Dose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV Immunization

Christine Dahlke, Rahel Kasonta, Sebastian Lunemann, Verena Krähling, Madeleine E Zinser, Nadine Biedenkopf, Sarah K Fehling, My L Ly, Anne Rechtien, Hans C Stubbe, Flaminia Olearo, Saskia Borregaard, Alen Jambrecina, Felix Stahl, Thomas Strecker, Markus Eickmann, Marc Lütgehetmann, Michael Spohn, Stefan Schmiedel, Ansgar W Lohse, Stephan Becker, Marylyn M Addo, VEBCON Consortium, Marylyn M Addo, Stephan Becker, Verena Krähling, Selidji Todagbe Agnandji, Sanjeev Krishna, Peter G Kremsner, Jessica S Brosnahan, Philip Bejon, Patricia Njuguna, Claire-Anne Siegrist, Angela Huttner, Marie-Paule Kieny, Kayvon Modjarrad, Vasee Moorthy, Patricia Fast, Barbara Savarese, Olivier Lapujade, Christine Dahlke, Rahel Kasonta, Sebastian Lunemann, Verena Krähling, Madeleine E Zinser, Nadine Biedenkopf, Sarah K Fehling, My L Ly, Anne Rechtien, Hans C Stubbe, Flaminia Olearo, Saskia Borregaard, Alen Jambrecina, Felix Stahl, Thomas Strecker, Markus Eickmann, Marc Lütgehetmann, Michael Spohn, Stefan Schmiedel, Ansgar W Lohse, Stephan Becker, Marylyn M Addo, VEBCON Consortium, Marylyn M Addo, Stephan Becker, Verena Krähling, Selidji Todagbe Agnandji, Sanjeev Krishna, Peter G Kremsner, Jessica S Brosnahan, Philip Bejon, Patricia Njuguna, Claire-Anne Siegrist, Angela Huttner, Marie-Paule Kieny, Kayvon Modjarrad, Vasee Moorthy, Patricia Fast, Barbara Savarese, Olivier Lapujade

Abstract

Background: The recent West African Ebola epidemic led to accelerated efforts to test Ebola vaccine candidates. As part of the World Health Organisation-led VSV Ebola Consortium (VEBCON), we performed a phase I clinical trial investigating rVSV-ZEBOV (a recombinant vesicular stomatitis virus-vectored Ebola vaccine), which has recently demonstrated protection from Ebola virus disease (EVD) in phase III clinical trials and is currently in advanced stages of licensing. So far, correlates of immune protection are incompletely understood and the role of cell-mediated immune responses has not been comprehensively investigated to date.

Methods: We recruited 30 healthy subjects aged 18-55 into an open-label, dose-escalation phase I trial testing three doses of rVSV-ZEBOV (3×105 plaque-forming units (PFU), 3×106 PFU, 2×107 PFU) (ClinicalTrials.gov; NCT02283099). Main study objectives were safety and immunogenicity, while exploratory objectives included lymphocyte dynamics, cell-mediated immunity and cytokine networks, which were assessed using flow cytometry, ELISpot and LUMINEX assay.

Findings: Immunization with rVSV-ZEBOV was well tolerated without serious vaccine-related adverse events. Ebola virus-specific neutralizing antibodies were induced in nearly all individuals. Additionally, vaccinees, particularly within the highest dose cohort, generated Ebola glycoprotein (GP)-specific T cells and initiated a cascade of signaling molecules following stimulation of peripheral blood mononuclear cells with Ebola GP peptides.

Interpretation: In addition to a benign safety and robust humoral immunogenicity profile, subjects immunized with 2×107 PFU elicited higher cellular immune responses and stronger interlocked cytokine networks compared to lower dose groups. To our knowledge these data represent the first detailed cell-mediated immuneprofile of a clinical trial testing rVSV-ZEBOV, which is of particular interest in light of its potential upcoming licensure as the first Ebola vaccine. VEBCON trial Hamburg, Germany (NCT02283099).

Keywords: Cytokines; Ebola vaccine; Humoral and cell-mediated immune responses; Phase I study; T-cell responses; rVSV-ZEBOV.

Copyright © 2017. Published by Elsevier B.V.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Trial profile. Flow diagram of screening, enrollment and vaccination in the three cohort groups. For each cohort group, 4 to 5 eligible individuals withdrew from the study. One participant aborted the study after day 28 due to moving abroad (3 × 106 PFU). One subject missed visit day 56 (2 × 107 PFU).
Fig. 2
Fig. 2
Local and systemic adverse events. a) Recorded adverse events of vaccinees during 180 days post vaccination. Events are depicted in frequency (%) of participants among respective cohort presenting at least one adverse event of the category. Adverse events with the severity of mild, moderate and severe are grouped into grade 1, 2 and 3, respectively. Cohort 1: 3 × 105 PFU, Cohort 2: 3 × 106 PFU, Cohort 3: 2 × 107 PFU. b) Number of related solicited and unsolicited adverse events reported over time in the 3 × 105 PFU (cohort 1 (green)), 3 × 106 PFU (cohort 2 (blue)), and 2 × 107 PFU (cohort 3 (red)) dose group.
Fig. 3
Fig. 3
Ebola virus antibody titers increase following administration of rVSV-ZEBOV. a) Neutralizing antibodies against infectious EBOV isolate Mayinga were analyzed. Analysis was started with a 1:8 dilution. Seropositivity is defined by a GMT > 8. b) Pseudovirion neutralization assay assessing the 50% serum neutralization capacity (PsVNA50) complemented by homologous glycoprotein. a) and b): The results are expressed in neutralization titers. Statistical analysis was performed using Mann-Whitney-Wilcoxon test (*p 

Fig. 4

Kinetics of plasmablasts and T-cell…

Fig. 4

Kinetics of plasmablasts and T-cell activation in response to rVSV-ZEBOV immunization. a) Plasmablasts…

Fig. 4
Kinetics of plasmablasts and T-cell activation in response to rVSV-ZEBOV immunization. a) Plasmablasts peaked at day 7 post vaccination in all dose groups. B cells were stained using antibodies against CD19, CD24 and CD38. Representative contour plots depict B-cell subsets of naïve (CD19+ CD24low/intermCD38interm), memory (CD19+ CD24−/interm/highCD38low/interm), transitional (CD19+ CD24+ CD38high) and plasmablasts (CD19+ CD24− CD38high). Numbers in contour plots represent the percentage of plasmablasts of CD19+ B cells. b) Percentages of CD19+ CD24− CD38high over time in immunized subjects. Each dot and line depicts one subject (3 × 105 PFU: n = 10; 3 × 106 PFU: n = 8; 2 × 107 PFU: n = 9). c) Graph highlights the fold induction of plasmablasts at day 7 compared to day 0. Each dot represents one subject (bar graph, line: median value). d) T-cell activation in subjects early after vaccination. Activation was analyzed by HLA DR and CD38 staining. Representative contour plots depict the gating strategy for activation of CD4+ (upper plot) and CD8+ T cells (lower plot). e) Percentages of HLA DR+ CD38+ of CD4+ (upper row) and CD8+ T cells (lower row) are represented in the graphs. Each dot and line represents one subject. (3 × 105 PFU: n = 10; 3 × 106 PFU: n = 6; 2 × 107 PFU: n = 8). Statistical analysis was performed using Mann-Whitney-Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.005).

Fig. 5

Ebola GP-specific T-cell responses. Kinetics…

Fig. 5

Ebola GP-specific T-cell responses. Kinetics of antigen-specific CD8 + T-cell responses. a) Four…

Fig. 5
Ebola GP-specific T-cell responses. Kinetics of antigen-specific CD8+ T-cell responses. a) Four different peptide pools (GP1a, GP1b, GP2, SP) that cover the whole Ebola GP protein (Kikwit) were used for PBMC stimulation. Graphs represent frequencies (%) of total cytokine responses of CD8+ T cells (IFNγ, TNFα, IL2, MIP1β). Each dot represents one subject. (3 × 105 PFU: n = 10; 3 × 106 PFU: n = 7; 2 × 107 PFU: n = 8) (Box and Whiskers, Min to Max, Line: median) b) Fold induction of total cytokines of CD8+ T cells from day 0 to day 56 (Bar graph, line: median value). c) Piecharts represent composition of cytokines induced by all four peptide pools. They show the average values of CD8+ T-cell responses of day 56 of the 2 × 107 PFU dose cohort.

Fig. 6

CTL-responses following rVSV-ZEBOV vaccination. a)…

Fig. 6

CTL-responses following rVSV-ZEBOV vaccination. a) Degranulation of CD8 + T cells was measured…

Fig. 6
CTL-responses following rVSV-ZEBOV vaccination. a) Degranulation of CD8+ T cells was measured by CD107a staining. Graphs depict the sum of frequency of CD107a expression induced by all four peptide pools (GP1a, GP1b, GP2, SP) (Box and Whiskers, Min to Max, Line: median). b) The breadth of peptide pool responses increases by vaccine dose. An assay response was determined by 3-fold over the background. The darker the grey, the more peptide pool responses, the higher the breadth of response. Statistical analysis was performed using Mann-Whitney-Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.005).

Fig. 7

PBMCs induce broad cytokine profile…

Fig. 7

PBMCs induce broad cytokine profile following stimulation with Ebola GP peptide pools. a)…

Fig. 7
PBMCs induce broad cytokine profile following stimulation with Ebola GP peptide pools. a) PBMCs were stimulated with two peptide pools (MP1, MP2 (Appendix Table 5)) that cover the whole Ebola GP (Kikwit). Following 16 h stimulation, supernatants of both stimulations were pooled together and a 27-plex LUMINEX assay was performed (blue: high expression, green: low expression). b) TH1-belonging cytokines are induced in subjects immunized with 2 × 107 PFU. Graphs depict the cytokines IL2 (upper left graph), IL7 (upper right graph), IL15 (middle left graph), IFNγ (middle right graph) and TNFα (lower left graph) (Box and Whiskers, Min to Max, Line: median). Statistical analysis was performed using Mann-Whitney-Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.005).

Fig. 8

Cytokines show an interlocked network…

Fig. 8

Cytokines show an interlocked network following peptide stimulation. Correlogram of correlations among 27…

Fig. 8
Cytokines show an interlocked network following peptide stimulation. Correlogram of correlations among 27 cytokines for all dose cohorts for day 14 following vaccination. The highest median correlation coefficient (mcc) was observed in the 2 × 107 PFU cohort with 0.52 in contrast to 0.39 and 0.29 in the middle and lowest dose group, respectively. Red indicates a negative and blue a positive correlation. The more intense the colour, the greater the correlation magnitude. Correlogram was plotted using R software.
All figures (9)
Fig. 4
Fig. 4
Kinetics of plasmablasts and T-cell activation in response to rVSV-ZEBOV immunization. a) Plasmablasts peaked at day 7 post vaccination in all dose groups. B cells were stained using antibodies against CD19, CD24 and CD38. Representative contour plots depict B-cell subsets of naïve (CD19+ CD24low/intermCD38interm), memory (CD19+ CD24−/interm/highCD38low/interm), transitional (CD19+ CD24+ CD38high) and plasmablasts (CD19+ CD24− CD38high). Numbers in contour plots represent the percentage of plasmablasts of CD19+ B cells. b) Percentages of CD19+ CD24− CD38high over time in immunized subjects. Each dot and line depicts one subject (3 × 105 PFU: n = 10; 3 × 106 PFU: n = 8; 2 × 107 PFU: n = 9). c) Graph highlights the fold induction of plasmablasts at day 7 compared to day 0. Each dot represents one subject (bar graph, line: median value). d) T-cell activation in subjects early after vaccination. Activation was analyzed by HLA DR and CD38 staining. Representative contour plots depict the gating strategy for activation of CD4+ (upper plot) and CD8+ T cells (lower plot). e) Percentages of HLA DR+ CD38+ of CD4+ (upper row) and CD8+ T cells (lower row) are represented in the graphs. Each dot and line represents one subject. (3 × 105 PFU: n = 10; 3 × 106 PFU: n = 6; 2 × 107 PFU: n = 8). Statistical analysis was performed using Mann-Whitney-Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.005).
Fig. 5
Fig. 5
Ebola GP-specific T-cell responses. Kinetics of antigen-specific CD8+ T-cell responses. a) Four different peptide pools (GP1a, GP1b, GP2, SP) that cover the whole Ebola GP protein (Kikwit) were used for PBMC stimulation. Graphs represent frequencies (%) of total cytokine responses of CD8+ T cells (IFNγ, TNFα, IL2, MIP1β). Each dot represents one subject. (3 × 105 PFU: n = 10; 3 × 106 PFU: n = 7; 2 × 107 PFU: n = 8) (Box and Whiskers, Min to Max, Line: median) b) Fold induction of total cytokines of CD8+ T cells from day 0 to day 56 (Bar graph, line: median value). c) Piecharts represent composition of cytokines induced by all four peptide pools. They show the average values of CD8+ T-cell responses of day 56 of the 2 × 107 PFU dose cohort.
Fig. 6
Fig. 6
CTL-responses following rVSV-ZEBOV vaccination. a) Degranulation of CD8+ T cells was measured by CD107a staining. Graphs depict the sum of frequency of CD107a expression induced by all four peptide pools (GP1a, GP1b, GP2, SP) (Box and Whiskers, Min to Max, Line: median). b) The breadth of peptide pool responses increases by vaccine dose. An assay response was determined by 3-fold over the background. The darker the grey, the more peptide pool responses, the higher the breadth of response. Statistical analysis was performed using Mann-Whitney-Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.005).
Fig. 7
Fig. 7
PBMCs induce broad cytokine profile following stimulation with Ebola GP peptide pools. a) PBMCs were stimulated with two peptide pools (MP1, MP2 (Appendix Table 5)) that cover the whole Ebola GP (Kikwit). Following 16 h stimulation, supernatants of both stimulations were pooled together and a 27-plex LUMINEX assay was performed (blue: high expression, green: low expression). b) TH1-belonging cytokines are induced in subjects immunized with 2 × 107 PFU. Graphs depict the cytokines IL2 (upper left graph), IL7 (upper right graph), IL15 (middle left graph), IFNγ (middle right graph) and TNFα (lower left graph) (Box and Whiskers, Min to Max, Line: median). Statistical analysis was performed using Mann-Whitney-Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.005).
Fig. 8
Fig. 8
Cytokines show an interlocked network following peptide stimulation. Correlogram of correlations among 27 cytokines for all dose cohorts for day 14 following vaccination. The highest median correlation coefficient (mcc) was observed in the 2 × 107 PFU cohort with 0.52 in contrast to 0.39 and 0.29 in the middle and lowest dose group, respectively. Red indicates a negative and blue a positive correlation. The more intense the colour, the greater the correlation magnitude. Correlogram was plotted using R software.

References

    1. Agnandji S.T., Huttner A., Zinser M.E., Njuguna P., Dahlke C., Fernandes J.F., Yerly S., Dayer J.A., Kraehling V., Kasonta R., Adegnika A.A., Altfeld M., Auderset F., Bache E.B., Biedenkopf N., Borregaard S., Brosnahan J.S., Burrow R., Combescure C., Desmeules J., Eickmann M., Fehling S.K., Finckh A., Goncalves A.R., Grobusch M.P., Hooper J., Jambrecina A., Kabwende A.L., Kaya G., Kimani D., Lell B., Lemaitre B., Lohse A.W., Massinga-Loembe M., Matthey A., Mordmuller B., Nolting A., Ogwang C., Ramharter M., Schmidt-Chanasit J., Schmiedel S., Silvera P., Stahl F.R., Staines H.M., Strecker T., Stubbe H.C., Tsofa B., Zaki S., Fast P., Moorthy V., Kaiser L., Krishna S., Becker S., Kieny M.P., Bejon P., Kremsner P.G., Addo M.M., Siegrist C.A. Phase 1 trials of rVSV Ebola vaccine in Africa and Europe. N. Engl. J. Med. 2016;374:1647–1660.
    1. Blom K., Braun M., Ivarsson M.A., Gonzalez V.D., Falconer K., Moll M., Ljunggren H.G., Michaelsson J., Sandberg J.K. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response. J. Immunol. 2013;190:2150–2158.
    1. Dahlke C., Lunemann S., Kasonta R., Kreuels B., Schmiedel S., Ly M.L., Fehling S.K., Strecker T., Becker S., Altfeld M., Sow A., Lohse A.W., Munoz-Fontela C., Addo M.M. Comprehensive characterization of cellular immune responses following Ebola virus infection. J Infect Dis. 2017;215(2):287–292. (PMID: 27799354)
    1. De Santis O., Audran R., Pothin E., Warpelin-Decrausaz L., Vallotton L., Wuerzner G., Cochet C., Estoppey D., Steiner-Monard V., Lonchampt S., Thierry A.C., Mayor C., Bailer R.T., Mbaya O.T., Zhou Y., Ploquin A., Sullivan N.J., Graham B.S., Roman F., De Ryck I., Ballou W.R., Kieny M.P., Moorthy V., Spertini F., Genton B. Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study. Lancet Infect. Dis. 2016;16:311–320.
    1. De Wit E., Marzi A., Bushmaker T., Brining D., Scott D., Richt J.A., Geisbert T.W., Feldmann H. Safety of recombinant VSV-Ebola virus vaccine vector in pigs. Emerg. Infect. Dis. 2015;21:702–704.
    1. Farooq F., Beck K., Paolino K.M., Phillips R., Waters N.C., Regules J.A., Bergmann-Leitner E.S. Circulating follicular T helper cells and cytokine profile in humans following vaccination with the rVSV-ZEBOV Ebola vaccine. Sci. Rep. 2016;6:27944.
    1. Feldmann H., Jones S.M., Daddario-Dicaprio K.M., Geisbert J.B., Stroher U., Grolla A., Bray M., Fritz E.A., Fernando L., Feldmann F., Hensley L.E., Geisbert T.W. Effective post-exposure treatment of Ebola infection. PLoS Pathog. 2007;3:e2.
    1. Geisbert T.W., Daddario-Dicaprio K.M., Geisbert J.B., Reed D.S., Feldmann F., Grolla A., Stroher U., Fritz E.A., Hensley L.E., Jones S.M., Feldmann H. Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine. 2008;26:6894–6900.
    1. Geisbert T.W., Feldmann H. Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. J. Infect. Dis. 2011;204(Suppl. 3):S1075–S1081.
    1. Gupta M., Greer P., Mahanty S., Shieh W.J., Zaki S.R., Ahmed R., Rollin P.E. CD8-mediated protection against Ebola virus infection is perforin dependent. J. Immunol. 2005;174:4198–4202.
    1. Henao-Restrepo A.M., Camacho A., Longini I.M., Watson C.H., Edmunds W.J., Egger M., Carroll M.W., Dean N.E., Diatta I., Doumbia M., Draguez B., Duraffour S., Enwere G., Grais R., Gunther S., Gsell P.S., Hossmann S., Watle S.V., Konde M.K., Keita S., Kone S., Kuisma E., Levine M.M., Mandal S., Mauget T., Norheim G., Riveros X., Soumah A., Trelle S., Vicari A.S., Rottingen J.A., Kieny M.P. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ca Suffit!) Lancet. 2017;389(10068):505–518. (Epub 2016 Dec 23.PMID:28017403)
    1. Jones S.M., Feldmann H., Stroher U., Geisbert J.B., Fernando L., Grolla A., Klenk H.D., Sullivan N.J., Volchkov V.E., Fritz E.A., Daddario K.M., Hensley L.E., Jahrling P.B., Geisbert T.W. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med. 2005;11:786–790.
    1. Jones S.M., Stroher U., Fernando L., Qiu X., Alimonti J., Melito P., Bray M., Klenk H.D., Feldmann H. Assessment of a vesicular stomatitis virus-based vaccine by use of the mouse model of Ebola virus hemorrhagic fever. J Infect Dis. 2007;196(Suppl. 2):S404–S412.
    1. Kang T.H., Bae H.C., Kim S.H., Seo S.H., Son S.W., Choi E.Y., Seong S.Y., Kim T.W. Modification of dendritic cells with interferon-gamma-inducible protein-10 gene to enhance vaccine potency. J. Gene Med. 2009;11:889–898.
    1. Khurana S., Fuentes S., Coyle E.M., Ravichandran S., Davey R.T., Jr. & Beigel, J. H. Human antibody repertoire after VSV-Ebola vaccination identifies novel targets and virus-neutralizing IgM antibodies. Nat. Med. 2016;22:1439–1447.
    1. Krahling V., Becker D., Rohde C., Eickmann M., Eroglu Y., Herwig A., Kerber R., Kowalski K., Vergara-Alert J., Becker S. Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus. Med. Microbiol. Immunol. 2016;205:173–183.
    1. Lai L., Davey R., Beck A., Xu Y., Suffredini A.F., Palmore T., Kabbani S., Rogers S., Kobinger G., Alimonti J., Link C.J., Jr., Rubinson L., Stroher U., Wolcott M., Dorman W., Uyeki T.M., Feldmann H., Lane H.C., Mulligan M.J. Emergency postexposure vaccination with vesicular stomatitis virus-vectored Ebola vaccine after needlestick. JAMA. 2015;313:1249–1255.
    1. Marzi A., Engelmann F., Feldmann F., Haberthur K., Shupert W.L., Brining D., Scott D.P., Geisbert T.W., Kawaoka Y., Katze M.G., Feldmann H., Messaoudi I. Antibodies are necessary for rVSV/ZEBOV-GP-mediated protection against lethal Ebola virus challenge in nonhuman primates. Proc. Natl. Acad. Sci. U. S. A. 2013;110:1893–1898.
    1. Marzi A., Hanley P.W., Haddock E., Martellaro C., Kobinger G., Feldmann H. Efficacy of vesicular stomatitis virus-Ebola virus postexposure treatment in rhesus macaques infected with Ebola virus Makona. J. Infect. Dis. 2016;214:S360–s366.
    1. Marzi A., Robertson S.J., Haddock E., Feldmann F., Hanley P.W., Scott D.P., Strong J.E., Kobinger G., Best S.M., Feldmann H. EBOLA VACCINE. VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science. 2015;349:739–742.
    1. Mcelroy A.K., Akondy R.S., Davis C.W., Ellebedy A.H., Mehta A.K., Kraft C.S., Lyon G.M., Ribner B.S., Varkey J., Sidney J., Sette A., Campbell S., Stroher U., Damon I., Nichol S.T., Spiropoulou C.F., Ahmed R. Human Ebola virus infection results in substantial immune activation. Proc. Natl. Acad. Sci. U. S. A. 2015;112:4719–4724.
    1. Meyer M., Garron T., Lubaki N.M., Mire C.E., Fenton K.A., Klages C., Olinger G.G., Geisbert T.W., Collins P.L., Bukreyev A. Aerosolized Ebola vaccine protects primates and elicits lung-resident T cell responses. J. Clin. Invest. 2015;125:3241–3255.
    1. Miller J.D., Van Der Most R.G., Akondy R.S., Glidewell J.T., Albott S., Masopust D., Murali-Krishna K., Mahar P.L., Edupuganti S., Lalor S., Germon S., Del Rio C., Mulligan M.J., Staprans S.I., Altman J.D., Feinberg M.B., Ahmed R. Human effector and memory CD8 + T cell responses to smallpox and yellow fever vaccines. Immunity. 2008;28:710–722.
    1. Nakaya H.I., Wrammert J., Lee E.K., Racioppi L., Marie-Kunze S., Haining W.N., Means A.R., Kasturi S.P., Khan N., Li, G. M., Mccausland, M., Kanchan, V., Kokko, K. E., Li, S., Elbein, R., Mehta, A. K., Aderem, A., Subbarao, K., Ahmed, R. & Pulendran, B. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 2011;12:786–795.
    1. Pavot V. Ebola virus vaccines: where do we stand? Clin. Immunol. 2016;173:44–49.
    1. Qiu X., Fernando L., Alimonti J.B., Melito P.L., Feldmann F., Dick D., Stroher U., Feldmann H., Jones S.M. Mucosal immunization of cynomolgus macaques with the VSVDeltaG/ZEBOVGP vaccine stimulates strong ebola GP-specific immune responses. PLoS One. 2009;4:e5547.
    1. Regules J.A., Beigel J.H., Paolino K.M., Voell J., Castellano A.R., Hu Z., Munoz P., Moon J.E., Ruck R.C., Bennett J.W., Twomey P.S., Gutierrez R.L., Remich S.A., Hack H.R., Wisniewski M.L., Josleyn M.D., Kwilas S.A., Van Deusen N., Mbaya O.T., Zhou Y., Stanley D.A., Jing W., Smith K.S., Shi M., Ledgerwood J.E., Graham B.S., Sullivan N.J., Jagodzinski L.L., Peel S.A., Alimonti J.B., Hooper J.W., Silvera P.M., Martin B.K., Monath T.P., Ramsey W.J., Link C.J., Lane H.C., Michael N.L., Davey R.T., Jr., Thomas S.J. A recombinant vesicular stomatitis virus Ebola vaccine. N. Engl. J. Med. 2017;376:330–341.
    1. Ruibal P., Oestereich L., Ludtke A., Becker-Ziaja B., Wozniak D.M., Kerber R., Korva M., Cabeza-Cabrerizo M., Bore J.A., Koundouno F.R., Duraffour S., Weller R., Thorenz A., Cimini E., Viola D., Agrati C., Repits J., Afrough B., Cowley L.A., Ngabo D., Hinzmann J., Mertens M., Vitoriano I., Logue C.H., Boettcher J.P., Pallasch E., Sachse A., Bah A., Nitzsche K., Kuisma E., Michel J., Holm T., Zekeng E.G., Garcia-Dorival I., Wolfel R., Stoecker K., Fleischmann E., Strecker T., Di Caro A., Avsic-Zupanc T., Kurth A., Meschi S., Mely S., Newman E., Bocquin A., Kis Z., Kelterbaum A., Molkenthin P., Carletti F., Portmann J., Wolff S., Castilletti C., Schudt G., Fizet A., Ottowell L.J., Herker E., Jacobs T., Kretschmer B., Severi E., Ouedraogo N., Lago M., Negredo A., Franco L., Anda P., Schmiedel S., Kreuels B., Wichmann D., Addo M.M., Lohse A.W., De Clerck H., Nanclares C., Jonckheere S., Van Herp M., Sprecher A., Xiaojiang G., Carrington M., Miranda O., Castro C.M., Gabriel M., Drury P., Formenty P., Diallo B., Koivogui L., Magassouba N., Carroll M.W., Gunther S., Munoz-Fontela C. Unique human immune signature of Ebola virus disease in Guinea. Nature. 2016;533:100–104.
    1. Sullivan N.J., Geisbert T.W., Geisbert J.B., Xu, L., Yang, Z. Y., Roederer, M., Koup, R. A., Jahrling, P. B. & Nabel, G. J. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature. 2003;424:681–684.
    1. Sullivan N.J., Martin J.E., Graham B.S., Nabel G.J. Correlates of protective immunity for Ebola vaccines: implications for regulatory approval by the animal rule. Nat. Rev. Microbiol. 2009;7:393–400.
    1. Wilson J.A., Hart M.K. Protection from Ebola virus mediated by cytotoxic T lymphocytes specific for the viral nucleoprotein. J. Virol. 2001;75:2660–2664.
    1. Wong G., Audet J., Fernando L., Fausther-Bovendo H., Alimonti J.B., Kobinger G.P., Qiu X. Immunization with vesicular stomatitis virus vaccine expressing the Ebola glycoprotein provides sustained long-term protection in rodents. Vaccine. 2014;32:5722–5729.
    1. Wong G., Richardson J.S., Pillet S., Patel A., Qiu X., Alimonti J., Hogan J., Zhang Y., Takada A., Feldmann H., Kobinger G.P. Immune parameters correlate with protection against ebola virus infection in rodents and nonhuman primates. Sci. Transl. Med. 2012;4 (158ra146)

Source: PubMed

3
Abonnieren