Assessment of a viral load result-triggered automated differentiated service delivery model for people taking ART in Lesotho (the VITAL study): Study protocol of a cluster-randomized trial

Nadine Tschumi, Malebanye Lerotholi, Mathebe Kopo, Mpho Kao, Blaise Lukau, Bienvenu Nsakala, Ntoiseng Chejane, Lipontso Motaboli, Tristan Lee, Ruanne Barnabas, Adrienne E Shapiro, Alastair van Heerden, Thabo I Lejone, Alain Amstutz, Jennifer A Brown, Jesse Heitner, Jennifer M Belus, Frédérique Chammartin, Niklaus D Labhardt, Nadine Tschumi, Malebanye Lerotholi, Mathebe Kopo, Mpho Kao, Blaise Lukau, Bienvenu Nsakala, Ntoiseng Chejane, Lipontso Motaboli, Tristan Lee, Ruanne Barnabas, Adrienne E Shapiro, Alastair van Heerden, Thabo I Lejone, Alain Amstutz, Jennifer A Brown, Jesse Heitner, Jennifer M Belus, Frédérique Chammartin, Niklaus D Labhardt

Abstract

Introduction: To sustainably provide good quality care to increasing numbers of people living with HIV (PLHIV) receiving antiretroviral therapy (ART) in resource-limited settings, care delivery must shift from a "one-size-fits-all" approach to differentiated service delivery models. Such models should reallocate resources from PLHIV who are doing well to groups of PLHIV who may need more attention, such as those with treatment failure. The VIral load Triggered ART care Lesotho (VITAL) trial assesses a viral load (VL)-, participant's preference-informed, electronic health (eHealth)-supported, automated differentiated service delivery model (VITAL model). With VITAL, we aim to assess if the VITAL model is at least non-inferior to the standard of care in the proportion of participants engaged in care with viral suppression at 24 months follow-up and if it is cost-saving.

Methods: The VITAL trial is a pragmatic, multicenter, cluster-randomized, non-blinded, non-inferiority trial with 1:1 allocation conducted at 18 nurse-led, rural health facilities in two districts of northern Lesotho, enrolling adult PLHIV taking ART. In intervention clinics, providers are trained to implement the VITAL model and are guided by a clinical decision support tool, the VITALapp. VITAL differentiates care according to VL results, clinical characteristics, sub-population and participants' and health care providers' preferences.

Expected outcomes: Evidence on the effect of differentiated service delivery for PLHIV on treatment outcomes is still limited. This pragmatic cluster-randomized trial will assess if the VITAL model is at least non-inferior to the standard of care and if it is cost saving.

Trial registration: The study has been registered with clinicaltrials.gov (Registration number NCT04527874; August 27, 2020).

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Spirit flow diagram: Schedule of…
Fig 1. Spirit flow diagram: Schedule of enrolment, interventions, and assessment procedures.
Symbols correspond to the responsible person for the assessment or task: X: VITAL study team, •: Clinic staff, ◊: VITAL data management team, ‡: Other VITAL study team members. * in VITAL intervention clinics only; ** 12 months window; *** 24 months window. TB: Tuberculosis; TPT: Tuberculosis preventive therapy; VL: Viral load; EAC: Enhanced adherence counselling.
Fig 2. Flow chart of study protocol.
Fig 2. Flow chart of study protocol.
Fig 3. Differentiated service delivery building blocks…
Fig 3. Differentiated service delivery building blocks of the VITAL model.
VL: Viral load; TB: Tuberculosis; TPT: Tuberculosis preventive therapy; ART: Antiretroviral therapy.

References

    1. Long L, KuchukShidze S, Pascoe S, Nichols B, Cele R, Govathson C, et al.. Differentiated models of service delivery for antiretroviral treatment of HIV in sub-Saharan Africa: a rapid review protocol. Systematic Reviews. 2019;8(1):314. doi: 10.1186/s13643-019-1210-6
    1. Okere NE, Urlings L, Naniche D, de Wit TFR, Gomez GB, Hermans S. Evaluating the sustainability of differentiated service delivery interventions for stable ART clients in sub-Saharan Africa: a systematic review protocol. BMJ Open. 2020;10(1):e033156. doi: 10.1136/bmjopen-2019-033156
    1. El-Sadr WM, Rabkin M, DeCock KM. Population health and individualized care in the global AIDS response: synergy or conflict? AIDS. 2016;30(14):2145–8. doi: 10.1097/QAD.0000000000001192
    1. Grimsrud A, Bygrave H, Doherty M, Ehrenkranz P, Ellman T, Ford N, et al.. Reimagining HIV service delivery: the role of differentiated care from prevention to suppression. J Int AIDS Soc. 2016;19:21484. doi: 10.7448/IAS.19.1.21484
    1. UNAIDS (2021). Fact sheet—Latest global and regional statistics on the status of the AIDS epidemic. .
    1. World Health Organization (2016). Progress report 2016: prevent HIV, test and treat all: WHO support for country impact. World Health Organization. .
    1. World Health Organization (2016). Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. World Health Organization.
    1. Barnabas RV, Revill P, Tan N, Phillips A. Cost-effectiveness of routine viral load monitoring in low- and middle-income countries : a systematic review. J Int AIDS Soc. 2017;20:50–61. doi: 10.1002/jia2.25006
    1. Petersen ML, Tran L, Geng EH, Reynolds SJ, Kambugu A, Wood R, et al.. Delayed switch of antiretroviral therapy after virologic failure associated with elevated mortality among HIV-infected adults in Africa. AIDS. 2014;28(14):2097–107. doi: 10.1097/QAD.0000000000000349
    1. Ssempijja V, Nakigozi G, Chang L, Gray R, Wawer M, Ndyanabo A, et al.. Rates of switching to second-line antiretroviral therapy and impact of delayed switching on immunologic, virologic, and mortality outcomes among HIV-infected adults with virologic failure in Rakai, Uganda. BMC Infect Dis. 2017;17(1):582. doi: 10.1186/s12879-017-2680-6
    1. El-Sadr WM, Rabkin M, Nkengasong J, Birx DL. Realizing the potential of routine viral load testing in sub-Saharan Africa. J Int AIDS Soc. 2017;20(7):e25010. doi: 10.1002/jia2.25010
    1. Carmona S, Peter T, Berrie L. HIV viral load scale-up: multiple interventions to meet the HIV treatment cascade. Curr Opin HIV AIDS. 2017;12(2):157–64. doi: 10.1097/COH.0000000000000352
    1. Schwartz SR, Kavanagh MM, Sugarman J, Solomon SS, Njindam IM, Rebe K, et al.. HIV viral load monitoring among key populations in low- and middle-income countries: challenges and opportunities. J Int AIDS Soc. 2017;20(7): e25003. doi: 10.1002/jia2.25003
    1. Marcus R, Ferrand RA, Kranzer K, Bekker LG. The case for viral load testing in adolescents in resource-limited settings. J Int AIDS Soc. 2017;20(7): e25001. doi: 10.1002/jia2.25002
    1. Arpadi SM, Shiau S, De Gusmao EP, Violari A. Routine viral load monitoring in HIV-infected infants and children in low- and middle-income countries: challenges and opportunities. J Int AIDS Soc. 2017;20(7):e2500. doi: 10.1002/jia2.25001
    1. Glass TR, Motaboli L, Nsakala B, Lerotholi M, Vanobberghen F, Amstutz A, et al.. The viral load monitoring cascade in a resource-limited setting: A prospective multicentre cohort study after introduction of routine viral load monitoring in rural Lesotho. PLOS ONE. 2019;14(8):e0220337. doi: 10.1371/journal.pone.0220337
    1. Phillips A, Shroufi A, Vojnov L, Cohn J, Roberts T, Ellman T, et al.. Sustainable HIV treatment in Africa through viral-load-informed differentiated care. 2015;528:S68–76.
    1. Shroufi A, Van Cutsem G, Cambiano V, Bansi-Matharu L, Duncan K, Murphy RA, et al.. Simplifying switch to second-line ART: Predicted effect of defining failure of first-line efavirenz-based regimens in sub-Saharan Africa by a single viral load more than 1000 copies/ml. AIDS. 2019:33(10):1635–1644. doi: 10.1097/QAD.0000000000002234
    1. Ramadhani HO, Bartlett JA, Thielman NM, Pence BW, Kimani SM, Maro VP, et al.. The Effect of Switching to Second-Line Antiretroviral Therapy on the Risk of Opportunistic Infections Among Patients Infected With Human Immunodeficiency Virus in Northern Tanzania. Open Forum Infect Dis. 2016;3(1):ofw018. doi: 10.1093/ofid/ofw018
    1. Murphy RA, Court R, Maartens G, Sunpath H. Second-Line Antiretroviral Therapy in Sub-Saharan Africa: It Is Time to Mind the Gaps. AIDS Res Hum Retroviruses. 2017;33:1181–4. doi: 10.1089/AID.2017.0134
    1. Oluoch T, Santas X, Kwaro D, Were M, Biondich P, Bailey C, et al.. The effect of electronic medical record-based clinical decision support on HIV care in resource-constrained settings: A systematic review. International Journal of Medical Informatics. 2012;81(10):e83–e92. doi: 10.1016/j.ijmedinf.2012.07.010
    1. Oluoch T, Katana A, Kwaro D, Santas X, Langat P, Mwalili S, et al.. Effect of a clinical decision support system on early action on immunological treatment failure in patients with HIV in Kenya: a cluster randomised controlled trial. The Lancet HIV. 2016;3(2):e76–e84. doi: 10.1016/S2352-3018(15)00242-8
    1. Kemp CG, Velloza J. Implementation of eHealth Interventions Across the HIV Care Cascade: a Review of Recent Research. Curr HIV/AIDS Rep. 2018;15(6):403–13. doi: 10.1007/s11904-018-0415-y
    1. Henny KD, Wilkes AL, McDonald CM, Denson DJ, Neumann MS. A Rapid Review of eHealth Interventions Addressing the Continuum of HIV Care (2007–2017). AIDS Behav. 2018;22(1):43–63. doi: 10.1007/s10461-017-1923-2
    1. Hirsch-Moverman Y, Daftary A, Yuengling KA, Saito S, Ntoane M, Frederix K, et al.. Using mHealth for HIV/TB Treatment Support in Lesotho: Enhancing Patient-Provider Communication in the START Study. J Acquir Immune Defic Syndr. 2017;74 Suppl 1(Suppl 1):S37–S43. doi: 10.1097/QAI.0000000000001202
    1. UNAIDS (2021). UNIAIDS Data 2021. .
    1. Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al.. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346. doi: 10.1136/bmj.e7586
    1. Scherrer R, Tschumi N, Lejone TI, Kopo M, Motaboli L, Mothobi B, et al.. eHealth supported multi-months dispensing of antiretroviral therapy: a mixed-methods preference assessment in rural Lesotho. Pilot and Feasibility Studies. 2022;8(1), 1–10. doi: 10.1186/s40814-021-00959-0
    1. Chow SC, Shao J, Wang H, Lokhnygina Y. Sample Size Calculations in Clinical Research: Third Edition (3rd ed.). Chapman and Hall/CRC. 2017.
    1. Rotondi M, Donner A. Sample size estimation in cluster randomized trials: An evidence-based perspective. Comput Stat Data Anal. 2012;56(5):1174–87.
    1. Wang H, Chow SC, Li G. On sample size calculation based on odds ratio in clinical trials. J Biopharm Stat. 2002;12(4):471–83. doi: 10.1081/BIP-120016231
    1. Eldridge SM, Ashby D, Kerry S. Sample size for cluster randomized trials: effect of coefficient of variation of cluster size and analysis method. Int J Epidemiol. 2006;35(5):1292–300. doi: 10.1093/ije/dyl129
    1. Mody A, Roy M, Sikombe K, Savory T, Holmes C, Bolton-Moore C, et al.. Improved Retention With 6-Month Health center Return Intervals for Stable Human Immunodeficiency Virus-Infected Patients in Zambia. Clin Infect Dis. 2018;66:237–43. doi: 10.1093/cid/cix756
    1. Hoffman RM, Moyo C, Balakasi KT, Siwale Z, Hubbard J, Bardon A, et al.. Multimonth dispensing of up to 6 months of antiretroviral therapy in Malawi and Zambia (INTERVAL): a cluster-randomised, non-blinded, non-inferiority trial. The Lancet Global Health. 2021;9(5):e628–e38. doi: 10.1016/S2214-109X(21)00039-5
    1. Campbell MK, Piaggio G, Elbourne DR, Altman DG. Consort 2010 statement: extension to cluster randomised trials. BMJ. 2012;345:e5661. doi: 10.1136/bmj.e5661
    1. Brandt R. The mental health of people living with HIV/AIDS in Africa: a systematic review, African Journal of AIDS Research. 2019;8(2): 123–133.
    1. Nakimuli-Mpungu E, Bass JK, Alexandre P, Mills EJ, Musisi S, Ram M, et al.. Depression, alcohol use and adherence to antiretroviral therapy in sub-Saharan Africa: a systematic review. AIDS Behav. 2012;16(8):2101–18. doi: 10.1007/s10461-011-0087-8
    1. Uthman OA, Magidson JF, Safren SA, Nachega JB. Depression and adherence to antiretroviral therapy in low-, middle- and high-income countries: a systematic review and meta-analysis. Curr HIV/AIDS Rep. 2014;11(3):291–307. doi: 10.1007/s11904-014-0220-1
    1. Heestermans T, Browne JL, Aitken SC, Vervoort SC, Klipstein-Grobusch K. Determinants of adherence to antiretroviral therapy among HIV-positive adults in sub-Saharan Africa: a systematic review. BMJ Glob Health. 2016;1(4):e000125. doi: 10.1136/bmjgh-2016-000125
    1. Velloza J, Kemp CG, Aunon FM, Ramaiya MK, Creegan E, Simoni JM. Alcohol use and antiretroviral therapy non-adherence among adults living with HIV/AIDS in Sub-Saharan Africa: A systematic review and meta-analysis. AIDS Behav. 2020;24(6):1727–1742. doi: 10.1007/s10461-019-02716-0
    1. Wilkinson L, Grimsrud A. The time is now: expedited HIV differentiated service delivery during the COVID-19 pandemic. J Int AIDS Soc. 2020;23(5):e25503. doi: 10.1002/jia2.25503

Source: PubMed

3
Abonnieren