Validation and Clinical Applications of a Comprehensive Next Generation Sequencing System for Molecular Characterization of Solid Cancer Tissues

Mehdi Dehghani, Kevin P Rosenblatt, Lei Li, Mrudula Rakhade, Robert J Amato, Mehdi Dehghani, Kevin P Rosenblatt, Lei Li, Mrudula Rakhade, Robert J Amato

Abstract

Identification of somatic molecular alterations in primary and metastatic solid tumor specimens can provide critical information regarding tumor biology and its heterogeneity, and enables the detection of molecular markers for clinical personalized treatment assignment. However, the optimal methods and target genes for clinical use are still being in development. Toward this end, we validated a targeted amplification-based NGS panel (Oncomine comprehensive assay v1) on a personal genome machine sequencer for molecular profiling of solid tumors. This panel covers 143 genes, and requires low amounts of DNA (20 ng) and RNA (10 ng). We used 27 FFPE tissue specimens, 10 cell lines, and 24 commercial reference materials to evaluate the performance characteristics of this assay. We also evaluated the performance of the assay on 26 OCT-embedded fresh frozen specimens (OEFF). The assay was found to be highly specific (>99%) and sensitive (>99%), with low false-positive and false-negative rates for single-nucleotide variants, indels, copy number alterations, and gene fusions. Our results indicate that this is a reliable method to determine molecular alterations in both fixed and fresh frozen solid tumor samples, including core needle biopsies.

Keywords: Ion AmpliSeq; analytical validation; molecular profiling; next-generation sequencing; solid tumor.

Copyright © 2019 Dehghani, Rosenblatt, Li, Rakhade and Amato.

Figures

Figure 1
Figure 1
OCAv1 test workflow. Hematoxylin and Eosin-stained slides were reviewed to ensure each specimen contained adequate tumor content. Laser microdissection was used to enrich tumor content to ≥50%. DNA and RNA were co-purified, then their quality and quantity were assessed. Libraries created from the corresponding DNA and RNA specimens were sequenced on the personal genome machine. Sequence data were analyzed and reviewed using the Ion Reporter software.
Figure 2
Figure 2
Lowest limits of detection for SNVs and Indels. The lowest limit of detection of OCAv1 for identifying SNVs and indels, with expected allele frequencies of ~2.5–50%, were evaluated using the AOHL member 1 to member 6 ladders and were sequenced. (A) Indicates the detection rates of the assay for SNVs and Indels with expected allele frequencies of ~5–30% (hotspot and non-hotspot variants); and, (B) shows the detection rate of the assay for variants listed in the hotspot bed file.
Figure 3
Figure 3
Heatmaps of somatic alterations detected. OCAv1 identified relevant somatic alterations in the 26 solid tumor registry specimens, including cases with RCC (A) and other types of cancers (B). All relevant high-priority molecular alterations, including SNVs, indels, CNAs, fusions, and variants of unknown significance, are shown in the heat map. Specific alterations and cancer types are shown at the bottom of the heat maps according to the keys.

References

    1. Aftimos P. G., Barthelemy P., Awada A. (2014). Molecular biology in medical oncology: diagnosis, prognosis, and precisionmedicine. Discov. Med. 17, 81–91.
    1. Bayrak O., Sen H., Bulut E., Cengiz B., Karakok M., Erturhan S., et al. . (2014). Evaluation of EGFR, KRAS and BRAF gene mutations in renal cell carcinoma. J. Kidney Cancer VHL 1, 40–45. 10.15586/jkcvhl.2014.10
    1. Beadling C., Neff T. L., Heinrich M. C., Rhodes K., Thornton M., Leamon J., et al. . (2013). Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. J. Mol. Diagn. 15, 171–176. 10.1016/j.jmoldx.2012.09.003
    1. Bostrom A. K., Moller C., Nilsson E., Elfving P., Axelson H., Johansson M. E. (2012). Sarcomatoid conversion of clear cell renal cell carcinoma in relation to epithelial-to-mesenchymal transition. Hum. Pathol. 43, 708–719. 10.1016/j.humpath.2011.06.019
    1. Bragg L. M., Stone G., Butler M. K., Hugenholtz P., Tyson G. W. (2013). Shining a light on dark sequencing: characterising errors in Ion Torrent PGM data. PLoS Comput. Biol. 9:e1003031. 10.1371/journal.pcbi.1003031
    1. Chistiakov D. A., Chekhonin I. V., Chekhonin V. P. (2017). The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme. Eur. J. Pharmacol. 810, 70–82. 10.1016/j.ejphar.2017.05.064
    1. Coonrod E. M., Margraf R. L., Voelkerding K. V. (2012). Translating exome sequencing from research to clinical diagnostics. Clin. Chem. Lab. Med. 50, 1161–1168. 10.1515/cclm-2011-0841
    1. Cronin M., Ross J. S. (2011). Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark. Med. 5, 293–305. 10.2217/bmm.11.37
    1. Damiati E., Borsani G., Giacopuzzi E. (2016). Amplicon-based semiconductor sequencing of human exomes: performance evaluation and optimization strategies. Hum. Genet. 135, 499–511. 10.1007/s00439-016-1656-8
    1. Devarakonda S., Morgensztern D., Govindan R. (2013). Clinical applications of the cancer genome atlas project (TCGA) for squamous cell lung carcinoma. Oncology 27, 899–906.
    1. Frampton G. M., Fichtenholtz A., Otto G. A., Wang K., Downing S. R., He J., et al. . (2013). Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31, 1023–1031. 10.1038/nbt.2696
    1. Gagan J., Van Allen E. M. (2015). Next-generation sequencing to guide cancer therapy. Genome Med. 7:80. 10.1186/s13073-015-0203-x
    1. Garraway L. A. (2013). Genomics-driven oncology: framework for an emerging paradigm. J. Clin. Oncol. 31, 1806–1814. 10.1200/JCO.2012.46.8934
    1. Gerlinger M., McGranahan N., Dewhurst S. M., Burrell R. A., Tomlinson I., Swanton C. (2014). Cancer: evolution within a lifetime. Annu. Rev. Genet. 48, 215–236. 10.1146/annurev-genet-120213-092314
    1. Grasso C., Butler T., Rhodes K., Quist M., Neff T. L., Moore S., et al. . (2015). Assessing copy number alterations in targeted, amplicon-based next-generation sequencing data. J. Mol. Diagn. 17, 53–63. 10.1016/j.jmoldx.2014.09.008
    1. Hadd A. G., Houghton J., Choudhary A., Sah S., Chen L., Marko A. C., et al. . (2013). Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J. Mol. Diagn. 15, 234–247. 10.1016/j.jmoldx.2012.11.006
    1. Hermida M. A., Dinesh Kumar J., Leslie N. R. (2017). GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv. Biol. Regul. 65, 5–15. 10.1016/j.jbior.2017.06.003
    1. Hovelson D. H., McDaniel A. S., Cani A. K., Johnson B., Rhodes K., Williams P. D., et al. . (2015). Development and validation of a scalable next-generation sequencing system for assessing relevant somatic variants in solid tumors. Neoplasia 17, 385–399. 10.1016/j.neo.2015.03.004
    1. Jennings L. J., Arcila M. E., Corless C., Kamel-Reid S., Lubin I. M., Pfeifer J., et al. . (2017). Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the association for molecular pathology and college of american pathologists. J. Mol. Diagn. 19, 341–365. 10.1016/j.jmoldx.2017.01.011
    1. Kallio J. P., Hirvikoski P., Helin H., Kellokumpu-Lehtinen P., Luukkaala T., Tammela T. L., et al. . (2003). Membranous location of EGFR immunostaining is associated with good prognosis in renal cell carcinoma. Br. J. Cancer 89, 1266–1269. 10.1038/sj.bjc.6601241
    1. Klebe S., Driml J., Nasu M., Pastorino S., Zangiabadi A., Henderson D., et al. . (2015). BAP1 hereditary cancer predisposition syndrome: a case report and review of literature. Biomark. Res. 3:14. 10.1186/s40364-015-0040-5
    1. Koboldt D. C., Steinberg K. M., Larson D. E., Wilson R. K., Mardis E. R. (2013). The next-generation sequencing revolution and its impact on genomics. Cell 155, 27–38. 10.1016/j.cell.2013.09.006
    1. Lawrence M. S., Stojanov P., Mermel C. H., Robinson J. T., Garraway L. A., Golub T. R., et al. . (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501. 10.1038/nature12912
    1. Lawrence M. S., Stojanov P., Polak P., Kryukov G. V., Cibulskis K., Sivachenko A., et al. . (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218. 10.1038/nature12213
    1. Luthra R., Patel K. P., Routbort M. J., Broaddus R. R., Yau J., Simien C., et al. . (2017). A targeted high-throughput next-generation sequencing panel for clinical screening of mutations, gene amplifications, and fusions in solid tumors. J. Mol. Diagn. 19, 255–264. 10.1016/j.jmoldx.2016.09.011
    1. Martincorena I., Campbell P. J. (2015). Somatic mutation in cancer and normal cells. Science 349, 1483–1489. 10.1126/science.aab4082
    1. Modjtahedi H., Cunningham M. P. (2005). Is membranous location of EGFR or EGFRvIII immunostaining associated with good prognosis in renal cell carcinoma? Br. J. Cancer 93:1316. 10.1038/sj.bjc.6602843
    1. Molina A. M., Tickoo S. K., Ishill N., Trinos M. J., Schwartz L. H., Patil S., et al. . (2011). Sarcomatoid-variant renal cell carcinoma: treatment outcome and survival in advanced disease. Am. J. Clin. Oncol. 34, 454–459. 10.1097/COC.0b013e3181f47aa4
    1. Nathan N., Keppler-Noreuil K. M., Biesecker L. G., Moss J., Darling T. N. (2017). Mosaic disorders of the PI3K/PTEN/AKT/TSC/mTORC1 signaling pathway. Dermatol. Clin. 35, 51–60. 10.1016/j.det.2016.07.001
    1. Rehm H. L., Bale S. J., Bayrak-Toydemir P., Berg J. S., Brown K. K., Deignan J. L., et al. . (2013). ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 15, 733–747. 10.1038/gim.2013.92
    1. Riazalhosseini Y., Lathrop M. (2016). Precision medicine from the renal cancer genome. Nat. Rev. Nephrol. 12, 655–666. 10.1038/nrneph.2016.133
    1. Rivandi M., Khorrami M. S., Fiuji H., Shahidsales S., Hasanzadeh M., Jazayeri M. H., et al. . (2017). The 9p21 locus: a potential therapeutic target and prognostic marker in breast cancer. J. Cell. Physiol. 233, 5170–5179. 10.1002/jcp.26332
    1. Santani A., Murrell J., Funke B., Yu Z., Hegde M., Mao R., et al. . (2017). Development and validation of targeted next-generation sequencing panels for detection of germline variants in inherited diseases. Arch. Pathol. Lab. Med. 141, 787–797. 10.5858/arpa.2016-0517-RA
    1. Singh R. R., Patel K. P., Routbort M. J., Reddy N. G., Barkoh B. A., Handal B., et al. . (2013). Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J. Mol. Diagn. 15, 607–622. 10.1016/j.jmoldx.2013.05.003
    1. Sleijfer S., Bogaerts J., Siu L. L. (2013). Designing transformative clinical trials in the cancer genome era. J. Clin. Oncol. 31, 1834–1841. 10.1200/JCO.2012.45.3639
    1. Van Allen E. M., Wagle N., Stojanov P., Perrin D. L., Cibulskis K., Marlow S., et al. . (2014). Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 20, 682–688. 10.1038/nm.3559
    1. Van Loo P., Nordgard S. H., Lingjaerde O. C., Russnes H. G., Rye I. H., Sun W., et al. . (2010). Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. U.S.A. 107, 16910–16915. 10.1073/pnas.1009843107
    1. Vogelstein B., Papadopoulos N., Velculescu V. E., Zhou S., Diaz L. A., Jr., Kinzler K. W. (2013). Cancer genome landscapes. Science 339, 1546–1558. 10.1126/science.1235122
    1. Voss M. H., Hakimi A. A., Pham C. G., Brannon A. R., Chen Y. B., Cunha L. F., et al. . (2014). Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin. Cancer. Res. 20, 1955–1964. 10.1158/1078-0432.CCR-13-2345
    1. Zhang J. D., Schindler T., Küng E., Ebelingm M., Certa U. (2014). Highly sensitive amplicon-based transcript quantification by semiconductor sequencing. BMC Genomics. 15:565. 10.1186/1471-2164-15-565

Source: PubMed

3
Abonnieren