Strategies for Intravenous Fluid Resuscitation in Trauma Patients

Robert Wise, Michael Faurie, Manu L N G Malbrain, Eric Hodgson, Robert Wise, Michael Faurie, Manu L N G Malbrain, Eric Hodgson

Abstract

Intravenous fluid management of trauma patients is fraught with complex decisions that are often complicated by coagulopathy and blood loss. This review discusses the fluid management in trauma patients from the perspective of the developing world. In addition, the article describes an approach to specific circumstances in trauma fluid decision-making and provides recommendations for the resource-limited environment.

Conflict of interest statement

Robert Wise and Michael Faurie declare that they have no competing interests. Manu LNG Malbrain is member of the executive committee of the International Fluid Academy (IFA). Eric Hodgson is a paid speaker and advisory board member for Fresenius-Kabi.

Figures

Fig. 1
Fig. 1
Flow diagram of initial fluid resuscitation of trauma patients
Fig. 2
Fig. 2
Thromboelastometry—differences in measurement between ROTEM and thromboelastography [42]

References

    1. Strunden M, Heckel K, Goetz A, et al. Perioperative fluid and volume management: physiological basis, tools and strategies. Ann Intensive Care. 2011;1:1–8. doi: 10.1186/2110-5820-1-2.
    1. Marik P. Iatrogenic salt water drowning and the hazards of a high central venous pressure. Ann Intensive Care. 2014;4:1–9. doi: 10.1186/s13613-014-0021-0.
    1. Chappell D, Jacob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–740. doi: 10.1097/ALN.0b013e3181863117.
    1. Myburgh J, Finfer S, Bellomo R, et al. Hyrdoxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–1911. doi: 10.1056/NEJMoa1209759.
    1. Perner A, Nicolai H, Guttormson A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–134. doi: 10.1056/NEJMoa1204242.
    1. Raiman M, Mitchell C, Biccard B, et al. Comparison of hydroxyethyl starch colloids with crystalloids for surgical patients: a systematic review and meta-analysis. Eur J Anaesthesiol. 2016;33(42–4):8.
    1. Annane D, Siami S, Jaber S, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolaemic shock. The CRISTAL randomized trial. JAMA. 2013;310(1809–181):7.
    1. Chappell D, Jacob M. Hydroxyethyl starch—the importance of being earnest. Scand J Trauma Resusc Emerg Med. 2013;21:1–4. doi: 10.1186/1757-7241-21-1.
    1. Chappell D, Jacob M. Twisting and ignoring facts on hydroxyethyl starch is not very helpful. Scand J Trauma Resusc Emerg Med. 2013;21:1–3. doi: 10.1186/1757-7241-21-1.
    1. Coppola S, Froio S, Chiumello D. Fluid resuscitation in trauma patients: what should we know? Curr Opin Crit Care. 2014;20:444–450. doi: 10.1097/MCC.0000000000000115.
    1. Doig G, Heighes P, Simpson F, et al. Early enteral nutrition reduces mortality in trauma patients requiring intensive care: a meta-analysis of randomised controlled trials. Injury. 2011;42(50–5):6.
    1. Guidet B, Martinet O, Boulain T, et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care. 2012;16(3):R94. doi: 10.1186/cc11358.
    1. Krajewski M, Raghunathan K, Paluszkiewicz S, et al. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg. 2015;102:24–36. doi: 10.1002/bjs.9651.
    1. Ince C, Groeneveld A. The case for 0.9% NaCl: is the undefendable, defensible? Kidney Int. 2014;86:1087–1095. doi: 10.1038/ki.2014.193.
    1. Lira A, Pinsky M. Choices in fluid type and volume during resuscitation: impact on patient outcomes. Ann Intensive Care. 2014;4:38. doi: 10.1186/s13613-014-0038-4.
    1. Martini W, Cortez D, Dubick M. Comparisons of normal saline and lactated Ringer’s resuscitation on hemodynamics, metabolic responses, and coagulation in pigs after severe hemorrhagic shock. Scand J Trauma Resusc Emerg Med. 2013;21:86. doi: 10.1186/1757-7241-21-86.
    1. Hafizah M, Liu C, Ooi J (2015) Normal saline versus balanced-salt solution as intravenous fluid therapy during neurosurgery: effects on acid-base balance and electrolytes. J Neurosurg Sci. [Epub ahead of print]
    1. Galvagno S, Mackenzie C. New and future resuscitation fluids for trauma patients using hemoglobin and hypertonic saline. Anaesthesiol Clin. 2013;31:1–19. doi: 10.1016/j.anclin.2012.10.004.
    1. Patanwala A, Amini A, Erstad B. Use of hypertonic saline injection in trauma. Am J Health Syst Pharm. 2010;67:1920–1928. doi: 10.2146/ajhp090523.
    1. Finfer S, Bellomo R, Boyce N, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–2256. doi: 10.1056/NEJMoa040232.
    1. Myburgh J, Cooper D, Finfer S, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med. 2007;357:874–884. doi: 10.1056/NEJMoa067514.
    1. Brackney C, Diaz L, Milbrandt E, et al. Is albumin use SAFE in patients with traumatic brain injury? Crit Care. 2010;14:307. doi: 10.1186/cc8940.
    1. Malbrain M, Roberts D, Sugrue M, et al. The polycompartment syndrome: a concise state-of-the-art review. Anaesthesiol Intensive Ther. 2014;46:433–450. doi: 10.5603/AIT.2014.0064.
    1. Marik P, Monnet X, Teboul J. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1:1–9. doi: 10.1186/2110-5820-1-1.
    1. Hahn R, Bergek C, Geback T, et al. Interactions between the volume effects of hydroxyethyl starch 130/0.4 and Ringer’s acetate. Crit Care. 2013;17:R104. doi: 10.1186/cc12749.
    1. Strunden M, Heckel K, Goetz A, et al. Perioperative fluid and volume management: physiological basis, tools and strategies. Ann Intensive Care. 2011;1:1. doi: 10.1186/2110-5820-1-2.
    1. Spinella P, Perkin J, Grathwohl K, et al. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma. 2009;66:S69–S76. doi: 10.1097/TA.0b013e31819d85fb.
    1. Raymer J, Flynn L, Martin R. Massive transfusion of blood in the surgical patient. Surg Clin N Am. 2012;92:221–234. doi: 10.1016/j.suc.2012.01.008.
    1. Holcomb J, Tilley B, Baraniuk S, et al. Transfusion of plasma, platelets and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomised controlled trial. JAMA. 2015;313:471–482. doi: 10.1001/jama.2015.12.
    1. Monnet X, Rienzo M, Osman D, et al. Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med. 2005;31:1195–1201. doi: 10.1007/s00134-005-2731-0.
    1. Holcomb J. Optimal use of blood products in severely injured trauma patients haematology. Am Soc Hematol Educ Progr. 2010;1:465–469.
    1. Miller T. New evidence in trauma resuscitation—is 1:1:1 the answer? Perioper Med. 2013;2(1):13. doi: 10.1186/2047-0525-2-13.
    1. Network for the advancement of patient blood management, haemostasis, and thrombosis - Haemoglobin based solutions (2016).
    1. Levien L. South Africa: clinical experience with hemopure. ISBT Sci Ser. 2006;1:167–173. doi: 10.1111/j.1751-2824.2006.00025.x.
    1. MacKenzie C, Pitman A, Hodgson R, et al. Are hemoglobin-based oxygen carriers being withheld because of regulatory requirement for equivalence to packed red blood cells? Am J Ther. 2015;22:e115–e121. doi: 10.1097/MJT.0000000000000009.
    1. Natanson C, Kern S, Lurie P, et al. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA. 2008;299:2304–2312. doi: 10.1001/jama.299.19.jrv80007.
    1. Africa SS (2015) Mid-year population estimates 2015. Statistical release P0302; Pretoria, South Africa.
    1. van Ramshorst GH, Salih M, Hop WC, et al. Noninvasive assessment of intra-abdominal pressure by measurement of abdominal wall tension. J Surg Res. 2011;171:240–244. doi: 10.1016/j.jss.2010.02.007.
    1. Gonzalez E, Moore E, Moore H, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: a Pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg. 2016;263:1051–1059. doi: 10.1097/SLA.0000000000001608.
    1. Tapia N, Chang A, Norman M. TEG-guided resuscitations superior to standardized MTP resuscitation massively transfused penetrating trauma patients. J Acute Care Surg. 2012;74:378–386. doi: 10.1097/TA.0b013e31827e20e0.
    1. Haas T, Gorlinger K, Grassetto A, et al. Thromboelastometry for guiding bleeding management of the critically ill patient: a systematic review of the literature. Min Anestesiol. 2014;80:1320–1335.
    1. Adhikary S, Pruett A, Thiruvenkatarajan V. Coagulation testing in the perioperative period. Indian J Anaesth. 2014;58:565–572. doi: 10.4103/0019-5049.144657.
    1. Bellamy M. Wet, dry or something else? Br J Anaesth. 2006;97:755–757. doi: 10.1093/bja/ael290.
    1. Malbrain M, Marik P, Witters I, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46:361–380. doi: 10.5603/AIT.2014.0060.
    1. Shere-Wolfe R, Galvagno SJ, Grissom T. Critical care considerations in the management of the trauma patient following initial resuscitation. Scand J Trauma Resusc Emerg Med. 2012;20:1–15. doi: 10.1186/1757-7241-20-68.
    1. Teboul J, Monnet X. Detecting volume responsiveness and unresponsiveness in intensive care unit patients: two different problems, only one solution. Crit Care. 2009;13:R111. doi: 10.1186/cc7979.
    1. Malbrain M, Van Regenmortel N, Owczuk R. The debate on fluid management and haemodynamic monitoring continues: between Scylla and Charybdis, or faith and evidence. Anaesthesiol Intensive Ther. 2014;46:313–318. doi: 10.5603/AIT.2014.0054.
    1. Malbrain ML, Van Regenmortel N, Owczuk R. It is time to consider the four D’s of fluid management. Anaesthesiol Intensive Ther. 2015;47:1–5. doi: 10.5603/AIT.a2015.0070.
    1. Van Regenmortel N, Jorens PG, Malbrain ML. Fluid management before, during and after elective surgery. Curr Opin Crit Care. 2014;20:390–396. doi: 10.1097/MCC.0000000000000113.
    1. Langer T, Santini A, Scotti E, et al. Intravenous balanced solutions: from physiology to clinical evidence. Anaesthesiol Intensive Ther. 2015;47:s78–s88. doi: 10.5603/AIT.a2015.0079.
    1. Finfer S, Liu B, Taylor C, et al. Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit Care. 2010;14:R185. doi: 10.1186/cc9293.
    1. Michard F, Teboul J. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–2008. doi: 10.1378/chest.121.6.2000.
    1. Marik P, Baram M, Vahid B. Does the central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–178. doi: 10.1378/chest.07-2331.
    1. Marik P, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41:1774–1781. doi: 10.1097/CCM.0b013e31828a25fd.
    1. Malbrain M, De Waele J, De Keulenaer B. What every ICU clinician needs to know about the cardiovascular effects caused by abdominal hypertension. Anaesthesiol Intensive Ther. 2015;47:388–399. doi: 10.5603/AIT.a2015.0028.
    1. Vincent J, Weil M. Fluid challenge revisited. Crit Care Med. 2006;34:1333–1337. doi: 10.1097/01.CCM.0000214677.76535.A5.
    1. Cannesson M, Slieker J, Desebbe O, et al. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg. 2008;106:1195–1200. doi: 10.1213/01.ane.0000297291.01615.5c.
    1. Cecconi M, Monti G, Hamilton M, et al. Efficacy of functional hemodynamic parameters in predicting fluid responsiveness with pulse power analysis in surgical patients. Min Anestesiol. 2012;78:527–533.
    1. Hofer C, Müller S, Furrer L, et al. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest. 2005;128:848–854. doi: 10.1378/chest.128.2.848.
    1. Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–138. doi: 10.1164/ajrccm.162.1.9903035.
    1. Peeters Y, Bernards J, Mekeirele M, et al. Hemodynamic monitoring: to calibrate or not to calibrate? Part 1—calibrated techniques. Anaesthesiol Intensive Ther. 2015;47:487–500.
    1. Bernards J, Mekeirele M, Hoffmann B, et al. Hemodynamic monitoring: to calibrate or not to calibrate? Part 2—non-calibrated techniques. Anaesthesiol Intensive Ther. 2015;47:501–516.
    1. Ameloot K, Palmers P, Malbrain M. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care. 2015;21:232–239. doi: 10.1097/MCC.0000000000000198.
    1. Monnet X, Dres M, Ferré A, et al. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices. Br J Anaesth. 2012;109:330–338. doi: 10.1093/bja/aes182.
    1. Berkenstadt H, Margalit N, Hadani M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–989. doi: 10.1097/00000539-200104000-00034.
    1. Biais M, Nouette-Gaulain K, Cottenceau V, et al. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2008;101:761–768. doi: 10.1093/bja/aen277.
    1. Feissel M, Michard F, Mangin I, et al. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–873. doi: 10.1378/chest.119.3.867.
    1. Vermeiren G, Malbrain M, Walpot J. Cardiac ultrasonography in the critical care setting: a practical approach to asses cardiac function and preload for the “non-cardiologist”. Anaesthesiol Intensive Ther. 2015;47:89–104. doi: 10.5603/AIT.a2015.0074.
    1. Feissel M, Michard F, Faller J, et al. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834–1837. doi: 10.1007/s00134-004-2233-5.
    1. Vieillard-Baron A, Chergui K, Rabiller A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30:1734–1739. doi: 10.1007/s00134-004-2474-3.
    1. Cavallaro F, Sandroni C, Marano C, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36:1475–1483. doi: 10.1007/s00134-010-1929-y.
    1. Monnet X, Teboul J. Passive leg raising. Intensive Care Med. 2008;34:659–663. doi: 10.1007/s00134-008-0994-y.
    1. Monnet X, Rienzo M, Osman D, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–1407. doi: 10.1097/01.CCM.0000215453.11735.06.
    1. Malbrain M. Reuter D Assessing fluid responsiveness with the passive leg raising maneuver in patients with increased intra-abdominal pressure: be aware that not all blood returns! Crit Care Med. 2010;38:1912–1915. doi: 10.1097/CCM.0b013e3181f1b6a2.
    1. Monnet X, Osman D, Ridel C, et al. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–956. doi: 10.1097/CCM.0b013e3181968fe1.
    1. Farcy D, Jain A, Dalley M, et al. Pitfalls in using central venous pressure as a marker of fluid responsiveness. Emerg Med. 2016;48(1):18–28. doi: 10.12788/emed.2016.0004.
    1. Zhang Z, Xu X, Ye S, et al. Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. Ultrasound Med Biol. 2014;40:845–853. doi: 10.1016/j.ultrasmedbio.2013.12.010.
    1. Nagdev A, Merchant R, Tirado-Gonzalez A, et al. Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure. Ann Emerg Med. 2010;55:290–295. doi: 10.1016/j.annemergmed.2009.04.021.
    1. Corl K, Napoli A, Gardiner F. Bedside sonographic measurement of the inferior vena cava caval index is a poor predictor of fluid responsiveness in emergency department patients. Emerg Med Aust. 2012;24:534–539. doi: 10.1111/j.1742-6723.2012.01596.x.
    1. Muller L, Bobbia X, Toumi M, et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16(5):R188. doi: 10.1186/cc11672.
    1. Chin J, Jun I, Lee J, et al. Can stroke volume variation be an alternative to central venous pressure in patients undergoing kidney transplantation? Transplant Proc. 2014;46:3363–3366. doi: 10.1016/j.transproceed.2014.09.097.
    1. Zhang Z, Lu B, Sheng X, et al. Accuracy of stroke volume variation in predicting fluid responsiveness: a systematic review and meta-analysis. J Anesth. 2011;25:904–916. doi: 10.1007/s00540-011-1217-1.
    1. Feissel M, Michard F, Mangin I, et al. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–873. doi: 10.1378/chest.119.3.867.
    1. Lamia B, Ochagavia A, Monnet X, et al. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;33:1125–1132. doi: 10.1007/s00134-007-0646-7.
    1. Maizel J, Airapetian N, Lorne E, et al. Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med. 2007;33(7):1133–1138. doi: 10.1007/s00134-007-0642-y.
    1. Möller H, Falster K, Ivers R, et al. Inequalities in unintentional injuries between indigenous and non-indigenous children: a systematic review. Inj Prev. 2015;21:e144–e152. doi: 10.1136/injuryprev-2013-041133.
    1. Lacroix J, Demaret P, Tucci M. Red blood cell transfusion: decision making in pediatric intensive care units. Semin Perinatol. 2012;36:225–231. doi: 10.1053/j.semperi.2012.04.002.
    1. Murat I, Dubois M. Perioperative fluid therapy in paediatrics. Ped Anesth. 2008;18:363–370. doi: 10.1111/j.1460-9592.2008.02505.x.
    1. de Caen A, Reis A, Bhutta A. Vascular access and drug therapy in pediatric resuscitation. Pediatr Clin N Am. 2008;55:909–927. doi: 10.1016/j.pcl.2008.04.009.
    1. Hussmann B, Lefering R, Kauther M, et al. Influence of prehospital volume replacement on outcome in polytraumatized children. Crit Care. 2012;16:R201. doi: 10.1186/cc11809.
    1. Sϋmpelmann R, Kretz F-J, Luntzer R, et al. Hydroxyethyl starch 130/0.42/6:1 for perioperative plasma volume replacement in 1130 children: results of an European prospective multicenter observational postauthorization safety study (PASS) Ped Anesth. 2012;22:371–378. doi: 10.1111/j.1460-9592.2011.03776.x.
    1. Dzik W, Kyeyune D, Otekat G, et al. Transfusion medicine in Sub-Saharan Africa: conference summary. Transfus Med Rev. 2015;29:195–204. doi: 10.1016/j.tmrv.2015.02.003.
    1. Terris M, Crean P. Fluid and electrolyte balance in children. Anaesth Intens Care Med. 2011;13:15–19. doi: 10.1016/j.mpaic.2011.10.004.
    1. Au A. Bell M Prevention of hospital-acquired hyponatremia in children: are hypotonic solutions safe? Pediatr Crit Care Med. 2010;11:528–529. doi: 10.1097/PCC.0b013e3181d50366.
    1. Maguire S, Slater B. Physiology of ageing. Anaesth Intensive Care Med. 2010;11:290–292. doi: 10.1016/j.mpaic.2010.04.004.
    1. Stevens C, Torke A. Geriatric trauma: a clinical and ethical review. J Trauma Nurs. 2016;23:36–41. doi: 10.1097/JTN.0000000000000179.
    1. Corcoran T, Hillyard S. Cardiopulmonary aspects of anaesthesia for the elderly. Best Prac Res Clin Anaesthesiol. 2011;25:329–354. doi: 10.1016/j.bpa.2011.07.002.
    1. Marik P. Management of the critically ill geriatric patient. Crit Care Med. 2006;34:S176–S182. doi: 10.1097/01.CCM.0000232624.14883.9A.
    1. Alvarado R, Chung K, Cancio L, et al. Burn resuscitation. Burns. 2009;35:4–14. doi: 10.1016/j.burns.2008.03.008.
    1. Bishop S, Maguire S. Anaesthesia and intensive care for major burns. Cont Ed Anaesth Crit Care Pain. 2012;12:118–122. doi: 10.1093/bjaceaccp/mks001.
    1. Greenhalgh D. Burn resuscitation: the results of the ISBI/ABA survey. Burns. 2010;36:176–182. doi: 10.1016/j.burns.2009.09.004.
    1. Béchir M, Puhan M, Neff S, et al. Early fluid resuscitation with hyperoncotic hydroxyethyl starch 200/0.5 (10%) in severe burn injury. Crit Care. 2010;14:R123. doi: 10.1186/cc9086.
    1. Cochran A, Morris S, Edelman L, et al. Burn patient characteristics and outcomes following resuscitation with albumin. Burns. 2007;33:25–30. doi: 10.1016/j.burns.2006.10.005.
    1. Vlachou E, Gosling P, Moiemen N. Hydroxyethylstarch supplementation in burn resuscitation—a prospective randomised controlled trial. Burns. 2010;36:984–991. doi: 10.1016/j.burns.2010.04.001.
    1. Khorasani E, Mansouri F. Effect of early enteral nutrition on morbidity and mortality in children with burns. Burns. 2010;36:1067–1071. doi: 10.1016/j.burns.2009.12.005.
    1. Legrand M, Guttormsen A, Berger M. Ten tips for managing critically ill burn patients: follow the RASTAFARI! Intensive Care Med. 2015;41:1107–1109. doi: 10.1007/s00134-014-3627-7.
    1. Peeters Y, Vandervelden S, Wise R, et al. An overview on fluid resuscitation and resuscitation endpoints in burns: past, present and future. Part 1—historical background, resuscitation fluid and adjunctive treatment. Anaesthesiol Intensive Ther. 2015;47:s6–s14. doi: 10.5603/AIT.a2015.0063.
    1. Peeters Y, Lebeer M, Wise R, et al. An overview on fluid resuscitation and resuscitation endpoints in burns: past, present and future. Part 2—avoiding complications by using the right endpoints with a new personalized protocolized approach. Anaesthesiol Intensive Ther. 2015;47:s15–s26. doi: 10.5603/AIT.a2015.0064.
    1. Jagodzinski N, Weerasingheand C, Porter K. Crush injuries and crush syndrome—a review. Part 1: the systemic injury. Trauma. 2010;12:69–88. doi: 10.1177/1460408610372440.
    1. Hardcastle T, Smith W. A crushing experience: the spectrum and outcome of soft tissue injury and myonephropathic syndrome at an Urban South African University Hospital. Af J Emerg Med. 2011;1:17–24. doi: 10.1016/j.afjem.2011.04.002.
    1. Wood D. Rosedale K Crush Syndrome in the rural setting. Emerg Med J. 2011;28:817. doi: 10.1136/emj.2010.104208.
    1. Moon T, Sappenfield J. Anesthetic management and challenges in the pregnant patient. Curr Anesthesiol Rep. 2016;6:89–94. doi: 10.1007/s40140-015-0132-7.
    1. Jeejeebhoy F, Morrison L (2013) Maternal cardiac arrest: a practical and comprehensive review. Emerg Med Int 2013:274814. doi:10.1155/2013/274814
    1. Tunçalp Ö, Souza J, Gülmezoglu M. New WHO recommendations on prevention and treatment of post-partum haemorrhage. Int J Gynecol Obstet. 2013;123:254–256. doi: 10.1016/j.ijgo.2013.06.024.

Source: PubMed

3
Abonnieren