Asthma-susceptibility variants identified using probands in case-control and family-based analyses

Blanca E Himes, Jessica Lasky-Su, Ann C Wu, Jemma B Wilk, Gary M Hunninghake, Barbara Klanderman, Amy J Murphy, Ross Lazarus, Manuel E Soto-Quiros, Lydiana Avila, Juan C Celedón, Christoph Lange, George T O'Connor, Benjamin A Raby, Edwin K Silverman, Scott T Weiss, Blanca E Himes, Jessica Lasky-Su, Ann C Wu, Jemma B Wilk, Gary M Hunninghake, Barbara Klanderman, Amy J Murphy, Ross Lazarus, Manuel E Soto-Quiros, Lydiana Avila, Juan C Celedón, Christoph Lange, George T O'Connor, Benjamin A Raby, Edwin K Silverman, Scott T Weiss

Abstract

Background: Asthma is a chronic respiratory disease whose genetic basis has been explored for over two decades, most recently via genome-wide association studies. We sought to find asthma-susceptibility variants by using probands from a single population in both family-based and case-control association designs.

Methods: We used probands from the Childhood Asthma Management Program (CAMP) in two primary genome-wide association study designs: (1) probands were combined with publicly available population controls in a case-control design, and (2) probands and their parents were used in a family-based design. We followed a two-stage replication process utilizing three independent populations to validate our primary findings.

Results: We found that single nucleotide polymorphisms with similar case-control and family-based association results were more likely to replicate in the independent populations, than those with the smallest p-values in either the case-control or family-based design alone. The single nucleotide polymorphism that showed the strongest evidence for association to asthma was rs17572584, which replicated in 2/3 independent populations with an overall p-value among replication populations of 3.5E-05. This variant is near a gene that encodes an enzyme that has been implicated to act coordinately with modulators of Th2 cell differentiation and is expressed in human lung.

Conclusions: Our results suggest that using probands from family-based studies in case-control designs, and combining results of both family-based and case-control approaches, may be a way to augment our ability to find SNPs associated with asthma and other complex diseases.

Figures

Figure 1
Figure 1
Study Design. (A) The initial study population consisted of CAMP probands used in (1) a case-control design composed of 359 CAMP cases and 846 Illumina controls and (2) a family-based design composed of 403 trios. Genome-wide association of individual SNPs to asthma status was assessed in each of these designs. SNPs with a case-control Cochran-Armitage trend test p-value < 0.01 and a family-based PBAT additive model p-value < 0.05 were selected for replication analysis. (B) The first replication stage, carried out in CR, measured the association of 1378 SNPs with asthma. Those SNPs with either (1) a CR PBAT additive model p-value < 0.05 or (2) a CR PBAT additive model p-value < 0.10 and a p-value < 1E-05 from the designs in (A) were selected for the next replication stage. (C) The second replication stage was carried out in two additional independent populations, FHS and iCAP. (D) Joint association analysis for 85 SNPs with data in the three independent populations was performed.
Figure 2
Figure 2
Association Results. (A) Plot of CAMP Trio vs. CAMP/Illumina GWA results. SNPs selected for replication analysis have family-based PBAT additive model p-values < 0.05 and case-control Cochran-Armitage trend test p-values < 0.01. The subset of these SNPs that was genotyped in CR is shown in blue. Points with a pink background are SNPs whose association in several populations was reported previously [15]. (B) Plot of CAMP Trio vs. CAMP/Illumina GWA results for the subset of SNPs that was successfully genotyped in CR. Shown in green are those SNPs with CR p-values < 0.05. Shown in red are those SNPs that have CR p-values < 0.05 and either a FHS or iCAP p-value < 0.05.

References

    1. American Lung Association. Trends in Asthma Morbidity and Mortality. Epidemiology and Statistics Unit, Research and Program Services; 2006.
    1. Global Initiative for Asthma Management and Prevention. NHLBI/WHO Workshop Report. US Department of Health and Human Services; 1995.
    1. Ober C, Hoffjan S. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun. 2006;7:95–100. doi: 10.1038/sj.gene.6364284.
    1. Rogers AJ, Raby BA, Lasky-Su JA, Murphy A, Lazarus R, Klanderman BJ, Sylvia JS, Ziniti JP, Lange C, Celedon JC. et al.Assessing the Reproducibility of Asthma Candidate Gene Associations Using Genome-wide Data. Am J Respir Crit Care Med. 2009;179(12):1084–90. doi: 10.1164/rccm.200812-1860OC.
    1. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufe A, Rietschel E. et al.Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448:470–473. doi: 10.1038/nature06014.
    1. Sleiman PM, Annaiah K, Imielinski M, Bradfield JP, Kim CE, Frackelton EC, Glessner JT, Eckert AW, Otieno FG, Santa E. et al.ORMDL3 variants associated with asthma susceptibility in North Americans of European ancestry. J Allergy Clin Immunol. 2008;122(6):1225–7. doi: 10.1016/j.jaci.2008.06.041.
    1. Galanter J, Choudhry S, Eng C, Nazario S, Rodriguez-Santana JR, Casal J, Torres-Palacios A, Salas J, Chapela R, Watson HG. et al.ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am J Respir Crit Care Med. 2008;177:1194–1200. doi: 10.1164/rccm.200711-1644OC.
    1. Tavendale R, Macgregor DF, Mukhopadhyay S, Palmer CN. A polymorphism controlling ORMDL3 expression is associated with asthma that is poorly controlled by current medications. J Allergy Clin Immunol. 2008;121:860–863. doi: 10.1016/j.jaci.2008.01.015.
    1. Leung TF, Sy HY, Ng MC, Chan IH, Wong GW, Tang NL, Waye MM, Lam CW. Asthma and atopy are associated with chromosome 17q21 markers in Chinese children. Allergy. 2009;64(4):621–8. doi: 10.1111/j.1398-9995.2008.01873.x.
    1. Wu H, Romieu I, Sienra-Monge JJ, Li H, Del Rio-Navarro BE, London SJ. Genetic variation in ORM1-like 3 (ORMDL3) and gasdermin-like (GSDML) and childhood asthma. Allergy. 2009;64(4):629–635. doi: 10.1111/j.1398-9995.2008.01912.x.
    1. Hirota T, Harada M, Sakashita M, Doi S, Miyatake A, Fujita K, Enomoto T, Ebisawa M, Yoshihara S, Noguchi E. et al.Genetic polymorphism regulating ORM1-like 3 (Saccharomyces cerevisiae) expression is associated with childhood atopic asthma in a Japanese population. J Allergy Clin Immunol. 2008;121:769–770. doi: 10.1016/j.jaci.2007.09.038.
    1. Verlaan DJ, Berlivet S, Hunninghake GM, Madore AM, Lariviere M, Moussette S, Grundberg E, Kwan T, Ouimet M, Ge B. et al.Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet. 2009;85:377–393. doi: 10.1016/j.ajhg.2009.08.007.
    1. Ober C, Tan Z, Sun Y, Possick JD, Pan L, Nicolae R, Radford S, Parry RR, Heinzmann A, Deichmann KA. et al.Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008;358:1682–1691. doi: 10.1056/NEJMoa0708801.
    1. Hancock DB, Romieu I, Shi M, Sienra-Monge JJ, Wu H, Chiu GY, Li H, del Rio-Navarro BE, Willis-Owens SA, Weiss ST. et al.Genome-wide association study implicates chromosome 9q21.31 as a susceptibility locus for asthma in mexican children. PLoS Genet. 2009;5:e1000623. doi: 10.1371/journal.pgen.1000623.
    1. Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P, Strachan DP, Wilk JB, Willis-Owen SA, Klanderman B, Lasky-Su J. et al.Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am J Hum Genet. 2009;84:581–593. doi: 10.1016/j.ajhg.2009.04.006.
    1. Sleiman PM, Flory J, Imielinski M, Bradfield JP, Annaiah K, Willis-Owen SA, Wang K, Rafaels NM, Michel S, Bonnelykke K, Variants of DENND1B associated with asthma in children. N Engl J Med. pp. 36–44.
    1. Li X, Howard TD, Zheng SL, Haselkorn T, Peters SP, Meyers DA, Bleecker ER. Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. J Allergy Clin Immunol. pp. 328–335. e311.
    1. Childhood Asthma Management Program Research Group. The Childhood Asthma Management Program (CAMP): design, rationale, and methods. Control Clin Trials. 1999;20:91–120. doi: 10.1016/S0197-2456(98)00044-0.
    1. Luca D, Ringquist S, Klei L, Lee AB, Gieger C, Wichmann HE, Schreiber S, Krawczak M, Lu Y, Styche A. et al.On the use of general control samples for genome-wide association studies: genetic matching highlights causal variants. Am J Hum Genet. 2008;82:453–463. doi: 10.1016/j.ajhg.2007.11.003.
    1. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–575. doi: 10.1086/519795.
    1. Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM. PBAT: tools for family-based association studies. Am J Hum Genet. 2004;74:367–369. doi: 10.1086/381563.
    1. Liptak T. On the combination of independent tests. Magyar Tud Akad Mat Kutato Int Kozl. 1958;3:171–197.
    1. Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003;19:149–150. doi: 10.1093/bioinformatics/19.1.149.
    1. Hunninghake GM, Soto-Quiros ME, Avila L, Ly NP, Liang C, Sylvia JS, Klanderman BJ, Silverman EK, Celedon JC. Sensitization to Ascaris lumbricoides and severity of childhood asthma in Costa Rica. J Allergy Clin Immunol. 2007;119:654–661. doi: 10.1016/j.jaci.2006.12.609.
    1. Hunninghake GM, Soto-Quiros ME, Avila L, Su J, Murphy A, Demeo DL, Ly NP, Liang C, Sylvia JS, Klanderman BJ. et al.Polymorphisms in IL13, total IgE, eosinophilia, and asthma exacerbations in childhood. J Allergy Clin Immunol. 2007;120:84–90. doi: 10.1016/j.jaci.2007.04.032.
    1. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265. doi: 10.1093/bioinformatics/bth457.
    1. Cupples LA, Arruda HT, Benjamin EJ, D'Agostino RB Sr, Demissie S, DeStefano AL, Dupuis J, Falls KM, Fox CS, Gottlieb DJ. et al.The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports. BMC Med Genet. 2007;8(Suppl 1):S1. doi: 10.1186/1471-2350-8-S1-S1.
    1. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, D'Agostino RB Sr, Fox CS, Larson MG, Murabito JM. et al.The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol. 2007;165:1328–1335. doi: 10.1093/aje/kwm021.
    1. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, Heath SC, Timpson NJ, Najjar SS, Stringham HM. et al.Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40:161–169. doi: 10.1038/ng.76.
    1. Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R. Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak. 2006;6:30. doi: 10.1186/1472-6947-6-30.
    1. Himes BE, Dai Y, Kohane IS, Weiss ST, Ramoni MF. Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records. J Am Med Inform Assoc. 2009;16:371–379. doi: 10.1197/jamia.M2846.
    1. Pritchard JK, Rosenberg NA. Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet. 1999;65:220–228. doi: 10.1086/302449.
    1. Price AL, Butler J, Patterson N, Capelli C, Pascali VL, Scarnicci F, Ruiz-Linares A, Groop L, Saetta AA, Korkolopoulou P. et al.Discerning the ancestry of European Americans in genetic association studies. PLoS Genet. 2008;4:e236. doi: 10.1371/journal.pgen.0030236.
    1. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–909. doi: 10.1038/ng1847.
    1. Silverman EK, Kwiatkowski DJ, Sylvia JS, Lazarus R, Drazen JM, Lange C, Laird NM, Weiss ST. Family-based association analysis of beta2-adrenergic receptor polymorphisms in the childhood asthma management program. J Allergy Clin Immunol. 2003;112:870–876. doi: 10.1016/S0091-6749(03)02023-2.
    1. DeMeo DL, Lange C, Silverman EK, Senter JM, Drazen JM, Barth MJ, Laird N, Weiss ST. Univariate and multivariate family-based association analysis of the IL-13 ARG130GLN polymorphism in the Childhood Asthma Management Program. Genet Epidemiol. 2002;23:335–348. doi: 10.1002/gepi.10182.
    1. Randolph AG, Lange C, Silverman EK, Lazarus R, Silverman ES, Raby B, Brown A, Ozonoff A, Richter B, Weiss ST. The IL12B gene is associated with asthma. Am J Hum Genet. 2004;75:709–715. doi: 10.1086/424886.
    1. Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008;118:1590–1605. doi: 10.1172/JCI34772.
    1. Chen GY, Sakuma K, Kannagi R. Significance of NF-kappaB/GATA axis in tumor necrosis factor-alpha-induced expression of 6-sulfated cell recognition glycans in human T-lymphocytes. J Biol Chem. 2008;283:34563–34570. doi: 10.1074/jbc.M804271200.
    1. Awasthi YC, Singh SV, Ahmad H, Moller PC. Immunocytochemical evidence for the expression of GST1, GST2, and GST3 gene loci for glutathione S-transferase in human lung. Lung. 1987;165:323–332. doi: 10.1007/BF02714448.
    1. Murphy A, Weiss ST, Lange C. Screening and replication using the same data set: testing strategies for family-based studies in which all probands are affected. PLoS Genet. 2008;4:e1000197. doi: 10.1371/journal.pgen.1000197.

Source: PubMed

3
Abonnieren