Sphingosine 1-phosphate Receptor Modulator Therapy for Multiple Sclerosis: Differential Downstream Receptor Signalling and Clinical Profile Effects

Jerold Chun, Gavin Giovannoni, Samuel F Hunter, Jerold Chun, Gavin Giovannoni, Samuel F Hunter

Abstract

Lysophospholipids are a class of bioactive lipid molecules that produce their effects through various G protein-coupled receptors (GPCRs). Sphingosine 1-phosphate (S1P) is perhaps the most studied lysophospholipid and has a role in a wide range of physiological and pathophysiological events, via signalling through five distinct GPCR subtypes, S1PR1 to S1PR5. Previous and continuing investigation of the S1P pathway has led to the approval of three S1PR modulators, fingolimod, siponimod and ozanimod, as medicines for patients with multiple sclerosis (MS), as well as the identification of new S1PR modulators currently in clinical development, including ponesimod and etrasimod. S1PR modulators have complex effects on S1PRs, in some cases acting both as traditional agonists as well as agonists that produce functional antagonism. S1PR subtype specificity influences their downstream effects, including aspects of their benefit:risk profile. Some S1PR modulators are prodrugs, which require metabolic modification such as phosphorylation via sphingosine kinases, resulting in different pharmacokinetics and bioavailability, contrasting with others that are direct modulators of the receptors. The complex interplay of these characteristics dictates the clinical profile of S1PR modulators. This review focuses on the S1P pathway, the characteristics and S1PR binding profiles of S1PR modulators, the mechanisms of action of S1PR modulators with regard to immune cell trafficking and neuroprotection in MS, together with a summary of the clinical effectiveness of the S1PR modulators that are approved or in late-stage development for patients with MS. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects (MP4 65540 kb).

Conflict of interest statement

Jerold Chun has received consulting fees or research support from Abbott, AbbVie, Amira, Arena Pharmaceuticals, Biogen Idec, BiolineRX, Blade Therapeutics, Brainstorm Cell Therapeutics, Celgene, GlaxoSmithKline, Inception Sciences, Johnson & Johnson, Merck, Mitsubishi Tanabe, Novartis, Ono Pharmaceuticals, Pfizer, SKAI Ventures and Taisho Pharmaceutical Co. Gavin Giovannoni has received speaker honoraria and consulting fees from AbbVie, Actelion, Almirall, Atara Bio, Bayer Schering Pharma, Biogen Idec, Five Prime, GlaxoSmithKline, GW Pharmaceuticals, Ironwood, Merck & Co., Merck KGaA, Novartis, Pfizer Inc., Protein Discovery Laboratories, Sanofi-Genzyme, Teva Pharmaceutical Industries Ltd, UCB and Vertex Pharmaceuticals. Samuel F. Hunter reports having served as a consultant for AbbVie, Bayer, Genentech/Roche and Sanofi-Genzyme; participation in clinical research trials for Actelion, Adamas, Genentech/Roche, Osmotica and Teva; receipt of research grant support from Sanofi-Genzyme; serving on speakers’ bureaux for Mallinckrodt, Novartis, Sanofi-Genzyme and Teva.

Figures

Fig. 1
Fig. 1
Lysophospholipid receptors and their downstream intracellular signalling pathways. Lysophospholipid ligands (S1P, LPA, LPI and LysoPS) bind to their cognate GPCRs, which activate heterotrimeric G-proteins (defined here by their α subunits) to initiate downstream signalling cascades. The five S1PRs are highlighted in coloured text. Major signalling pathways activated through Gi/o, Gq, G12/13 and Gs proteins are shown. Signalling through Gi/o can promote: (1) activation of the small GTPase Ras and the ERK to promote proliferation; (2) activation of PI3K and PKB/Akt to increase survival and to prevent apoptosis with important implications for neuroprotection; (3) induction of PI3K and the small GTPase Rac to promote migration, to enhance endothelial barrier function and to induce vasodilation; and (4) activation of PKC and PLC to increase intracellular free calcium (Ca2+), which is required for many cellular responses. Furthermore, signalling through Gi/o can inhibit AC activity to reduce cAMP. Signalling through Gq primarily activates PLC pathways and signalling through G12/13 can promote activation of the small GTPase Rho and the ROCK to inhibit migration, to reduce endothelial barrier function and to induce vasoconstriction. S1PR signalling does not appear to be transduced via Gs. Figure elements reproduced/adapted with permission [15, 55]. AC adenylyl cyclase, ATP adenosine triphosphate, cAMP cyclic adenosine monophosphate, DAG diacylglycerol, EPAC exchange protein activated by cAMP, ERK extracellular signal-regulated kinase, GPCRs G-protein coupled receptors, GTPase guanosine triphosphatase, IP3 inositol tri-phosphate, LPA lysophosphatidic acid, LPI lysophosphatidyl inositol, LysoPS lysophosphatidyl serine, MAPK mitogen-activated protein kinase, PI3K phosphatidylinositol 3-kinase, PIP phopsatydlinositol phosphate, PKA protein kinase A, PLC phospholipase C, PKB/Akt protein kinase B, PKC protein kinase C, ROCK Rho-associated kinase, S1P sphingosine 1-phosphate, S1PRs sphingosine 1-phosphate receptors
Fig. 2
Fig. 2
Interaction of S1PR modulators with S1PR subtypes, downstream Gα subunit targets and their physiological consequences. S1PR modulators are agonists of S1PR1 and produce functional antagonism. Therefore, the net effect of treatment would be to depress signalling through these pathways. In contrast, S1PR modulators appear to act as traditional agonists of S1PR5; the expected outcome of treatment would therefore be increased activity through these pathways, although forms of antagonism may occur. Crosstalk between S1PRs and downstream G-protein signalling occurs, with some (but not all) crosstalk depicted (coloured arrows); potential crosstalk through Gq and resulting downstream calcium signalling may have neuroprotective effects. It is important to note that the different pathways are subject to regulation by other activation and differentiation signals that may also affect the relative expression of individual S1PR subtypes on individual cells. Figure elements reproduced/adapted with permission [15, 55]. aRequires phosphorylation in situ for activity. CV cardiovascular, S1P sphingosine 1-phosphate, S1PR sphingosine 1-phosphate receptor, TH17 T-helper cell
Fig. 3
Fig. 3
Phylogenetic relationships between S1PRs and other LP receptor family members. Phylogenetic tree of human G-protein coupled receptors and LP receptors. GPCR G-protein coupled receptor, LP lysophospholipid, LPA lysophosphatidic acid receptor, LPI lysophosphatidyl inositol receptor, LyPS lysophosphatidyl serine receptor, S1P sphingosine 1-phosphate receptor. Reproduced/adapted with permission from Chun [15]
Fig. 4
Fig. 4
Peripheral and CNS mechanisms of action of S1PR modulators. a Binding of S1PR modulators to S1PR1 on central memory and naïve T cells produces S1PR1 internalisation, resulting in cells that are unresponsive to S1PR1-mediated signalling. Any new S1PR1 being produced inside the cell will also be functionally antagonised until S1PR1 modulation is removed. Therefore, activated central memory/naïve T cells do not leave the lymph node in response to S1P signals. By inhibiting their movement into the circulation, S1PR modulator treatment prevents these autoreactive cells from migrating into the CNS. In contrast, the levels of peripheral effector memory T cells are largely unaffected by S1PR modulators, thus preserving immunosurveillance and the capacity to respond to and contain locally invading pathogens. b S1PR modulators can also cross the blood–brain barrier (to varying degrees) and have direct effects on the S1PR subtypes expressed throughout the CNS. c Distribution, signalling and downstream biological effects of targeting S1PR subtypes in CNS cells. Information is from a composite review of the literature covering many different growth conditions in culture, developmental stages, disease states or animal models [49]. CNS central nervous system, OPC oligodendrocyte precursor cell, S1P sphingosine 1-phosphate, S1PR sphingosine 1-phosphate receptor

References

    1. Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR review 8. Br J Pharmacol. 2014;171(15):3575–3594. doi: 10.1111/bph.12678.
    1. Mutoh T, Rivera R, Chun J. Insights into the pharmacological relevance of lysophospholipid receptors. Br J Pharmacol. 2012;165(4):829–844. doi: 10.1111/j.1476-5381.2011.01622.x.
    1. Kihara Y, Misuno H, Chun J. Lysophospholipid receptors in drug discovery. Exp Cell Res. 2015;333(2):171–177. doi: 10.1016/j.yexcr.2014.11.020.
    1. Kunkel GT, Maceyka M, Milstien S, Spiegel S. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov. 2013;12(9):688–702. doi: 10.1038/nrd4099.
    1. Novartis Pharmaceuticals Corporation. Mayzent®—prescribing information (2019). . Accessed 19 Sept 2019.
    1. European Medicines Agency. Mayzent: EPAR—product information (2020). . Accessed 13 Feb 2020.
    1. Australian Government: Department of Health Therapeutic Goods Administration. Australian prescription medicine decision summaries—Mayzent. (2019). Accessed 13 Feb 2020.
    1. Novartis Pharma KK: Novartis receives simultaneous approval for five new products from Japanese Ministry of Health, Labour and Welfare, offering Japanese patients a broad range of novel treatment options. (2020). Accessed 29 July 2020.
    1. Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391(10127):1263–1273. doi: 10.1016/S0140-6736(18)30475-6.
    1. Bristol Myers Squibb Pharmaceutical Corporation: Zeposia®—prescribing information. (2020). Accessed 7 Apr 2020.
    1. Comi G, Kappos L, Selmaj KW, Bar-Or A, Arnold DL, Steinman L, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol. 2019;18(11):1009–1020. doi: 10.1016/S1474-4422(19)30239-X.
    1. Cohen JA, Comi G, Selmaj KW, Bar-Or A, Arnold DL, Steinman L, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 2019;18(11):1021–1033. doi: 10.1016/S1474-4422(19)30238-8.
    1. European Medicines Agency: Zeposia—authorisation details. (2020). Accessed 22 July 2020.
    1. Gardell SE, Dubin AE, Chun J. Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med. 2006;12(2):65–75. doi: 10.1016/j.molmed.2005.12.001.
    1. Chun J, Kihara Y, Jonnalagadda D, Blaho VA. Fingolimod: lessons learned and new opportunities for treating multiple sclerosis and other disorders. Annu Rev Pharmacol Toxicol. 2019;59:149–170. doi: 10.1146/annurev-pharmtox-010818-021358.
    1. Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Annu Rev Biochem. 2004;73:321–354. doi: 10.1146/annurev.biochem.73.011303.073731.
    1. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010;50:157–186. doi: 10.1146/annurev.pharmtox.010909.105753.
    1. Fukushima N, Ishii I, Contos JJ, Weiner JA, Chun J. Lysophospholipid receptors. Annu Rev Pharmacol Toxicol. 2001;41:507–534. doi: 10.1146/annurev.pharmtox.41.1.507.
    1. Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol. 2003;4(5):397–407. doi: 10.1038/nrm1103.
    1. Chun J, Weiner JA, Fukushima N, Contos JJ, Zhang G, Kimura Y, et al. Neurobiology of receptor-mediated lysophospholipid signaling. From the first lysophospholipid receptor to roles in nervous system function and development. Ann N Y Acad Sci. 2000;905:110–117. doi: 10.1111/j.1749-6632.2000.tb06543.x.
    1. Soliven B, Miron V, Chun J. The neurobiology of sphingosine 1-phosphate signaling and sphingosine 1-phosphate receptor modulators. Neurology. 2011;76(8 Suppl 3):S9–S14. doi: 10.1212/WNL.0b013e31820d9507.
    1. Blaho VA, Hla T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev. 2011;111(10):6299–6320. doi: 10.1021/cr200273u.
    1. Meacci E, Garcia-Gil M. S1P/S1P receptor signaling in neuromuscolar disorders. Int J Mol Sci. 2019;20(24):6364. doi: 10.3390/ijms20246364.
    1. Choi JW, Lee CW, Chun J. Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochim Biophys Acta. 2008;1781(9):531–539. doi: 10.1016/j.bbalip.2008.03.004.
    1. Christensen PM, Bosteen MH, Hajny S, Nielsen LB, Christoffersen C. Apolipoprotein M mediates sphingosine-1-phosphate efflux from erythrocytes. Sci Rep. 2017;7(1):14983. doi: 10.1038/s41598-017-15043-y.
    1. Cantalupo A, Di Lorenzo A. S1P signaling and de novo biosynthesis in blood pressure homeostasis. J Pharmacol Exp Ther. 2016;358(2):359–370. doi: 10.1124/jpet.116.233205.
    1. Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Investig. 2004;113(4):569–581. doi: 10.1172/JCI18004.
    1. Hajny S, Christoffersen C. A novel perspective on the ApoM-S1P axis, highlighting the metabolism of ApoM and its role in liver fibrosis and neuroinflammation. Int J Mol Sci. 2017;18(8):1636. doi: 10.3390/ijms18081636.
    1. Vogt D, Stark H. Therapeutic strategies and pharmacological tools influencing S1P signaling and metabolism. Med Res Rev. 2017;37(1):3–51. doi: 10.1002/med.21402.
    1. Urbano M, Guerrero M, Rosen H, Roberts E. Modulators of the sphingosine 1-phosphate receptor 1. Bioorg Med Chem Lett. 2013;23(23):6377–6389. doi: 10.1016/j.bmcl.2013.09.058.
    1. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, et al. Crystal structure of a lipid G protein-coupled receptor. Science. 2012;335(6070):851–855. doi: 10.1126/science.1215904.
    1. Chrencik JE, Roth CB, Terakado M, Kurata H, Omi R, Kihara Y, et al. Crystal structure of antagonist bound human lysophosphatidic acid receptor 1. Cell. 2015;161(7):1633–1643. doi: 10.1016/j.cell.2015.06.002.
    1. Blaho VA, Chun J. ‘Crystal’ clear? Lysophospholipid receptor structure insights and controversies. Trends Pharmacol Sci. 2018;39(11):953–966. doi: 10.1016/j.tips.2018.08.006.
    1. Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem. 2002;277(24):21453–21457. doi: 10.1074/jbc.C200176200.
    1. Sugahara K, Maeda Y, Shimano K, Mogami A, Kataoka H, Ogawa K, et al. Amiselimod, a novel sphingosine 1-phosphate receptor-1 modulator, has potent therapeutic efficacy for autoimmune diseases, with low bradycardia risk. Br J Pharmacol. 2017;174(1):15–27. doi: 10.1111/bph.13641.
    1. Pan S, Gray NS, Gao W, Mi Y, Fan Y, Wang X, et al. Discovery of BAF312 (siponimod), a potent and selective S1P receptor modulator. ACS Med Chem Lett. 2013;4(3):333–337. doi: 10.1021/ml300396r.
    1. Kovarik JM, Schmouder R, Barilla D, Wang Y, Kraus G. Single-dose FTY720 pharmacokinetics, food effect, and pharmacological responses in healthy subjects. Br J Clin Pharmacol. 2004;57(5):586–591. doi: 10.1111/j.1365-2125.2003.02065.x.
    1. Sanna MG, Vincent KP, Repetto E, Nguyen N, Brown SJ, Abgaryan L, et al. Bitopic sphingosine 1-phosphate receptor 3 (S1P3) antagonist rescue from complete heart block: pharmacological and genetic evidence for direct S1P3 regulation of mouse cardiac conduction. Mol Pharmacol. 2016;89(1):176–186. doi: 10.1124/mol.115.100222.
    1. Gergely P, Nuesslein-Hildesheim B, Guerini D, Brinkmann V, Traebert M, Bruns C, et al. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br J Pharmacol. 2012;167(5):1035–1047. doi: 10.1111/j.1476-5381.2012.02061.x.
    1. Krosser S, Wolna P, Fischer TZ, Boschert U, Stoltz R, Zhou M, et al. Effect of ceralifimod (ONO-4641) on lymphocytes and cardiac function: randomized, double-blind, placebo-controlled trial with an open-label fingolimod arm. J Clin Pharmacol. 2015;55(9):1051–1060. doi: 10.1002/jcph.513.
    1. Fischer I, Alliod C, Martinier N, Newcombe J, Brana C, Pouly S. Sphingosine kinase 1 and sphingosine 1-phosphate receptor 3 are functionally upregulated on astrocytes under pro-inflammatory conditions. PLoS One. 2011;6(8):e23905. doi: 10.1371/journal.pone.0023905.
    1. Dusaban SS, Chun J, Rosen H, Purcell NH, Brown JH. Sphingosine 1-phosphate receptor 3 and RhoA signaling mediate inflammatory gene expression in astrocytes. J Neuroinflamm. 2017;14(1):111. doi: 10.1186/s12974-017-0882-x.
    1. Chakkour M, Kreydiyyeh S. FTY720P upregulates the Na+/K+ ATPase in HepG2 cells by activating S1PR3 and inducing PGE2 release. Cell Physiol Biochem. 2019;53(3):518–531. doi: 10.33594/000000155.
    1. Jongsma M, van Unen J, van Loenen PB, Michel MC, Peters SL, Alewijnse AE. Different response patterns of several ligands at the sphingosine-1-phosphate receptor subtype 3 (S1P(3)) Br J Pharmacol. 2009;156(8):1305–1311. doi: 10.1111/j.1476-5381.2009.00134.x.
    1. Riddy DM, Stamp C, Sykes DA, Charlton SJ, Dowling MR. Reassessment of the pharmacology of sphingosine-1-phosphate S1P3 receptor ligands using the DiscoveRx PathHunter and Ca2+ release functional assays. Br J Pharmacol. 2012;167(4):868–880. doi: 10.1111/j.1476-5381.2012.02032.x.
    1. Huwiler A, Zangemeister-Wittke U. The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: recent findings and new perspectives. Pharmacol Ther. 2018;185:34–49. doi: 10.1016/j.pharmthera.2017.11.001.
    1. Masse K, Kyuno J, Bhamra S, Jones EA. The lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) receptor gene families: cloning and comparative expression analysis in Xenopus laevis. Int J Dev Biol. 2010;54(8–9):1361–1374. doi: 10.1387/ijdb.103068km.
    1. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427(6972):355–360. doi: 10.1038/nature02284.
    1. Groves A, Kihara Y, Chun J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J Neurol Sci. 2013;328(1–2):9–18. doi: 10.1016/j.jns.2013.02.011.
    1. Prager B, Spampinato SF, Ransohoff RM. Sphingosine 1-phosphate signaling at the blood-brain barrier. Trends Mol Med. 2015;21(6):354–363. doi: 10.1016/j.molmed.2015.03.006.
    1. Takabe K, Paugh SW, Milstien S, Spiegel S. “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev. 2008;60(2):181–195. doi: 10.1124/pr.107.07113.
    1. Bigaud M, Guerini D, Billich A, Bassilana F, Brinkmann V. Second generation S1P pathway modulators: research strategies and clinical developments. Biochim Biophys Acta. 2014;1841(5):745–758. doi: 10.1016/j.bbalip.2013.11.001.
    1. Schulze T, Golfier S, Tabeling C, Rabel K, Graler MH, Witzenrath M, et al. Sphingosine-1-phospate receptor 4 (S1P(4)) deficiency profoundly affects dendritic cell function and TH17-cell differentiation in a murine model. FASEB J. 2011;25(11):4024–4036. doi: 10.1096/fj.10-179028.
    1. Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther. 2007;115(1):84–105. doi: 10.1016/j.pharmthera.2007.04.006.
    1. Comi G, Hartung HP, Bakshi R, Williams IM, Wiendl H. Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs. 2017;77(16):1755–1768. doi: 10.1007/s40265-017-0814-1.
    1. Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ, Pereira JP, et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med. 2009;206(11):2469–2481. doi: 10.1084/jem.20090525.
    1. Windh RT, Lee MJ, Hla T, An S, Barr AJ, Manning DR. Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J Biol Chem. 1999;274(39):27351–27358. doi: 10.1074/jbc.274.39.27351.
    1. Young N, Van Brocklyn JR. Signal transduction of sphingosine-1-phosphate G protein-coupled receptors. ScientificWorldJournal. 2006;6:946–966. doi: 10.1100/tsw.2006.182.
    1. Gajofatto A. Spotlight on siponimod and its potential in the treatment of secondary progressive multiple sclerosis: the evidence to date. Drug Des Devel Ther. 2017;11:3153–3157. doi: 10.2147/DDDT.S122249.
    1. Scott FL, Clemons B, Brooks J, Brahmachary E, Powell R, Dedman H, et al. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br J Pharmacol. 2016;173(11):1778–1792. doi: 10.1111/bph.13476.
    1. Brossard P, Derendorf H, Xu J, Maatouk H, Halabi A, Dingemanse J. Pharmacokinetics and pharmacodynamics of ponesimod, a selective S1P1 receptor modulator, in the first-in-human study. Br J Clin Pharmacol. 2013;76(6):888–896. doi: 10.1111/bcp.12129.
    1. Piali L, Froidevaux S, Hess P, Nayler O, Bolli MH, Schlosser E, et al. The selective sphingosine 1-phosphate receptor 1 agonist ponesimod protects against lymphocyte-mediated tissue inflammation. J Pharmacol Exp Ther. 2011;337(2):547–556. doi: 10.1124/jpet.110.176487.
    1. Tran JQ, Hartung JP, Peach RJ, Boehm MF, Rosen H, Smith H, et al. Results from the first-in-human study with ozanimod, a novel, selective sphingosine-1-phosphate receptor modulator. J Clin Pharmacol. 2017;57(8):988–996. doi: 10.1002/jcph.887.
    1. Tran JQ, Zhang P, Surapaneni S, Selkirk J, Yan G, Palmisano M. Absorption, metabolism, and excretion, in vitro pharmacology, and clinical pharmacokinetics of ozanimod, a novel sphingosine 1-phosphate receptor agonist. Mult Scler. 2019;25(S2):524.
    1. Tran JQ, Hartung JP, Olson AD, Mendzelevski B, Timony GA, Boehm MF, et al. Cardiac safety of ozanimod, a novel sphingosine-1-phosphate receptor modulator: results of a thorough QT/QTc study. Clin Pharmacol Drug Dev. 2018;7(3):263–276. doi: 10.1002/cpdd.383.
    1. Rasche L, Paul F. Ozanimod for the treatment of relapsing remitting multiple sclerosis. Expert Opin Pharmacother. 2018;19(18):2073–2086. doi: 10.1080/14656566.2018.1540592.
    1. Olsson T, Boster A, Fernandez O, Freedman MS, Pozzilli C, Bach D, et al. Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J Neurol Neurosurg Psychiatry. 2014;85(11):1198–1208. doi: 10.1136/jnnp-2013-307282.
    1. Xu J, Gray F, Henderson A, Hicks K, Yang J, Thompson P, et al. Safety, pharmacokinetics, pharmacodynamics, and bioavailability of GSK2018682, a sphingosine-1-phosphate receptor modulator, in healthy volunteers. Clin Pharmacol Drug Dev. 2014;3(3):170–178. doi: 10.1002/cpdd.98.
    1. Brinkmann V. FTY720 (fingolimod) in multiple sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol. 2009;158(5):1173–1182. doi: 10.1111/j.1476-5381.2009.00451.x.
    1. Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33(2):91–101. doi: 10.1097/WNF.0b013e3181cbf825.
    1. Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci USA. 2011;108(2):751–756. doi: 10.1073/pnas.1014154108.
    1. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401. doi: 10.1056/NEJMoa0909494.
    1. Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(6):545–556. doi: 10.1016/S1474-4422(14)70049-3.
    1. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–415. doi: 10.1056/NEJMoa0907839.
    1. Sastre-Garriga J, Tur C, Pareto D, Vidal-Jordana A, Auger C, Rio J, et al. Brain atrophy in natalizumab-treated patients: a 3-year follow-up. Mult Scler. 2015;21(6):749–756. doi: 10.1177/1352458514556300.
    1. Camm J, Hla T, Bakshi R, Brinkmann V. Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am Heart J. 2014;168(5):632–644. doi: 10.1016/j.ahj.2014.06.028.
    1. O’Sullivan C, Schubart A, Mir AK, Dev KK. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflamm. 2016;13:31. doi: 10.1186/s12974-016-0494-x.
    1. Selmaj K, Li DK, Hartung HP, Hemmer B, Kappos L, Freedman MS, et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013;12(8):756–767. doi: 10.1016/S1474-4422(13)70102-9.
    1. Jurcevic S, Juif PE, Hamid C, Greenlaw R, D’Ambrosio D, Dingemanse J. Effects of multiple-dose ponesimod, a selective S1P1 receptor modulator, on lymphocyte subsets in healthy humans. Drug Des Devel Ther. 2017;11:123–131. doi: 10.2147/DDDT.S120399.
    1. Bigaud M, Tisserand S, Fuchs-Loesle P, Guerini D. The S1P5 receptor is not down-modulated in response to selective agonists. Mult Scler. 2018;24(S2):913.
    1. Hammarlund-Udenaes M, Friden M, Syvanen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res. 2008;25(8):1737–1750. doi: 10.1007/s11095-007-9502-2.
    1. Tavares A, Barret O, Alagille D, Morley T, Papin C, Maguire RP, et al. Brain distribution of MS565, an imaging analogue of siponimod (BAF312), in non-human primates. Neurology. 2014;82(P1):168.
    1. Tamagnan G, Tavares A, Barret O, Alagille D, Seibyl J, Marek K, et al. Brain distribution of BZM055, an analog of fingolimod (FTY720), in human. Mult Scler. 2012;18(10 S4):Abstract P839.
    1. Bigaud M, Perdoux J, Ramseier P, Tisserand S, Urban B, Beerli C. Pharmacokinetic/pharmacodynamic characterization of siponimod (BAF312) in blood versus brain in experimental autoimmune encephalomyelitis mice (P2.2-066). Neurology. 2019;92 (15 Supplement):2.2-066P.
    1. Bigaud M, Tisserand S, Ramseier P, Lang M, Perdoux J, Urban B, et al. Differentiated pharmacokinetic/pharmacodynamic (PK/PD) profiles for siponimod (BAF312) versus fingolimod. Mult Scler. 2019;25(S2):300–301.
    1. Kim HJ, Miron VE, Dukala D, Proia RL, Ludwin SK, Traka M, et al. Neurobiological effects of sphingosine 1-phosphate receptor modulation in the cuprizone model. FASEB J. 2011;25(5):1509–1518. doi: 10.1096/fj.10-173203.
    1. Sheridan GK, Dev KK. S1P1 receptor subtype inhibits demyelination and regulates chemokine release in cerebellar slice cultures. Glia. 2012;60(3):382–392. doi: 10.1002/glia.22272.
    1. O’Sullivan S, Dev KK. Sphingosine-1-phosphate receptor therapies: advances in clinical trials for CNS-related diseases. Neuropharmacology. 2017;113(Pt B):597–607. doi: 10.1016/j.neuropharm.2016.11.006.
    1. Pyne NJ, Pyne S. Sphingosine 1-phosphate receptor 1 signaling in mammalian cells. Molecules. 2017;22(3):344. doi: 10.3390/molecules22030344.
    1. Mehling M, Brinkmann V, Antel J, Bar-Or A, Goebels N, Vedrine C, et al. FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology. 2008;71(16):1261–1267. doi: 10.1212/01.wnl.0000327609.57688.ea.
    1. Wu Q, Mills EA, Wang Q, Dowling CA, Fisher C, Kirch B, et al. Siponimod enriches regulatory T and B lymphocytes in secondary progressive multiple sclerosis. JCI Insight. 2020;5(3):e134251. doi: 10.1172/jci.insight.134251.
    1. Dehmel T, Heininger M, Pleiser S, Seibert S, Putzki N, Bernd K, et al. Cellular composition of peripheral blood mononuclear cells during 4 years long-term treatment with fingolimod. Neurology. 2017;88(Suppl.16):P5.364.
    1. Moreno-Torres I, Gonzalez-Garcia C, Marconi M, Garcia-Grande A, Rodriguez-Esparragoza L, Elvira V, et al. Immunophenotype and transcriptome profile of patients with multiple sclerosis treated with fingolimod: setting up a model for prediction of response in a 2-year translational study. Front Immunol. 2018;9:1693. doi: 10.3389/fimmu.2018.01693.
    1. Novartis Pharmaceuticals Corporation: Data on file (August 2020). GILENYA exposure. May 2020 cutoff (2020). Accessed 2 Sept 2020.
    1. Arvin AM, Wolinsky JS, Kappos L, Morris MI, Reder AT, Tornatore C, et al. Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMA Neurol. 2015;72(1):31–39. doi: 10.1001/jamaneurol.2014.3065.
    1. Novartis Pharmaceuticals Corporation: Gilenya®—prescribing information. (2017). Accessed 11 Apr 2018.
    1. Centers for Disease Control and Prevention: Varicella vaccine recommendations. 2019. . Accessed 22 July 2020.
    1. Ufer M, Shakeri-Nejad K, Gardin A, Su Z, Paule I, Marbury TC, et al. Impact of siponimod on vaccination response in a randomized, placebo-controlled study. Neurol Neuroimmunol Neuroinflamm. 2017;4(6):e398. doi: 10.1212/NXI.0000000000000398.
    1. Hunter SF, Bowen JD, Reder AT. The direct effects of fingolimod in the central nervous system: implications for relapsing multiple sclerosis. CNS Drugs. 2016;30(2):135–147. doi: 10.1007/s40263-015-0297-0.
    1. Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, et al. Sphingosine 1-phosphate receptors and metabolic enzymes as druggable targets for brain diseases. Front Pharmacol. 2019;10:807. doi: 10.3389/fphar.2019.00807.
    1. Zhang Y, Li X, Ciric B, Ma CG, Gran B, Rostami A, et al. Effect of fingolimod on neural stem cells: a novel mechanism and broadened application for neural repair. Mol Ther. 2017;25(2):401–415. doi: 10.1016/j.ymthe.2016.12.008.
    1. Palumbo S, Pellegrini S. Experimental in vivo models of multiple sclerosis: state of the art [Internet] In: Zagon IS, McLaughlin PJ, editors. Multiple sclerosis: perspectives in treatment and pathogenesis. Brisbane (AU): Codon Publications; 2017.
    1. Groves A, Kihara Y, Jonnalagadda D, Rivera R, Kennedy G, Mayford M, et al. A functionally defined in vivo astrocyte population identified by c-Fos activation in a mouse model of multiple sclerosis modulated by S1P signaling: immediate-early astrocytes (ieAstrocytes) eNeuro. 2018;5(5):ENEURO.0239-18.2018. doi: 10.1523/eneuro.0239-18.2018.
    1. Rothhammer V, Kenison JE, Tjon E, Takenaka MC, de Lima KA, Borucki DM, et al. Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proc Natl Acad Sci USA. 2017;114(8):2012–2017. doi: 10.1073/pnas.1615413114.
    1. Wu C, Leong SY, Moore CS, Cui QL, Gris P, Bernier LP, et al. Dual effects of daily FTY720 on human astrocytes in vitro: relevance for neuroinflammation. J Neuroinflamm. 2013;10:41. doi: 10.1186/1742-2094-10-41.
    1. Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, et al. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflamm. 2016;13(1):207. doi: 10.1186/s12974-016-0686-4.
    1. Ward LA, Lee DS, Sharma A, Wang A, Naouar I, Ma XI, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5(1):e132522. doi: 10.1172/jci.insight.132522.
    1. Seabrook TJ, Smith P, Schweitzer A, Wallström E, Nuesslein-Hildesheim B. Efficacy of the selective S1P 1/5 modulator, BAF312 in established experimental autoimmune encephalomyelitis and redistribution of S1P1 and S1P5 in the inflamed human CNS tissue. Mult Scler. 2010;16:S301.
    1. Cuzzocrea S, Doyle T, Campolo M, Paterniti I, Esposito E, Farr SA, et al. Sphingosine 1-phosphate receptor subtype 1 as a therapeutic target for brain trauma. J Neurotrauma. 2018;35(13):1452–1466. doi: 10.1089/neu.2017.5391.
    1. Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, et al. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol. 2015;11(12):711–724. doi: 10.1038/nrneurol.2015.222.
    1. Hundehege P, Cerina M, Eichler S, Thomas C, Herrmann AM, Gobel K, et al. The next-generation sphingosine-1 receptor modulator BAF312 (siponimod) improves cortical network functionality in focal autoimmune encephalomyelitis. Neural Regen Res. 2019;14(11):1950–1960. doi: 10.4103/1673-5374.259622.
    1. Musella A, Gentile A, Guadalupi L, Rizzo FR, De Vito F, Fresegna D, et al. Central modulation of selective sphingosine-1-phosphate receptor 1 ameliorates experimental multiple sclerosis. Cells. 2020;9(5):1290. doi: 10.3390/cells9051290.
    1. Dong YF, Guo RB, Ji J, Cao LL, Zhang L, Chen ZZ, et al. S1PR3 is essential for phosphorylated fingolimod to protect astrocytes against oxygen-glucose deprivation-induced neuroinflammation via inhibiting TLR2/4-NFkappaB signalling. J Cell Mol Med. 2018;22(6):3159–3166. doi: 10.1111/jcmm.13596.
    1. Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflamm. 2011;8:76. doi: 10.1186/1742-2094-8-76.
    1. Tiwari-Woodruff S, Yamate-Morgan H, Sekyi M, Lauderdale K, Hasselmann J, Schubart A. The sphingosine 1-phosphate (s1p) receptor modulator, siponimod decreases oligodendrocyte cell death and axon demyelination in a mouse model of multiple sclerosis. Neurology. 2016;86(16 SUPPL):P5.325.
    1. Mannioui A, Vauzanges Q, Fini JB, Henriet E, Sekizar S, Azoyan L, et al. The Xenopus tadpole: an in vivo model to screen drugs favoring remyelination. Mult Scler. 2018;24(11):1421–1432. doi: 10.1177/1352458517721355.
    1. Miron VE, Ludwin SK, Darlington PJ, Jarjour AA, Soliven B, Kennedy TE, et al. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am J Pathol. 2010;176(6):2682–2694. doi: 10.2353/ajpath.2010.091234.
    1. Yazdi A, Baharvand H, Javan M. Enhanced remyelination following lysolecithin-induced demyelination in mice under treatment with fingolimod (FTY720) Neuroscience. 2015;311:34–44. doi: 10.1016/j.neuroscience.2015.10.013.
    1. Nagai J, Uchida H, Matsushita Y, Yano R, Ueda M, Niwa M, et al. Autotaxin and lysophosphatidic acid1 receptor-mediated demyelination of dorsal root fibers by sciatic nerve injury and intrathecal lysophosphatidylcholine. Mol Pain. 2010;6:78. doi: 10.1186/1744-8069-6-78.
    1. Anliker B, Choi JW, Lin ME, Gardell SE, Rivera RR, Kennedy G, et al. Lysophosphatidic acid (LPA) and its receptor, LPA1, influence embryonic schwann cell migration, myelination, and cell-to-axon segregation. Glia. 2013;61(12):2009–2022. doi: 10.1002/glia.22572.
    1. Miron VE, Jung CG, Kim HJ, Kennedy TE, Soliven B, Antel JP. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol. 2008;63(1):61–71. doi: 10.1002/ana.21227.
    1. Smith PA, Schmid C, Zurbruegg S, Jivkov M, Doelemeyer A, Theil D, et al. Fingolimod inhibits brain atrophy and promotes brain-derived neurotrophic factor in an animal model of multiple sclerosis. J Neuroimmunol. 2018;318:103–113. doi: 10.1016/j.jneuroim.2018.02.016.
    1. Deogracias R, Schubart A, Barde Y-A. Siponimod increases brain-derived neurotrophic factor (BDNF) levels in cortical neuronal cultures and naïve healthy mice. Mult Scler. 2018;24(S2):894–895.
    1. Legangneux E, Gardin A, Johns D. Dose titration of BAF312 attenuates the initial heart rate reducing effect in healthy subjects. Br J Clin Pharmacol. 2013;75(3):831–841. doi: 10.1111/j.1365-2125.2012.04400.x.
    1. DiMarco JP, O’Connor P, Cohen JA, Reder AT, Zhang-Auberson L, Tang D, et al. First-dose effects of fingolimod: pooled safety data from three phase 3 studies. Mult Scler Relat Disord. 2014;3(5):629–638. doi: 10.1016/j.msard.2014.05.005.
    1. Kappos L, Cohen J, Collins W, de Vera A, Zhang-Auberson L, Ritter S, et al. Fingolimod in relapsing multiple sclerosis: an integrated analysis of safety findings. Mult Scler Relat Disord. 2014;3(4):494–504. doi: 10.1016/j.msard.2014.03.002.
    1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000;343(13):938–952. doi: 10.1056/NEJM200009283431307.
    1. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol. 2003;201(2):319–327. doi: 10.1002/path.1434.
    1. Plumb J, McQuaid S, Mirakhur M, Kirk J. Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2002;12(2):154–169. doi: 10.1111/j.1750-3639.2002.tb00430.x.
    1. Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol. 1995;90(3):228–238. doi: 10.1007/BF00296505.
    1. Kazmierski R, Michalak S, Wencel-Warot A, Nowinski WL. Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology. 2012;79(16):1677–1685. doi: 10.1212/WNL.0b013e31826e9a83.
    1. Jiao X, He P, Li Y, Fan Z, Si M, Xie Q, et al. The role of circulating tight junction proteins in evaluating blood brain barrier disruption following intracranial hemorrhage. Dis Mark. 2015;2015:860120. doi: 10.1155/2015/860120.
    1. Annunziata P, Cioni C, Masi G, Tassi M, Marotta G, Severi S. Fingolimod reduces circulating tight-junction protein levels and in vitro peripheral blood mononuclear cells migration in multiple sclerosis patients. Sci Rep. 2018;8(1):15371. doi: 10.1038/s41598-018-33672-9.
    1. Fox E, Edwards K, Burch G, Wynn DR, LaGanke C, Crayton H, et al. Outcomes of switching directly to oral fingolimod from injectable therapies: results of the randomized, open-label, multicenter, Evaluate Patient OutComes (EPOC) study in relapsing multiple sclerosis. Mult Scler Relat Disord. 2014;3(5):607–619. doi: 10.1016/j.msard.2014.06.005.
    1. Fox EJ, Lublin FD, Wolinsky JS, Cohen JA, Williams IM, Meng X, et al. Lymphocyte counts and infection rates: long-term fingolimod treatment in primary progressive MS. Neurol Neuroimmunol Neuroinflamm. 2019;6(6):e614. doi: 10.1212/nxi.0000000000000614.
    1. Kappos L, Li DK, Stuve O, Hartung HP, Freedman MS, Hemmer B, et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol. 2016;73(9):1089–1098. doi: 10.1001/jamaneurol.2016.1451.
    1. Cohen JA, Arnold DL, Comi G, Bar-Or A, Gujrathi S, Hartung JP, et al. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(4):373–381. doi: 10.1016/S1474-4422(16)00018-1.
    1. Cohen JA, Comi G, Selmaj K, et al. Ozanimod vs interferon β-1a: clinical and MRI results of RADIANCE part B—a 2-year Phase 3 trial in relapsing multiple sclerosis. Mult Scler. 2017;23(S3):981–982. doi: 10.1177/1352458517733228.
    1. Comi G, Kappos L, Selmaj K, et al. Ozanimod demonstrates efficacy and safety in a Phase 3 trial of relapsing multiple sclerosis (SUNBEAM) Mult Scler. 2017;23(S3):73–74. doi: 10.1177/1352458517731283.
    1. Koscielny V, Phase III. SUNBEAM and RADIANCE PART B trials for Ozanimod in relapsing multiple sclerosis demonstrate superiority versus interferon-beta-1a (Avonex((R))) in reducing annualized relapse rates and MRI brain lesions. Neurodegener Dis Manag. 2018;8(3):141–142. doi: 10.2217/nmt-2018-0012.
    1. Bar-Or A, Zipp F, Scaramozza M, Vollmer T, Due B, Thangavelu K, et al. Effect of ceralifimod (ONO-4641), a sphingosine-1-phosphate receptor-1 and -5 agonist, on magnetic resonance imaging outcomes in patients with multiple sclerosis: interim results from the extension of the DreaMS study (P3.161). Neurology. 2014;82(10 Supplement):P3.161;1526-632X.
    1. Kappos L, Arnold DL, Bar-Or A, Camm J, Derfuss T, Kieseier BC, et al. Safety and efficacy of amiselimod in relapsing multiple sclerosis (MOMENTUM): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15(11):1148–1159. doi: 10.1016/S1474-4422(16)30192-2.
    1. Kappos L, Arnold DL, Bar-Or A, Camm AJ, Derfuss T, Sprenger T, et al. Two-year results from a phase 2 extension study of oral amiselimod in relapsing multiple sclerosis. Mult Scler. 2017 doi: 10.1177/1352458517728343.
    1. Cree BAC, Arnold DL, Cascione M, Fox EJ, Williams IM, Meng X, et al. Phase IV study of retention on fingolimod versus injectable multiple sclerosis therapies: a randomized clinical trial. Ther Adv Neurol Disord. 2018;11:1756286418774338. doi: 10.1177/1756286418774338.
    1. Arnold DL, Cohen JA, Comi G, Selmaj KW, Bar-Or A, Steinman L, et al. Ozanimod demonstrates preservation of brain volume at 1 and 2 years in two Phase 3 trials of relapsing multiple sclerosis (SUNBEAM and RADIANCE) Mult Scler. 2017;23(S3):986.
    1. Arnold DL, Fox RJ, Bar-Or A, Cree BAC, Giovannoni G, Gold R, et al. Effect of siponimod on cortical grey matter and thalamic volume in patients with secondary progressive multiple sclerosis—results of the EXPAND study. Mult Scler. 2019;25(2_suppl):151–152.
    1. Lublin F, Miller DH, Freedman MS, Cree BAC, Wolinsky JS, Weiner H, et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10023):1075–1084. doi: 10.1016/S0140-6736(15)01314-8.
    1. De Stefano N, Silva DG, Barnett MH. Effect of fingolimod on brain volume loss in patients with multiple sclerosis. CNS Drugs. 2017;31(4):289–305. doi: 10.1007/s40263-017-0415-2.
    1. Kihara Y, Zhu Y, Jonnalagadda D, Liu C, DSiddoway B, Dutta R, et al. Differential CNS effects of siponimod vs fingolimod revealed by single-cell nuclear transcriptome analyses of human primary astrocytes. Mult Scler. 2019;25(S2):533.
    1. Cree BAC, Fox RJ, Giovanonni G, Vermerch P, Bar-Or A, Gold R, et al. Uncoupling the impact on relapses and disability progression: siponimod in relapsing and non-relapsing patients with secondary progressive multiple sclerosis in the phase III EXPAND study. Neurology. 2018;90(15 Supplement):S8.005.
    1. Vermersch P, Gold R, Kappos L, Fox RJ, Bar-Or A, Cree BAC, et al. Siponimod delays the time to wheelchair in patients with SPMS: results from the EXPAND study. Mult Scler. 2019;25(S2):55.
    1. Kuhle J, Kropshofer H, Barro C, Meinert R, Häring DA, Leppert D, et al. Siponimod reduces neurofilament light chain blood levels in secondary progressive multiple sclerosis patients. Neurology. 2018;90(15 Suppl):S8.006.
    1. Brown B, Weiss JL, Kolodny S, Meng X, Williams IM, Osborne JA. Analysis of cardiac monitoring and safety data in patients initiating fingolimod treatment in the home or in clinic. BMC Neurol. 2019;19(1):287. doi: 10.1186/s12883-019-1506-0.
    1. Kappos L, O’Connor P, Radue EW, Polman C, Hohlfeld R, Selmaj K, et al. Long-term effects of fingolimod in multiple sclerosis: the randomized FREEDOMS extension trial. Neurology. 2015;84(15):1582–1591. doi: 10.1212/WNL.0000000000001462.

Source: PubMed

3
Abonnieren