotein B-48 in serum by a sandwich ELISA. Clin Chim Acta. 2005;351:115–120. doi: 10.1016/j.cccn.2004.08.008.
    1. Otokozawa S, Ai M, Diffenderfer MR, Asztalos BF, Tanaka A, Lamon-Fava S, et al. Fasting and postprandial apolipoprotein B-48 levels in healthy, obese, and hyperlipidemic subjects. Metabolism. 2009;58:1536–42.
    1. Eriksson M, Angelin B, Henriksson P, Ericsson S, Vitols S, Berglund L. Metabolism of lipoprotein remnants in humans. Studies during intestinal infusion of fat and cholesterol in subjects with varying expression of the low density lipoprotein receptor. Arterioscler Thromb. 1991;11:827–837. doi: 10.1161/01.ATV.11.4.827.
    1. Chan DC, Wong AT, Pang J, Barrett PH, Watts GF. Inter-relationships between proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III and plasma apolipoprotein B-48 transport in obese subjects: a stable isotope study in the postprandial state. Clin Sci (Lond) 2015;128:379–385. doi: 10.1042/CS20140559.
    1. Kosenko T, Golder M, Leblond G, Weng W, Lagace TA. Low density lipoprotein binds to proprotein convertase subtilisin/kexin type-9 (PCSK9) in human plasma and inhibits PCSK9-mediated low density lipoprotein receptor degradation. J Biol Chem. 2013;288:8279–8288. doi: 10.1074/jbc.M112.421370.
    1. Essalmani R, Susan-Resiga D, Chamberland A, Abifadel M, Creemers JW, Boileau C, et al. In vivo evidence that furin from hepatocytes inactivates PCSK9. J Biol Chem. 2011;286:4257–63.
    1. Awan Z, Baass A, Genest J. Proprotein convertase subtilisin/kexin type 9 (PCSK9): lessons learned from patients with hypercholesterolemia. Clin Chem. 2014;60:1380–1389. doi: 10.1373/clinchem.2014.225946.
    1. Reyes-Soffer G, Pavlyha M, Ngai C, Thomas T, Holleran S, Ramakrishnan R, et al. Effects of PCSK9 Inhibition With Alirocumab on Lipoprotein Metabolism in Healthy Humans. Circulation. 2017;135:352–62.
    1. Carneiro MM, Miname MH, Gagliardi AC, Pereira C, Pereira AC, Krieger JE, et al. The removal from plasma of chylomicrons and remnants is reduced in heterozygous familial hypercholesterolemia subjects with identified LDL receptor mutations: study with artificial emulsions. Atherosclerosis. 2012;221:268–74.
    1. Rubinsztein DC, Cohen JC, Berger GM, van der Westhuyzen DR, Coetzee GA, Gevers W. Chylomicron remnant clearance from the plasma is normal in familial hypercholesterolemic homozygotes with defined receptor defects. J Clin Invest. 1990;86:1306–1312. doi: 10.1172/JCI114839.
    1. Twisk J, Gillian-Daniel DL, Tebon A, Wang L, Barrett PH, Attie AD. The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest. 2000;105:521–532. doi: 10.1172/JCI8623.
    1. Sniderman AD, De Graaf J, Couture P, Williams K, Kiss RS, Watts GF. Regulation of plasma LDL: the apoB paradigm. Clin Sci (Lond) 2010;118:333–339. doi: 10.1042/CS20090402.

Source: PubMed

3
Abonnieren