Maternal type 1collagen N-terminal telopeptide levels in severe hyperemesis gravidarum

E Sahin, Y Madendag, M Eraslan Sahin, A T Tayyar, I Col Madendag, M Gozukucuk, C Karakukcu, G Acmaz, I I Muderris, E Sahin, Y Madendag, M Eraslan Sahin, A T Tayyar, I Col Madendag, M Gozukucuk, C Karakukcu, G Acmaz, I I Muderris

Abstract

Background: Nausea and vomiting occur 50-90% during the first trimester of pregnancy. However, patients with hyperemesis gravidarum (HG) may be hospitalized at an incidence rate of 0.8-2% before the 20th week of gestational age. The symptoms generally start during the 5-6th gestational weeks, reaching the highest degree during the 9th week, and decline after the 16-20th weeks of gestation. Clinical findings are proportional to the severity of the disease and severe HG is characterized with dehydration, electrolyte imbalance, and nutritional deficiency as a result of vomiting.

Methods: The study population consisted of two groups of pregnant volunteers at 5-12 weeks of gestation: a severe HG group and a control group. The HG severity was scored using the Pregnancy-Unique Quantification of Emesis (and nausea) (PUQE).The serum levels of the maternal Ca, parathyroid hormone (PTH), Na, K, blood urea nitrogen(BUN), creatinine, vitamin D(25OHD3), and the maternal urine NTx levels were compared between the groups.

Results: In total, 40 volunteers were enrolled in this study: 20 healthy pregnant volunteers and 20 with severe HG. There were no statistically significant differences between the maternal characteristics. The first trimester weight loss of ≥5 kg was significantly higher in the severe HG group (p < 0.001), while the control group had a significantly higher sunlight exposure ratio than the severe HG group (p = 0.021). The urine NTx levels were significantly higher in the severe HG group (39.22 ± 11.68NTx/Cre) than in the control group(32.89 ± 8.33NTx/Cre) (p = 0.028).The serum Ca, PTH, Na, K, BUN, and creatinine levels were similar between the groups (p = 0.738, p = 0.886, p = 0.841, p = 0.957, p = 0.892, and p = 0.824, respectively). In the severe HG group, the serum 25OHD3 levels were significantly lower than in the control group (p < 0.001).

Conclusions: The data from this study indicated that severe HG is associated with increased urine NTx levels. However, large-scale studies are required to understand the clinical significance of this finding, as well as the long-term consequences of elevated urine NTx levels and the underlying mechanisms.

Trial registration: NCT02862496 Date of registration: 21/07/2016.

Keywords: Hyperemesis gravidarum; Urine Ntx; Urine type 1 collagen N-terminal telopeptide; Vitamin D deficiency.

Conflict of interest statement

Ethics approval and consent to participate

The Ethics Committee of Erciyes University approved this research. Reference number: 2016/345. Written informed consent was obtained.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Grooten IJ, Mol BW, van der Post JAM, Ris-Stalpers C, Kok M, Bais JMJ, Bax CJ, Duvekot JJ, Bremer HA, Porath MM, et al. Early nasogastric tube feeding in optimising treatment for hyperemesis gravidarum: the MOTHER randomised controlled trial (maternal and offspring outcomes after treatment of HyperEmesis by refeeding) BMC Pregnancy Childbirth. 2016;16:22. doi: 10.1186/s12884-016-0815-1.
    1. Madendag Y, Sahin E, Madendag Col I, Eraslan SM, Tayyar AT, Ozdemir F, Acmaz G, Senol V. The effect of hyperemesis gravidarum on the 75 g oral glucose tolerance test screening and gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2018;31(15):1989–1992. doi: 10.1080/14767058.2017.1333100.
    1. Practice Bulletin No. 153: Nausea and Vomiting of Pregnancy. Obstet Gynecol. 2015;126(3):e12–e24. 10.1097/AOG.0000000000001048.
    1. Koudijs HM, Savitri AI, Browne JL, Amelia D, Baharuddin M, Grobbee DE, Uiterwaal CS. Hyperemesis gravidarum and placental dysfunction disorders. BMC Pregnancy Childbirth. 2016;16(1):374. doi: 10.1186/s12884-016-1174-7.
    1. Mullin PM, Ching C, Schoenberg F, MacGibbon K, Romero R, Goodwin TM, Fejzo MS. Risk factors, treatments, and outcomes associated with prolonged hyperemesis gravidarum. J Matern Fetal Neonatal Med. 2012;25(6):632–636. doi: 10.3109/14767058.2011.598588.
    1. Sahin E, Madendag Y, Eraslan Sahin M, Col Madendag I, Karakukcu C, Acmaz G, Muderris II. Effect of severe hyperemesis gravidarum on maternal vascular endothelial health: evaluation of soluble adhesion molecules. J Matern Fetal Neonatal Med. 2018:1–5.
    1. Hlaing TT, Compston JE. Biochemical markers of bone turnover - uses and limitations. Ann Clin Biochem. 2014;51(Pt 2):189–202. doi: 10.1177/0004563213515190.
    1. Hanson DA, Weis MA, Bollen AM, Maslan SL, Singer FR, Eyre DR. A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res. 1992;7(11):1251–1258. doi: 10.1002/jbmr.5650071119.
    1. Sanz-Salvador L, Garcia-Perez MA, Tarin JJ, Cano A. Bone metabolic changes during pregnancy: a period of vulnerability to osteoporosis and fracture. Eur J Endocrinol. 2015;172(2):R53–R65. doi: 10.1530/EJE-14-0424.
    1. Birkeland E, Stokke G, Tangvik RJ, Torkildsen EA, Boateng J, Wollen AL, Albrechtsen S, Flaatten H, Trovik J. Norwegian PUQE (pregnancy-unique quantification of Emesis and nausea) identifies patients with hyperemesis gravidarum and poor nutritional intake: a prospective cohort validation study. PLoS One. 2015;10(4):e0119962. doi: 10.1371/journal.pone.0119962.
    1. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM, Endocrine S. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–1930. doi: 10.1210/jc.2011-0385.
    1. Shieh A, Ishii S, Greendale GA, Cauley JA, Lo JC, Karlamangla AS. Urinary N-telopeptide and rate of bone loss over the menopause transition and early Postmenopause. J Bone Miner Res. 2016;31(11):2057–2064. doi: 10.1002/jbmr.2889.
    1. Prentice A. Calcium in pregnancy and lactation. Annu Rev Nutr. 2000;20:249–272. doi: 10.1146/annurev.nutr.20.1.249.
    1. Sowers M. Pregnancy and lactation as risk factors for subsequent bone loss and osteoporosis. J Bone Miner Res. 1996;11(8):1052–1060. doi: 10.1002/jbmr.5650110803.
    1. Cross NA, Hillman LS, Allen SH, Krause GF. Changes in bone mineral density and markers of bone remodeling during lactation and postweaning in women consuming high amounts of calcium. J Bone Miner Res. 1995;10(9):1312–1320. doi: 10.1002/jbmr.5650100907.
    1. Karras SN, Anagnostis P, Annweiler C, Naughton DP, Petroczi A, Bili E, Harizopoulou V, Tarlatzis BC, Persinaki A, Papadopoulou F, et al. Maternal vitamin D status during pregnancy: the Mediterranean reality. Eur J Clin Nutr. 2014;68(8):864–869. doi: 10.1038/ejcn.2014.80.
    1. van Stuijvenberg ME, Schabort I, Labadarios D, Nel JT. The nutritional status and treatment of patients with hyperemesis gravidarum. Am J Obstet Gynecol. 1995;172(5):1585–1591. doi: 10.1016/0002-9378(95)90501-4.
    1. Ismail SK, Kenny L. Review on hyperemesis gravidarum. Best Pract Res Clin Gastroenterol. 2007;21(5):755–769. doi: 10.1016/j.bpg.2007.05.008.
    1. Chiossi G, Neri I, Cavazzuti M, Basso G, Facchinetti F. Hyperemesis gravidarum complicated by Wernicke encephalopathy: background, case report, and review of the literature. Obstet Gynecol Surv. 2006;61(4):255–268. doi: 10.1097/01.ogx.0000206336.08794.65.
    1. Corona G, Simonetti L, Giuliani C, Sforza A, Peri A. A case of osmotic demyelination syndrome occurred after the correction of severe hyponatraemia in hyperemesis gravidarum. BMC Endocr Disord. 2014;14:34. doi: 10.1186/1472-6823-14-34.
    1. Shigemi D, Nakanishi K, Miyazaki M, Shibata Y, Suzuki S. A case of maternal vitamin K deficiency associated with hyperemesis gravidarum: its potential impact on fetal blood coagulability. J Nippon Med Sch. 2015;82(1):54–58. doi: 10.1272/jnms.82.54.
    1. Lenora J, Lekamwasam S, Karlsson MK. Effects of multiparity and prolonged breast-feeding on maternal bone mineral density: a community-based cross-sectional study. BMC Womens Health. 2009;9:19. doi: 10.1186/1472-6874-9-19.
    1. Ritchie LD, Fung EB, Halloran BP, Turnlund JR, Van Loan MD, Cann CE, King JC. A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am J Clin Nutr. 1998;67(4):693–701. doi: 10.1093/ajcn/67.4.693.
    1. Sowers M, Corton G, Shapiro B, Jannausch ML, Crutchfield M, Smith ML, Randolph JF, Hollis B. Changes in bone density with lactation. JAMA. 1993;269(24):3130–3135. doi: 10.1001/jama.1993.03500240074029.
    1. Sowers MF, Scholl T, Harris L, Jannausch M. Bone loss in adolescent and adult pregnant women. Obstet Gynecol. 2000;96(2):189–193.
    1. Tumillo T, Roy A, Pentyala S, Muller J, Chokshi K, Khan S. Osteoporosis associated with Pregnancy; 2015.
    1. Chubb SA, Mandelt C, Vasikaran S. Comparison of clinical cut-points and treatment targets for urine NTX and plasma betaCTX-I in osteoporosis. Clin Biochem. 2016;49(7–8):529–533. doi: 10.1016/j.clinbiochem.2015.12.002.
    1. Ettinger AS, Lamadrid-Figueroa H, Mercado-Garcia A, Kordas K, Wood RJ, Peterson KE, Hu H, Hernandez-Avila M, Tellez-Rojo MM. Effect of calcium supplementation on bone resorption in pregnancy and the early postpartum: a randomized controlled trial in Mexican women. Nutr J. 2014;13(1):116. doi: 10.1186/1475-2891-13-116.
    1. Janakiraman V, Ettinger A, Mercado-Garcia A, Hu H, Hernandez-Avila M. Calcium supplements and bone resorption in pregnancy: a randomized crossover trial. Am J Prev Med. 2003;24(3):260–264. doi: 10.1016/S0749-3797(02)00641-4.
    1. Liu Z, Qiu L, Chen YM, Su YX. Effect of milk and calcium supplementation on bone density and bone turnover in pregnant Chinese women: a randomized controlled trail. Arch Gynecol Obstet. 2011;283(2):205–211. doi: 10.1007/s00404-009-1345-0.
    1. Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009;51(Suppl 1):S5–17.
    1. Cooper C, Harvey N, Cole Z, Hanson M, Dennison E. Developmental origins of osteoporosis: the role of maternal nutrition. Adv Exp Med Biol. 2009;646:31–39. doi: 10.1007/978-1-4020-9173-5_3.
    1. Zhu K, Whitehouse AJ, Hart PH, Kusel M, Mountain J, Lye S, Pennell C, Walsh JP. Maternal vitamin D status during pregnancy and bone mass in offspring at 20 years of age: a prospective cohort study. J Bone Miner Res. 2014;29(5):1088–1095. doi: 10.1002/jbmr.2138.
    1. Lawlor DA, Wills AK, Fraser A, Sayers A, Fraser WD, Tobias JH. Association of maternal vitamin D status during pregnancy with bone-mineral content in offspring: a prospective cohort study. Lancet. 2013;381(9884):2176–2183. doi: 10.1016/S0140-6736(12)62203-X.

Source: PubMed

3
Abonnieren