Neurorehabilitation Through Synergistic Man-Machine Interfaces Promoting Dormant Neuroplasticity in Spinal Cord Injury: Protocol for a Nonrandomized Controlled Trial

Alkinoos Athanasiou, Konstantinos Mitsopoulos, Apostolos Praftsiotis, Alexander Astaras, Panagiotis Antoniou, Niki Pandria, Vasileia Petronikolou, Konstantinos Kasimis, George Lyssas, Nikos Terzopoulos, Vasilki Fiska, Panagiotis Kartsidis, Theodoros Savvidis, Athanasios Arvanitidis, Konstantinos Chasapis, Alexandros Moraitopoulos, Kostas Nizamis, Anestis Kalfas, Paris Iakovidis, Thomas Apostolou, Ioannis Magras, Panagiotis Bamidis, Alkinoos Athanasiou, Konstantinos Mitsopoulos, Apostolos Praftsiotis, Alexander Astaras, Panagiotis Antoniou, Niki Pandria, Vasileia Petronikolou, Konstantinos Kasimis, George Lyssas, Nikos Terzopoulos, Vasilki Fiska, Panagiotis Kartsidis, Theodoros Savvidis, Athanasios Arvanitidis, Konstantinos Chasapis, Alexandros Moraitopoulos, Kostas Nizamis, Anestis Kalfas, Paris Iakovidis, Thomas Apostolou, Ioannis Magras, Panagiotis Bamidis

Abstract

Background: Spinal cord injury (SCI) constitutes a major sociomedical problem, impacting approximately 0.32-0.64 million people each year worldwide; particularly, it impacts young individuals, causing long-term, often irreversible disability. While effective rehabilitation of patients with SCI remains a significant challenge, novel neural engineering technologies have emerged to target and promote dormant neuroplasticity in the central nervous system.

Objective: This study aims to develop, pilot test, and optimize a platform based on multiple immersive man-machine interfaces offering rich feedback, including (1) visual motor imagery training under high-density electroencephalographic recording, (2) mountable robotic arms controlled with a wireless brain-computer interface (BCI), (3) a body-machine interface (BMI) consisting of wearable robotics jacket and gloves in combination with a serious game (SG) application, and (4) an augmented reality module. The platform will be used to validate a self-paced neurorehabilitation intervention and to study cortical activity in chronic complete and incomplete SCI at the cervical spine.

Methods: A 3-phase pilot study (clinical trial) was designed to evaluate the NeuroSuitUp platform, including patients with chronic cervical SCI with complete and incomplete injury aged over 14 years and age-/sex-matched healthy participants. Outcome measures include BCI control and performance in the BMI-SG module, as well as improvement of functional independence, while also monitoring neuropsychological parameters such as kinesthetic imagery, motivation, self-esteem, depression and anxiety, mental effort, discomfort, and perception of robotics. Participant enrollment into the main clinical trial is estimated to begin in January 2023 and end by December 2023.

Results: A preliminary analysis of collected data during pilot testing of BMI-SG by healthy participants showed that the platform was easy to use, caused no discomfort, and the robotics were perceived positively by the participants. Analysis of results from the main clinical trial will begin as recruitment progresses and findings from the complete analysis of results are expected in early 2024.

Conclusions: Chronic SCI is characterized by irreversible disability impacting functional independence. NeuroSuitUp could provide a valuable complementary platform for training in immersive rehabilitation methods to promote dormant neural plasticity.

Trial registration: ClinicalTrials.gov NCT05465486; https://ichgcp.net/clinical-trials-registry/NCT05465486.

International registered report identifier (irrid): PRR1-10.2196/41152.

Keywords: body-machine interface; brain-computer interface; neural rehabilitation; serious games; spinal cord injury; wearable robotics.

Conflict of interest statement

Conflicts of Interest: None declared.

©Alkinoos Athanasiou, Konstantinos Mitsopoulos, Apostolos Praftsiotis, Alexander Astaras, Panagiotis Antoniou, Niki Pandria, Vasileia Petronikolou, Konstantinos Kasimis, George Lyssas, Nikos Terzopoulos, Vasilki Fiska, Panagiotis Kartsidis, Theodoros Savvidis, Athanasios Arvanitidis, Konstantinos Chasapis, Alexandros Moraitopoulos, Kostas Nizamis, Anestis Kalfas, Paris Iakovidis, Thomas Apostolou, Ioannis Magras, Panagiotis Bamidis. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 13.09.2022.

Figures

Figure 1
Figure 1
VMI under high-resolution EEG recording during presentation of multiple movements of the upper limb by patients with spinal cord injury in previous pilot experiment [3,16]. Figure from [16]. EEG: electroencephalography; VMI: visual motor imagery.
Figure 2
Figure 2
Pilot use of 8-degrees-of-freedom robotic arms by a 30-year-old patient with spinal cord injury with C6 tetraparesis, controlled by a commercial EEG-based brain-computer interface (Emotiv) through KMI [16,17]. Figure from [16]. EEG: electroencephalography; KMI: kinesthetic motor imagery.
Figure 3
Figure 3
(A) Schematic of sensors layer and photo of the wearable prototype. (B) Unity game snapshot and corresponding pose in the robot operating system (ROS) rviz tool. Figure modified from [18]. EMG: electromyography; EMS: electrical muscle stimulation; sEMG: surface electromyography.
Figure 4
Figure 4
Overview of the experimental procedures, based around 3 phases (initial, intermediate, and final assessments). AI: artificial intelligence; AR: augmented reality; BCI: brain-computer interface; fMRI: functional magnetic resonance imaging; HD EEG: high-density electroencephalography; VRE: virtual reality environment.
Figure 5
Figure 5
Answers of test trials participants to SMEQ. Size of the circles denotes relative number of answers. Red circle denotes median marking. SMEQ: Subjective Mental Effort Questionnaire.
Figure 6
Figure 6
All answers of test trials participants to the Locally Experienced Discomfort Questionnaire according to body area. Color inside the circles corresponds to complain intensity according to colormap.
Figure 7
Figure 7
(A) Mean Godspeed robotics questionnaire scores by category. (B) Total Godspeed scores of all participants in the test trials.

References

    1. Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, Jones L, Krassioukov A, Mulcahey M, Schmidt-Read M, Waring W. International standards for neurological classification of spinal cord injury (Revised 2011) The Journal of Spinal Cord Medicine. 2013 Jul 19;34(6):535–546. doi: 10.1179/204577211x13207446293695.
    1. Athanasiou A, Klados MA, Pandria N, Foroglou N, Kavazidi KR, Polyzoidis K, Bamidis PD. A Systematic Review of Investigations into Functional Brain Connectivity Following Spinal Cord Injury. Front Hum Neurosci. 2017 Oct 25;11:517. doi: 10.3389/fnhum.2017.00517. doi: 10.3389/fnhum.2017.00517.
    1. Athanasiou A, Terzopoulos N, Pandria N, Xygonakis I, Foroglou N, Polyzoidis K, Bamidis PD. Functional Brain Connectivity during Multiple Motor Imagery Tasks in Spinal Cord Injury. Neural Plast. 2018;2018:9354207–20. doi: 10.1155/2018/9354207. doi: 10.1155/2018/9354207.
    1. Athanasiou A, Klados MA, Styliadis C, Foroglou N, Polyzoidis K, Bamidis PD. Investigating the Role of Alpha and Beta Rhythms in Functional Motor Networks. Neuroscience. 2018 May 15;378:54–70. doi: 10.1016/j.neuroscience.2016.05.044.S0306-4522(16)30203-2
    1. Filipp M, Travis B, Henry S, Idzikowski E, Magnuson S, Loh M, Hellenbrand D, Hanna A. Differences in neuroplasticity after spinal cord injury in varying animal models and humans. Neural Regen Res. 2019 Jan;14(1):7–19. doi: 10.4103/1673-5374.243694. NeuralRegenRes_2019_14_1_7_243694
    1. Donati ARC, Shokur S, Morya E, Campos DSF, Moioli RC, Gitti CM, Augusto PB, Tripodi S, Pires CG, Pereira GA, Brasil FL, Gallo S, Lin AA, Takigami AK, Aratanha MA, Joshi S, Bleuler H, Cheng G, Rudolph A, Nicolelis MAL. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Sci Rep. 2016 Aug 11;6(1):30383. doi: 10.1038/srep30383. doi: 10.1038/srep30383.srep30383
    1. Shokur S, Donati ARC, Campos DSF, Gitti C, Bao G, Fischer D, Almeida S, Braga VAS, Augusto P, Petty C, Alho EJL, Lebedev M, Song AW, Nicolelis MAL. Training with brain-machine interfaces, visuo-tactile feedback and assisted locomotion improves sensorimotor, visceral, and psychological signs in chronic paraplegic patients. PLoS One. 2018 Nov 29;13(11):e0206464. doi: 10.1371/journal.pone.0206464. PONE-D-18-16777
    1. Shokur S, Gallo S, Moioli RC, Donati ARC, Morya E, Bleuler H, Nicolelis MA. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback. Sci Rep. 2016 Sep 19;6(1):32293. doi: 10.1038/srep32293. doi: 10.1038/srep32293.srep32293
    1. Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine. Mayo Clin Proc. 2012 Mar;87(3):268–79. doi: 10.1016/j.mayocp.2011.12.008. S0025-6196(12)00123-1
    1. Ros T, Enriquez-Geppert S, Zotev V, Young K, Wood G, Whitfield-Gabrieli S, Wan F, Vuilleumier P, Vialatte F, Van De Ville Dimitri, Todder D, Surmeli T, Sulzer J, Strehl U, Sterman M, Steiner N, Sorger B, Soekadar S, Sitaram R, Sherlin L, Schönenberg Michael, Scharnowski F, Schabus M, Rubia K, Rosa A, Reiner M, Pineda J, Paret C, Ossadtchi A, Nicholson A, Nan W, Minguez J, Micoulaud-Franchi J, Mehler D, Lührs Michael, Lubar J, Lotte F, Linden D, Lewis-Peacock J, Lebedev M, Lanius R, Kübler Andrea, Kranczioch C, Koush Y, Konicar L, Kohl S, Kober S, Klados M, Jeunet C, Janssen T, Huster R, Hoedlmoser K, Hirshberg L, Heunis S, Hendler T, Hampson M, Guggisberg A, Guggenberger R, Gruzelier J, Göbel Rainer W, Gninenko N, Gharabaghi A, Frewen P, Fovet T, Fernández Thalía, Escolano C, Ehlis A, Drechsler R, Christopher deCharms R, Debener S, De Ridder Dirk, Davelaar E, Congedo M, Cavazza M, Breteler M, Brandeis D, Bodurka J, Birbaumer N, Bazanova O, Barth B, Bamidis P, Auer T, Arns M, Thibault R. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist) Brain. 2020 Jun 01;143(6):1674–1685. doi: 10.1093/brain/awaa009. 5807912
    1. Rowald A, Komi S, Demesmaeker R, Baaklini E, Hernandez-Charpak SD, Paoles E, Montanaro H, Cassara A, Becce F, Lloyd B, Newton T, Ravier J, Kinany N, D'Ercole Marina, Paley A, Hankov N, Varescon C, McCracken L, Vat M, Caban M, Watrin A, Jacquet C, Bole-Feysot L, Harte C, Lorach H, Galvez A, Tschopp M, Herrmann N, Wacker M, Geernaert L, Fodor I, Radevich V, Van Den Keybus K, Eberle G, Pralong E, Roulet M, Ledoux J, Fornari E, Mandija S, Mattera L, Martuzzi R, Nazarian B, Benkler S, Callegari S, Greiner N, Fuhrer B, Froeling M, Buse N, Denison T, Buschman R, Wende C, Ganty D, Bakker J, Delattre V, Lambert H, Minassian K, van den Berg CAT, Kavounoudias A, Micera S, Van De Ville D, Barraud Q, Kurt E, Kuster N, Neufeld E, Capogrosso M, Asboth L, Wagner FB, Bloch J, Courtine G. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med. 2022 Feb 07;28(2):260–271. doi: 10.1038/s41591-021-01663-5.10.1038/s41591-021-01663-5
    1. Kaushal M, Oni-Orisan A, Chen G, Li W, Leschke J, Ward D, Kalinosky B, Budde M, Schmit B, Li S, Muqeet V, Kurpad S. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study. Brain Connect. 2017 Sep;7(7):413–423. doi: 10.1089/brain.2016.0468.10.1089/brain.2016.0468
    1. Kaushal M, Oni-Orisan A, Chen G, Li W, Leschke J, Ward BD, Kalinosky B, Budde MD, Schmit BD, Li S, Muqeet V, Kurpad SN. Evaluation of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Large-Scale Network Analysis Using Network-Based Statistic. J Neurotrauma. 2017 Mar 15;34(6):1278–1282. doi: 10.1089/neu.2016.4649.
    1. Oni-Orisan A, Kaushal M, Li W, Leschke J, Ward BD, Vedantam A, Kalinosky B, Budde MD, Schmit BD, Li S, Muqeet V, Kurpad SN. Alterations in Cortical Sensorimotor Connectivity following Complete Cervical Spinal Cord Injury: A Prospective Resting-State fMRI Study. PLoS One. 2016 Mar 8;11(3):e0150351. doi: 10.1371/journal.pone.0150351. PONE-D-15-43010
    1. Nizamis K, Athanasiou A, Almpani S, Dimitrousis C, Astaras A. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges. Sensors (Basel) 2021 Mar 16;21(6):2084. doi: 10.3390/s21062084. s21062084
    1. Athanasiou A, Xygonakis I, Pandria N, Kartsidis P, Arfaras G, Kavazidi K, Foroglou N, Astaras A, Bamidis Panagiotis D. Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms. Biomed Res Int. 2017;2017:5708937. doi: 10.1155/2017/5708937. doi: 10.1155/2017/5708937.
    1. Athanasiou A, Arfaras G, Pandria N, Xygonakis I, Foroglou N, Astaras A, Bamidis P. Wireless Brain-Robot Interface: User Perception and Performance Assessment of Spinal Cord Injury Patients. Wireless Communications and Mobile Computing. 2017;2017:1–16. doi: 10.1155/2017/2986423.
    1. Mitsopoulos Konstantinos, Terzopoulos Nikos, Praftsiotis Apostolos, Antoniou Panagiotis, Astaras Alexander, Pandria Niki, Arvanitidis Athanasios, Athanasiou Alkinoos, Magras Ioannis, Bamidis Panagiotis. Wearable sensor network monitoring muscle activation and kinematics for use in serious gaming rehabilitation. IEEE-EMBS Int Conf Biomed Heal Informatics (BHI 2021); July 27-30, 2021; Virtual Conference. New York, NY: IEEE; 2021. p. 39.
    1. Tresch MC, Jarc A. The case for and against muscle synergies. Curr Opin Neurobiol. 2009 Dec;19(6):601–7. doi: 10.1016/j.conb.2009.09.002. S0959-4388(09)00124-X
    1. Antoniou PE, Arfaras G, Pandria N, Athanasiou A, Ntakakis G, Babatsikos E, Nigdelis V, Bamidis P. Biosensor Real-Time Affective Analytics in Virtual and Mixed Reality Medical Education Serious Games: Cohort Study. JMIR Serious Games. 2020 Sep 02;8(3):e17823. doi: 10.2196/17823. v8i3e17823
    1. Xygonakis I, Athanasiou A, Pandria N, Kugiumtzis D, Bamidis PD. Decoding Motor Imagery through Common Spatial Pattern Filters at the EEG Source Space. Comput Intell Neurosci. 2018 Aug 01;2018:7957408–10. doi: 10.1155/2018/7957408. doi: 10.1155/2018/7957408.
    1. Billingham SAM, Whitehead AL, Julious SA. An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom Clinical Research Network database. BMC Med Res Methodol. 2013 Aug 20;13:104. doi: 10.1186/1471-2288-13-104. 1471-2288-13-104
    1. . [2022-08-28]. .
    1. Stallard N. Optimal sample sizes for phase II clinical trials and pilot studies. Stat Med. 2012 May 20;31(11-12):1031–42. doi: 10.1002/sim.4357.
    1. Julious SA. Sample size of 12 per group rule of thumb for a pilot study. Pharmaceut. Statist. 2005 Oct;4(4):287–291. doi: 10.1002/pst.185.
    1. Taşoğlu. Koyuncu E, Daylak R, Karacif DY, İnce Z, Yenigün Didem, Özgirgin Neşe. Demographic and clinical characteristics of persons with spinal cord injury in Turkey: One-year experience of a primary referral rehabilitation center. J Spinal Cord Med. 2018 Mar;41(2):157–164. doi: 10.1080/10790268.2016.1224215.
    1. Nijendijk JH, Post MW, van Asbeck FW. Epidemiology of traumatic spinal cord injuries in The Netherlands in 2010. Spinal Cord. 2014 Apr 21;52(4):258–63. doi: 10.1038/sc.2013.180.sc2013180
    1. Konstantinidis Evdokimos, Billis Antonis, Bratsas Charalampos, Siountas Anestis, Bamidis Panagiotis. Thessaloniki Active and Healthy Ageing Living Lab. 9th ACM Int Conf PErvasive Technol Relat to Assist Environ - PETRA '16; PETRA '16: 9th ACM International Conference on PErvasive Technologies Related to Assistive Environments; June 29, 2016; New York, NY. New York, NY: ACM Press; 2016. pp. 1–4.
    1. Michailidou C, Marston L, De Souza LH. Translation into Greek and initial validity and reliability testing of a modified version of the SCIM III, in both English and Greek, for self-use. Disabil Rehabil. 2016;38(2):180–8. doi: 10.3109/09638288.2015.1035454.
    1. Athanasiou Alkinoos, Alexandrou Alexandra, Paraskevopoulos Evangelos, Foroglou Nikolaos, Prassas Aristeidis, Bamidis Panagiotis. Towards a Greek adaptation of the Spinal Cord Independence Measure (SCIM). 15th European Congress of Neurosurgery; October 12-17, 2014; Prague, Czech Republic. 2015. pp. 184–187.
    1. Meseguer-Henarejos A, Sánchez-Meca Julio, López-Pina José-Antonio, Carles-Hernández Ricardo. Inter- and intra-rater reliability of the Modified Ashworth Scale: a systematic review and meta-analysis. Eur J Phys Rehabil Med. 2018 Aug;54(4):576–590. doi: 10.23736/S1973-9087.17.04796-7. S1973-9087.17.04796-7
    1. BECK AT. An inventory for measuring depression. Arch Gen Psychiatry. 1961 Jun 01;4(6):561–71. doi: 10.1001/archpsyc.1961.01710120031004.
    1. Beck AT, Steer RA, Carbin MG. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clinical Psychology Review. 1988 Jan;8(1):77–100. doi: 10.1016/0272-7358(88)90050-5.
    1. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology. 1988;56(6):893–897. doi: 10.1037/0022-006X.56.6.893.
    1. Marin RS, Biedrzycki RC, Firinciogullari S. Reliability and validity of the apathy evaluation scale. Psychiatry Research. 1991 Aug;38(2):143–162. doi: 10.1016/0165-1781(91)90040-v.
    1. Rosenberg M. APA PsycTests. Washington, DC: American Psychological Association; 1965. Rosenberg Self-Esteem Scale.
    1. Galanou C, Galanakis M, Alexopoulos E, Darviri C. Rosenberg Self-Esteem Scale Greek Validation on Student Sample. Psychology. 2014;05(08):819–827. doi: 10.4236/psych.2014.58093.
    1. Malouin F, Richards C, Jackson P, Lafleur M, Durand A, Doyon J. The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. J Neurol Phys Ther. 2007 Mar;31(1):20–9. doi: 10.1097/01.npt.0000260567.24122.64.
    1. Isaac A, Marks D, Russel D. An instrument for assessing imagery of movement: The Vividness of Movement Imagery Questionnaire (VMIQ) J Ment Imag. 1986 Jan;10(4):30. doi: 10.1037/t07980-000.
    1. Bartneck C, Kulić D, Croft E, Zoghbi S. Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. Int J of Soc Robotics. 2008 Nov 20;1(1):71–81. doi: 10.1007/s12369-008-0001-3.
    1. Zijlstra F, Van Doorn L. ResearchGate. Delft, The Netherlands: Department of Philosophy and Social Sciences, Delft University of Technology; 1985. [2022-08-29]. The construction of a scale to measure perceived effort. .
    1. Sauro Jeff, Dumas Joseph S. Comparison of three one-question, post-task usability questionnaires. CHI '09: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; April 4-9, 2009; Boston, MA. New York, NY: Association for Computing Machinery; 2009. pp. 1599–1608.
    1. Astaras Alexander, Athanasiou Alkinoos, Alexandrou Alexandra, Kartsidis Panagiotis, Moustakas Nikolaos, Bamidis Panagiotis. Double-blind greek translation and online implementation of the Godspeed robotics questionnaire. 6th Panhellenic Conference on Biomedical Technology (ELEVIT/IFMBE); May 2015; Athens, Greece. 2015. p. 34.
    1. Pandria Niki, Spachos Dimitrios, Athanasiou Alkinoos, Bamidis Panagiotis. Assessing Emotional Impact of Biofeedback and Neurofeedback Training in Smokers During a Smoking Cessation Project. IEEE 30th International Conference on Computer-Based Medical Systems; June 22-24, 2017; Thessaloniki, Greece. New York, NY: IEEE; 2017. pp. 486–491.
    1. Pickering JD, Panagiotis A, Ntakakis G, Athanassiou A, Babatsikos E, Bamidis PD. Assessing the difference in learning gain between a mixed reality application and drawing screencasts in neuroanatomy. Anat Sci Educ. 2022 May 06;15(3):628–635. doi: 10.1002/ase.2113.

Source: PubMed

3
Abonnieren