Phrenic nerve stimulation prevents diaphragm atrophy in patients with respiratory failure on mechanical ventilation

Michal Soták, Karel Roubík, Tomáš Henlín, Tomáš Tyll, Michal Soták, Karel Roubík, Tomáš Henlín, Tomáš Tyll

Abstract

Background: Diaphragm atrophy and dysfunction is a major problem among critically ill patients on mechanical ventilation. Ventilator-induced diaphragmatic dysfunction is thought to play a major role, resulting in a failure of weaning. Stimulation of the phrenic nerves and resulting diaphragm contraction could potentially prevent or treat this atrophy. The subject of this study is to determine the effectiveness of diaphragm stimulation in preventing atrophy by measuring changes in its thickness.

Methods: A total of 12 patients in the intervention group and 10 patients in the control group were enrolled. Diaphragm thickness was measured by ultrasound in both groups at the beginning of study enrollment (hour 0), after 24 hours, and at study completion (hour 48). The obtained data were then statistically analyzed and both groups were compared.

Results: The results showed that the baseline diaphragm thickness in the interventional group was (1.98 ± 0.52) mm and after 48 hours of phrenic nerve stimulation increased to (2.20 ± 0.45) mm (p=0.001). The baseline diaphragm thickness of (2.00 ± 0.33) mm decreased in the control group after 48 hours of mechanical ventilation to (1.72 ± 0.20) mm (p<0.001).

Conclusions: Our study demonstrates that induced contraction of the diaphragm by pacing the phrenic nerve not only reduces the rate of its atrophy during mechanical ventilation but also leads to an increase in its thickness - the main determinant of the muscle strength required for spontaneous ventilation and successful ventilator weaning.

Trial registration: The study was registered with ClinicalTrials.gov (18/06/2018, NCT03559933, https://ichgcp.net/clinical-trials-registry/NCT03559933 ).

Keywords: Diaphragm atrophy; Phrenic nerve; Ultrasound; Weaning from mechanical ventilation.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Ultrasound linear probe orientation (a) and view of the diaphragm (b) identified as a 3-layer structure comprised of two hyperechoic lines representing the pleural and peritoneal membranes and a middle hypoechoic layer representing the diaphragm muscle itself
Fig. 2
Fig. 2
Ultrasound measurement of the right side of the diaphragm, linear probe, 10 MHz (a), measurement was made from the middle of the pleural line to the middle of the peritoneal line (b) detail
Fig. 3
Fig. 3
Increase in diaphragm thickness in the interventional group
Fig. 4
Fig. 4
Decrease in diaphragm thickness in the control group
Fig. 5
Fig. 5
Increase in diaphragm thickness after 48 hours with stimulation and its corresponding decrease after 48 hours in the control group (without stimulation) compared to baseline at hour 0

References

    1. Esteban A, Anzueto A, Alia I, et al. How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med. 2000;161:1450–1458. doi: 10.1164/ajrccm.161.5.9902018.
    1. Pfuntner A, Wier LM, Stocks C. Most frequent procedures performed in U.S. hospitals, 2011: Statistical Brief #165. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville: Agency for Healthcare Research and Quality; 2013.
    1. Wunsch H, Kramer A, Gershengorn HB. Validation of intensive care and mechanical ventilation codes in Medicare data. Crit Care Med. 2017;45(7):e711–e714. doi: 10.1097/CCM.0000000000002316.
    1. Timsit JF, Esaied W, Neuville M, Bouadma L, Mourvllier B. Update on ventilator-associated pneumonia. F1000Res. 2017;6:2061.
    1. Zilberberg MD, de Wit M, Shorr AF. Accuracy of previous estimates for adult prolonged acute mechanical ventilation volume in 2020: update using 2000–2008 data. Crit Care Med. 2012;40(1):18–20. doi: 10.1097/CCM.0b013e31822e9ffd.
    1. Beduneau G, Pham T, Schortgen F, Piquilloud L, Zogheib E, Jonas M, et al. Epidemiology of Weaning Outcome according to a New Definition. The WIND study. Am J Respir Crit Care Med. 2017;195(6):772–83
    1. Dres M, Goligher EC, Heunks LMA, Brochard LJ. Critical illness-associated diaphragm weakness. Intensive Care Med. 2017;43(10):1441–1452. doi: 10.1007/s00134-017-4928-4.
    1. Petrof BJ, Hussain SN. Ventilator-induced diaphragmatic dysfunction: what have we learned? Curr Opin Crit Care. 2016;22(1):67–72. doi: 10.1097/MCC.0000000000000272.
    1. Dasta JF, McLaughlin TP, Mody SH, et al. Daily cost of an intensive care unit day: the contribution of mechanical ventilation. Crit Care Med. 2005;33:1266–1271. doi: 10.1097/01.CCM.0000164543.14619.00.
    1. Esteban A, Ferguson ND, Meade MO, et al. Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med. 2008;177:170–177. doi: 10.1164/rccm.200706-893OC.
    1. Schweickert WD. ICU-acquired weakness. Chest. 2007;131:1541. doi: 10.1378/chest.06-2065.
    1. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet J, Rabuel C, Bouyabrine H, Courouble P, Koechlin-Ramonatxo C, Sebbane M, Similowski T, Scheuermann V, Mebazaa A, Capdevila X, Mornet D, Mercier J, Lacampagne A, Philips A, Matecki S. Rapidly Progressive Diaphragmatic Weakness and Injury during Mechanical Ventilation in Humans. Am J Respir Crit Care Med. 2011;183:364–371. doi: 10.1164/rccm.201004-0670OC.
    1. Gruther W, Benesch T, Zorn C, Paternostro-Sluga T, Quittan M, Fialka- Moser V, et al. Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. Acta DermVenereol. 2008;40:185–9.
    1. Gilbert R, Auchincloss JH, Peppi D. Relationship of rib cage and abdomen motion to diaphragm function during quiet breathing. Chest. 1981;80:607–612. doi: 10.1378/chest.80.5.607.
    1. Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C, et al. Diaphragm dysfunction on admission to ICU: prevalence, risk factors and prognostic impact - a prospective study. Am J Respir Crit Care Med. 2013;188:213–219. doi: 10.1164/rccm.201209-1668OC.
    1. Hermans G, Casaer MP, Clerckx B, Güiza F, Vanhullebusch T, Derde S, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med. 2013;1:621–629. doi: 10.1016/S2213-2600(13)70183-8.
    1. Peñuelas O, Keough E, López-Rodríguez L, Carriedo D, Gonçalves G, Barreiro E, Lorente JÁ. Ventilator-induced diaphragm dysfunction: translational mechanisms lead to therapeutical alternatives in the critically ill. Intensive Care Med Exp. 2019;7(Suppl 1):48. doi: 10.1186/s40635-019-0259-9.PMID:31346802;PMCID:PMC6658639.
    1. Testelmans D, Maes K, Wouters P, Powers SK, Decramer M, Gayan-Ramirez G. Infusions of rocuronium and cisatracurium exert different effects on rat diaphragm function. Intensive Care Med. 2007;33:872–879. doi: 10.1007/s00134-007-0584-4.
    1. Maes K, Testelmans D, Cadot P, Deruisseau K, Powers SK, Decramer M, et al. Effects of acute administration of corticosteroids during mechanical ventilation on rat diaphragm. Am J Respir Crit Care Med. 2008;178:1219–1226. doi: 10.1164/rccm.200702-296OC.
    1. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–1335. doi: 10.1056/NEJMoa070447.
    1. Manno E, Navarra M, Faccio L, Motevallian M, Bertolaccini L, Mfochivè A, et al. Deep impact of ultrasound in the intensive care unit: the “ICU-sound” protocol. Anesthesiology. 2012;117:801–809. doi: 10.1097/ALN.0b013e318264c621.
    1. Zambon M, Greco M, Bocchino S, Cabrini L, Beccaria PF, Zangrillo A. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a systematic review. Intensive Care Med. 2017;43(1):29–38. doi: 10.1007/s00134-016-4524-z.
    1. Le Pimpec-Barthes F, Legras A, Arame A, Pricopi C, Boucherie JC, Badia A, et al. Diaphragm pacing: the state of the art. J Thorac Dis. 2016;8(Suppl 4):S376–S386. doi: 10.21037/jtd.2016.03.97.
    1. Evans D, Shure D, Clark L, et al. Temporary transvenous diaphragm pacing vs. standard of care for weaning from mechanical ventilation: study protocol for a randomized trial. Trials. 2019;20(1):60. Published 2019 Jan 17. doi:10.1186/s13063-018-3171-9
    1. Reynolds S, Ebner A, Meffen T, Thakkar V, Gani M, Taylor K, Clark L, Sadarangani G, Meyyappan R, Sandoval R, Rohrs E, Hoffer JA. Diaphragm Activation in Ventilated Patients Using a Novel Transvenous Phrenic Nerve Pacing Catheter. Crit Care Med. 2017;45(7):e691–e694. doi: 10.1097/CCM.0000000000002366.
    1. Adler D, Gottfried SB, Bautin N, Mirkovic T, Schmidt M, Raux M, et al. Repetitive magnetic stimulation of the phrenic nerves for diaphragm conditioning: a normative study of feasibility and optimal settings. Appl Physiol Nutr Metab. 2011;36(6):1001–1008. doi: 10.1139/h11-095.
    1. O'Rourke J, Soták M, Curley GF, Doolan A, Henlín T, Mullins G, Tyll T, Omlie W, Ranieri MV. Initial Assessment of the Percutaneous Electrical Phrenic Nerve Stimulation System in Patients on Mechanical Ventilation. Crit Care Med. 2020;48(5):e362–e370. doi: 10.1097/CCM.0000000000004256.PMID:32191413;PMCID:PMC7161723.
    1. Cohn D, Benditt JO, Eveloff S, McCool FD. Diaphragm thickening during inspiration. J Appl Physiol. 1997;83(1):291–296. doi: 10.1152/jappl.1997.83.1.291.
    1. Ueki J, De Bruin PF, Pride NB. In vivo assessment of diaphragm contraction by ultrasound in normal subjects. Thorax. 1995;50:1157–1161. doi: 10.1136/thx.50.11.1157.
    1. Francis CA, Hoffer JA, Reynolds S. Ultrasonographic Evaluation of Diaphragm Thickness During Mechanical Ventilation in Intensive Care Patients. AJCC. 2016;25(1):e1–e8.
    1. Grosu HB, Lee YI, Lee J, Eden E, Eikermann M, Rose KM. Diaphragm muscle thinning in patients who are mechanically ventilated. Chest. 2012;142(6):1455–1460. doi: 10.1378/chest.11-1638.
    1. Neumann P, Rothen HU, Berglund JE, Valtysson J, Magnusson A, Hedenstierna G. Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration. Acta Anaesthesiol Scand. 1999;43(3):295–301. doi: 10.1034/j.1399-6576.1999.430309.x.
    1. SONIX Touch Q Extended User Manual, 00.040.708, Revision B, Ultrasonix Medical Corporation, 130 - 4311 Viking Way, Richmond, BC V6V 2K9, Canada
    1. Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, Rittayamai N, Lanys A, Tomlinson G, Singh JM, Bolz SS, Rubenfeld GD, Kavanagh BP, Brochard LJ, Ferguson ND. Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort. Am J Respir Crit Care Med. 2015 Nov 1;192(9):1080-8. doi: 10.1164/rccm.201503-0620OC. PMID: 26167730.
    1. Nevins ML, Epstein SK. Predictors of outcome for patients with COPD requiring invasive mechanical ventilation. Chest. 2001;119:1840–1849. doi: 10.1378/chest.119.6.1840.

Source: PubMed

3
Abonnieren