The Safety of Continuous Infusion Propofol in Mechanically Ventilated Adults With Coronavirus Disease 2019

Corey J Witenko, Audrey J Littlefield, Sajjad Abedian, Anjile An, Philip S Barie, Karen Berger, Corey J Witenko, Audrey J Littlefield, Sajjad Abedian, Anjile An, Philip S Barie, Karen Berger

Abstract

Background: Propofol is commonly used to achieve ventilator synchrony in critically ill patients with coronavirus disease 2019 (COVID-19), yet its safety in this patient population is unknown.

Objective: To evaluate the safety, in particular the incidence of hypertriglyceridemia, of continuous infusion propofol in patients with COVID-19.

Methods: This was a retrospective study at 1 academic medical center and 1 affiliated teaching hospital in New York City. Adult, critically ill patients with COVID-19 who received continuous infusion propofol were included. Patients who received propofol for <12 hours, were transferred from an outside hospital while on mechanical ventilation, or did not have a triglyceride concentration obtained during the infusion were excluded.

Results: A total of 252 patients were included. Hypertriglyceridemia (serum triglyceride concentration ≥ 400 mg/dL) occurred in 38.9% of patients after a median cumulative dose of 4307 mg (interquartile range [IQR], 2448-9431 mg). The median time to triglyceride elevation was 3.8 days (IQR, 1.9-9.1 days). In the multivariable regression analysis, obese patients had a significantly greater odds of hypertriglyceridemia (odds ratio = 1.87; 95% CI = 1.10, 3.21). There was no occurrence of acute pancreatitis. The incidence of possible propofol-related infusion syndrome was 3.2%.

Conclusion and relevance: Hypertriglyceridemia occurred frequently in patients with COVID-19 who received propofol but did not lead to acute pancreatitis. Elevated triglyceride concentrations occurred more often and at lower cumulative doses than previously reported in patients without COVID-19. Application of these data may aid in optimal monitoring for serious adverse effects of propofol in patients with COVID-19.

Keywords: adverse drug reactions; critical care; pancreatitis; respiratory failure; sedatives.

Conflict of interest statement

Declaration of Conflicting Interests: The authors declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: Dr Barie has received honoraria for consulting from AKPA America, Entasis, Pfizer, Portola (now Alexion), and Tetraphase (now LaJolla). The remaining authors have disclosed that they do not have any conflicts of interest.

Figures

Figure 1.
Figure 1.
Patient flow diagram. Abbreviation: ICU, intensive care unit; COVID-19, coronavirus disease 19.

References

    1. World Health Organization. Coronavirus disease 2019. (COVID-19): situation report-51. Published March 11, 2020. Accessed April 28, 2021.
    1. Auld SC, Caridi-Scheible M, Blum JM, et al.; Emory COVID-19 Quality and Clinical Research Collaborative. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Crit Care Med. 2020;48:e799-e804. doi:10.1097/CCM.0000000000004457
    1. Goyal P, Choi JJ, Pinheiro LC, et al.. Clinical characteristics of Covid-19 in New York City. N Engl J Med. 2020;382:2372-2374. doi:10.1056/NEJMc2010419
    1. Richardson S, Hirsch JS, Narasimhan M, et al.. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052-2059. doi:10.1001/jama.2020.6775
    1. Barr J, Fraser GL, Puntillo K, et al.; American College of Critical Care Medicine. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41:263-306. doi:10.1097/CCM.0b013e3182783b72
    1. Devlin JW, Skrobik Y, Gélinas C, et al.. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46:e825-e873. doi:10.1097/CCM.0000000000003299
    1. Hanidziar D, Bittner EA. Sedation of mechanically ventilated COVID-19 patients: challenges and special considerations. Anesth Analg. 2020;131:e40-e41. doi:10.1213/ANE.0000000000004887
    1. Kenes MT, McSparron JI, Marshall VD, Renius K, Hyzy RC. Propofol-associated hypertriglyceridemia in coronavirus disease 2019 versus noncoronovirus disease 2019 acute respiratory distress syndrome. Crit Care Explor. 2020;2:e0303. doi:10.1097/CCE.0000000000000303
    1. Devlin JW, Lau AK, Tanios MA. Propofol-associated hypertriglyceridemia and pancreatitis in the intensive care unit: an analysis of frequency and risk factors. Pharmacotherapy. 2005;25:1348-1352. doi:10.1592/phco.2005.25.10.1348
    1. Corrado MJ, Kovacevic MP, Dube KM, Lupi KE, Szumita PM, DeGrado JR. The incidence of propofol-induced hypertriglyceridemia and identification of associated risk factors. Crit Care Explor. 2020;2:e0282. doi:10.1097/CCE.0000000000000282
    1. Murphy MJ, Sheng X, MacDonald TM, Wei L. Hypertriglyceridemia and acute pancreatitis. JAMA Intern Med. 2013;173:162-164. doi:10.1001/2013.jamainternmed.477
    1. Pandharipande PP, Pun BT, Herr DL, et al.. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: The MENDS randomized controlled trial. JAMA. 2007;298:2644-2653. doi:10.1001/jama.298.22.2644
    1. Fong JJ, Sylvia L, Ruthazer R, Schumaker G, Kcomt M, Devlin JW. Predictors of mortality in patients with suspected propofol infusion syndrome. Crit Care Med. 2008;36:2281-2287. doi:10.1097/CCM.0b013e318180c1eb
    1. Roberts RJ, Barletta JF, Fong JJ, et al.. Incidence of propofol-related infusion syndrome in critically ill adults: a prospective, multicenter study. Crit Care. 2009;13:R169. doi:10.1186/cc8145
    1. Hemphill S, McMenamin L, Bellamy MC, Hopkins PM. Propofol infusion syndrome: a structured literature review and analysis of published case reports. Br J Anesth. 2019;122:448-459. doi:10.1016/j.bja.2018.12.025
    1. Kam PCA, Cardone D. Propofol infusion syndrome. Anaesthesia. 2007;62:690-701. doi:10.1111/j.1365-2044.2007.05055.x
    1. Soy M, Atagündüz P, Atagündüz I, Sucak GT. Hemophagocyticlymphohistiocytosis: a review inspired by the COVID-19 pandemic. Rheumatol Int. 2020;41:7-18. doi:10.1007/s00296-020-04636-y
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033-1034. doi:10.1016/S0140-6736(20)30628-0
    1. Ramos-Casals M, Brito-Zerón P, López-Guillermo A, Khamashta MA, Bosch X. Adult haemophagocytic syndrome. Lancet. 2014;383:1503-1516. doi:10.1016/S0140-6736(13)61048-X
    1. Sholle ET, Kabariti J, Johnson SB, et al.. Secondary use of patients’ electronic records (SUPER): an approach for meeting specific data needs of clinical and translational researchers. AMIA Annu Symp Proc. 2018;2017:1581-1588.
    1. Crockett SD, Wani S, Gardner TB, Falck-Ytter Y, Barkun AN; American Gastroenterological Association Institute Clinical Guidelines Committee. American Gastroenterological Association Institute guideline on initial management of acute pancreatitis. Gastroenterology. 2018;154:1096-1101. doi:10.1053/j.gastro.2018.01.032
    1. Bollen TL. Acute pancreatitis: international classification and nomenclature. Clin Radiol. 2016;71:121-133. doi:10.1016/j.crad.2015.09.013
    1. Thoeni RF. Imaging of acute pancreatitis. Radiol Clin North Am. 2015;53:1189-1208. doi:10.1016/j.rcl.2015.06.006
    1. Zhang H, Charmchi Z, Seidman RJ, Anziska Y, Velayudhan V, Perk J. COVID-19-associated myositis with severe proximal and bulbar weakness. Muscle Nerve. 2020;62:E57-E60. doi:10.1002/mus.27003
    1. Barie PS, Hydo LJ, Fischer E. Comparison of APACHE II and III scoring systems for mortality prediction in critical surgical illness. Arch Surg. 1995;130:77-82. doi:10.1001/archsurg.1995.01430010079016
    1. Lambden S, Laterre PF, Levy MM, Francois B. The SOFA score-development, utility, and challenges of accurate assessment in clinical trials. Crit Care. 2019;23:374. doi:10.1186/s13054-019-2663-7
    1. Jacobi J, Fraser GL, Coursin DB, et al.; Task Force of the American College of Critical Care Medicine (ACCM) of the Society of Critical Care Medicine (SCCM); American Society of Health-System Pharmacists (ASHP); American College of Chest Physicians. Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med. 2002;30:119-141. doi:10.1097/00003246-200201000-00020
    1. Barr J, Zomorodi K, Bertaccini EJ, Shafer SL, Geller E. A double-blind, randomized comparison of I.V. lorazepam vs. midazolam for sedation of ICU patients via a pharmacologic model. Anesthesiology. 2001;95:286-298. doi:10.1097/00000542-200108000-00007
    1. Corbett SM, Montoya ID, Moore FA. Propofol-related infusion syndrome in intensive care patients. Pharmacotherapy. 2008;28:250-258. doi:10.1592/phco.28.2.250
    1. Batlle D, Soler MJ, Sparks MA, et al.; COVID-19 and ACE2 in Cardiovascular, Lung, and Kidney Working Group. Acute kidney injury in COVID-19: emerging evidence of a distinct pathophysiology. J Am Soc Nephrol. 2020;31:1380-1383. doi:10.1681/ASN.2020040419
    1. Fan Z, Chen L, Li J, et al.. Clinical features of COVID-19-related liver functional abnormality. Clin Gastroenterol Hepatol. 2020;18:1561-1566. doi:10.1016/j.cgh.2020.04.002
    1. Schroeppel TJ, Fabian TC, Clement LP, et al.. Propofol infusion syndrome: a lethal condition in critically injured patients eliminated by a simple screening protocol. Injury. 2014;45:245-249. doi:10.1016/j.injury.2013.05.004
    1. Sherren PB, Ostermann M, Agarwal S, Meadows CIS, Ioannou N, Camporota L. COVID-19-related organ dysfunction and management strategies on the intensive care unit: a narrative review. Br J Anesth. 2020;125:912-925. doi:10.1016/j.bja.2020.08.050
    1. Masana L, Correig E, Ibarretxe D, et al.. Low HDL and high triglycerides predict COVID-19 severity. Sci Rep. 2021;11:7217. doi:10.1038/s41598-021-86747-5
    1. Caterino M, Gelzo M, Sol S, et al.. Dysregulation of lipid metabolism and pathological inflammation in patients with COVID-19. Sci Rep. 2021;11:2941. doi:10.1038/s41598-021-82426-7
    1. Heaton NS, Randall G. Dengue virus-inducted autophagy regulates lipid metabolism. Cell Host Microbe. 2010;8:422-432. doi:10.1016/j.chom.2010.10.006
    1. Morrison AR, Johnson JM, Griebe KM, et al.. Clinical characteristics and predictors of survival in adults with coronavirus disease 2019 receiving tocilizumab. J Autoimmun. 2020;114:102512. doi:10.1016/j.jaut.2020.102512
    1. Crisafulli S, Isgrò V, La Corte L, Atzeni F, Trifirò G. Potential role of anti-interleukin (IL)-6 drugs in the treatment of COVID-19: rationale, clinical evidence, and risks. BioDrugs. 2020;34:415-422. doi:10.1007/s40259-020-00430-1
    1. Barie PS, Bronstein M, Gibson CJ, et al.. A simple three-tier classification system for triage, communication, and resource utilization by patients afflicted with COVID-19 disease. Surg Infect (Larchmt). 2020;21:726-727. doi:10.1089/sur.2020.146
    1. Brickman D, Greenway A, Sobocinski K, et al.. Rapid critical care training of nurses in the surge response to the coronavirus pandemic. Am J Crit Care. 2020;29:e104-e107. doi:10.4037/ajcc2020142
    1. Peters AW, Chawla KS, Turnbull ZA. Transforming ORs into ICUs. N Engl J Med. 2020;382:e52. doi:10.1056/NEJMc2010853
    1. Barie PS, Bronstein M, Gibson CJ, et al.. A visual tool for enhanced critical care bedside communications during the coronavirus pandemic: the window wall of information. Surg Infect (Larchmt). 2020;21:817-818. doi:10.1089/sur.2020.148

Source: PubMed

3
Abonnieren