Early surfactant replacement guided by lung ultrasound in preterm newborns with RDS: the ULTRASURF randomised controlled trial

Javier Rodriguez-Fanjul, I Jordan, M Balaguer, A Batista-Muñoz, M Ramon, S Bobillo-Perez, Javier Rodriguez-Fanjul, I Jordan, M Balaguer, A Batista-Muñoz, M Ramon, S Bobillo-Perez

Abstract

This study aimed to investigate whether using lung ultrasound (LUS) scores in premature newborns with respiratory distress syndrome (RDS) allows for earlier surfactant therapy (within the first 3 h of life) than using FiO2 criteria. This was a randomised, non-blinded clinical trial conducted in a neonatal intensive care unit. The inclusion criteria were newborns with a gestational age of ≤ 32 weeks and RDS. Patients meeting the inclusion criteria were randomly assigned to two groups: the ultrasound group, administered surfactant based on LUS score and/or FiO2 threshold, and the control group, guided by FiO2 only. Fifty-six patients were included. The ultrasound group received surfactant earlier (1 h of life vs. 6 h, p < 0.001), with lower FiO2 (25% vs. 30%, p = 0.016) and lower CO2 (48 vs. 54, p = 0.011). After surfactant treatment, newborns in the ultrasound group presented a greater SpO2 (p = 0.001) and SpO2/FiO2 ratio (p = 0.012).Conclusions: LUS score allowed an earlier surfactant therapy, reduced oxygen exposure early in life and a better oxygenation after the treatment. This early surfactant replacement may lead to reduced oxygen exposure. What is Known: • Lung ultrasound scores predict the need for surfactant therapy in premature newborns. What is New: • This study shows that using lung ultrasound scores improves the timeliness of surfactant replacement compared with using FiO2 alone.

Keywords: Lung ultrasound; Premature newborns; Respiratory distress syndrome; Surfactant.

Conflict of interest statement

The authors declare that they have no conflicts of interest or financial relationship with any organization.

Figures

Fig. 1.
Fig. 1.
Study protocol algorithm. RDS, respiratory distress syndrome; GA, gestational age
Fig. 2
Fig. 2
Flow chart of patients
Fig. 3
Fig. 3
a Lung ultrasound of a newborn with an LUS score < 8. b Lung ultrasound of a newborn with an LUS score > 8
Fig. 4
Fig. 4
Pie graph representing the proportion of patients who received early surfactant therapy (within the first 3 h of life) in each group

References

    1. Aldana-Aguirre C, Pinto M, Featherstone RM, Kumar M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017;102(2):17–23. doi: 10.1136/archdischild-2015-310299.
    1. Sweet DG, Carnielli V, Greisen G, Hallamn M, Ozek E, Te Pas A, et al. European consensus guidelines on the management of respiratory distress syndrome-2019 update. Neonatology. 2019;115:432–451. doi: 10.1159/000499361.
    1. Bahadue FL, Soll R, Cochrane Neonatal group Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012;11(11):CD001456. doi: 10.1002/14651858.
    1. Raschetti R, Centorrino R, Letamendia E, Benachi A, Marfaing-Koka A, De Luca D. Estimation of early endogenous surfactant pool and CPAP failure in preterm neonates with RDS. Respir Res. 2019;20(1):75. doi: 10.1186/s12931-019-1040-z.
    1. Gortner L, Schüller SS, Herting E. Review demonstrates that less invasive surfactant administration in preterm neonates leads to fewer complications. Acta Paediatr. 2018;107(5):736–743. doi: 10.1111/apa.14161.
    1. Shari HMM, Naghibi S, Mahdavi E, Khademi G. Diagnostic utility of chest X-rays in neonatal respiratory distress: determining the sensitivity and specificity. Int J Pediatr. 2014;2(3):65–72.
    1. Roggini M, Pepino D, D’Avanzo M, Andreoli GM, Ceccanti S, Capocaccia P. Respiratory distress in newborn: evaluation of chest X-rays. Minerva Pediatr. 2010;62:217–219.
    1. Okterm A, Yigit S, Oguz B, Celik T, Halilogu M, Yurdakok M. Accuracy of lung ultrasonography in the diagnosis of respiratory distress syndrome in newborns. J Matern Fetal Neonatal Med. 2019;22:1–6. doi: 10.1080/14767058.2019.1605350.
    1. Liu Lung ultrasonography for the diagnosis of neonatal lung disease. J Matern Neonatal Med 27(8):856–861
    1. Rodriguez-Fanjul J, Balcells C, Aldecoa-Bilbao V, Moreno J, Iriondo M (2016) Lung ultrasound as a predictor of mechanical ventilation in neonates older than 32 weeks. Neonatology 110(3):198–203
    1. Gregorio-Hernández R, Arriaga-Redondo M, Pérez-Pérez A, Ramons-Navarro C, Sánchez-Luna M. Lung ultrasound in preterm infants with respiratory distress: experience in a neonatal intensive care unit. Eur J Pediatr. 2020;179(1):81–89. doi: 10.1007/s00431-019-03470-0.
    1. Corsini I, Parri N, Gozzini E, Coviello C, Leonardi V, Poggi C, Giacalone M, Bianconi T, Tofani L, Raimondi F, Dani C (2019) Lung ultrasound for the differential diagnosis of respiratory distress in neonates. Neonatology 115(1):77–84
    1. DeMartino L, Yousef N, Ben-Ammar R, Raimondi F, Shankar-Aguilera S, De Luca D (2018) Lung ultrasound score predicts surfactant need in extremely preterm neonates. Pediatrics 142(3)
    1. Brat R, Yousef N, Klifa R, Reynaud S, Shankar Aguilera S, De Luca D Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr 169(8):e151797. 10.1001/jamapediatrics.2015.1797
    1. Razak A, Faden M. Neonatal lung ultrasonography to evaluate need for surfactant or mechanical ventilation: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2020;105(2):164–171. doi: 10.1136/archdischild-2019-316832.
    1. Raschetti R, Yousef N, Vigo G, Marseglia G, Centorrino R, Ben-Ammar R. Echography-guided surfactant therapy to improve timeliness of surfactant replacement: a quality improvement project. J Pediatr. 2019;212:137–143. doi: 10.1016/j.jpeds.2019.04.020.
    1. Tipple TE, Ambalayanan N. Oxygen toxicity in the neonate: thinking beyond the balance. Clin Perinatol. 2019;46(3):435–447. doi: 10.1016/j.clp.2019.05.001.
    1. De Luca D, van Kaam AH, Tingay DG, Courtney SE, Danhaive O, Carnielli VP, et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir Med. 2017;5(8):657–666. doi: 10.1016/S2213-2600(17)30214-X.
    1. Dell’Orto V, Raschetti R, Centorrino R, Montane A, Tissieres P, Yousef N, Luca D. Short and long-term respiratory outcomes in neonates with ventilator-associated pneumonia. Pediatr Pulmonol. 2019;54(12):1982–1988. doi: 10.1002/ppul.24487.
    1. Higgins RD, Jobe AH, Koso-Thomas M, Bancalari E, Viscardi RM, Hartert TV, Ryan RM, Kallapur SG, Steinhorn RH, Konduri GG, Davis SD, Thebaud B, Clyman RI, Collaco JM, Martin CR, Woods JC, Finer NN, Raju TNK. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr. 2018;197:300–308. doi: 10.1016/j.jpeds.2018.01.043.
    1. Khemani RG, Smith LS, Zimmerman JJ, Erickson S, Pediatric Acute Lung Injury Consensus Conference Group Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16:23–40. doi: 10.1097/PCC.0000000000000432.
    1. Cogo PE, Facco M, Simonato M, De Luca D, De Terlizi F, Rizzotti U, et al. Pharmacokinetics and clinical predictors of surfactant redosing in respiratory distress syndrome. Intensive Care Med. 2011;37(3):510.517. doi: 10.1007/s00134-010-2091-2.
    1. Gomond-Le Goff C, Vivalda L, Foligno S, Loi B, Yousef N, De Luca D Effect of different probes and expertise on the interpretation reliability of point-of-care lung ultrasound. Chest. 10.1016/j.chest.2019
    1. Bobillo-Perez S, Girona-Alarcon M, Rodriguez-Fanjul J, Jordan I, Balaguer GM (2019) Lung ultrasound in children: what does it give us? Paediatr Respir Rev. 10.1016/j.prrv.2019.09.006
    1. Vergine M, Copetti R, Brusa G, Cattarossi L (2014) Lung ultrasound accuracy in respiratory distress syndrome and transient tachypnea of the newborn. Neonatology 106(2):87–93
    1. Raimondi F, Migliaro F, Verdoliva L, Gragnaniello D, Poggi G, Kosova R, Sansone C, Vallone G, Capasso L. Visual assessment versus computer-assisted gray scale analysis in the ultrasound evaluation of neonatal respiratory status. PLoS One. 2018;13(10):e0202397. doi: 10.1371/journal.pone.0202397.
    1. Autilio C, Echaide M, Benachi A, Marfaing-Koka A, Capoluongo ED, Pérez-Gil J, de Luca D. A noninvasive surfactant adsorption test predicting the need for surfactant therapy in preterm infants treated with continuous positive airway pressure. J Pediatr. 2017;182:66–73. doi: 10.1016/j.jpeds.2016.11.057.
    1. Chiumello D, Mongodi S, Algieri I, Vergani GL, Orlando A, Via G, Crimella F, Cressoni M, Mojoli F. Assessment of lung aeration and recruitment by CT scan ultrasound in acute respiratory distress syndrome patients. Crit Care Med. 2018;46:1761–1768. doi: 10.1097/CCM.0000000000003340.
    1. Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, Cernada M, Escobar J, Vento M. Oxygen and oxidative stress in the perinatal period. Redox Biol. 2017;12:674–681. doi: 10.1016/j.redox.2017.03.011.
    1. Perrone S, Laschi E, Buonocore G. Biomarkers of oxidative stress in the fetus and in the newborn. Free Radic Biol Med. 2019;142:23–31. doi: 10.1016/j.freeradbiomed.2019.03.034.
    1. Bookman L, Troy R, McCaffrey M, Randolph G. Using quality improvement methods to reduce variation in surfactant administration. BMJ Qual Saf. 2010;19:e23. doi: 10.1136/qshc.2009.034967.
    1. Tusor N, De Cunto A, Basma Y, Klein J, Meau-Petit V. Ventilator-associated pneumonia in neonates: the role of point of care lung ultrasound. Eur J Pediatr. 2020;26:1–10. doi: 10.1016/j.ejpn.2020.04.010.

Source: PubMed

3
Abonnieren