Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation

Guclu Aykut, Gerke Veenstra, Claudia Scorcella, Can Ince, Christiaan Boerma, Guclu Aykut, Gerke Veenstra, Claudia Scorcella, Can Ince, Christiaan Boerma

Abstract

Background: Orthogonal polarized spectral (OPS) and sidestream dark field (SDF) imaging video microscope devices were introduced for observation of the microcirculation but, due to technical limitations, have remained as research tools. Recently, a novel handheld microscope based on incident dark field illumination (IDF) has been introduced for clinical use. The Cytocam-IDF imaging device consists of a pen-like probe incorporating IDF illumination with a set of high-resolution lenses projecting images on to a computer controlled image sensor synchronized with very short pulsed illumination light. This study was performed to validate Cytocam-IDF imaging by comparison to SDF imaging in volunteers.

Methods: This study is a prospective, observational study. The subjects consist of 25 volunteers.

Results: Sublingual microcirculation was evaluated using both techniques. The main result was that Cytocam-IDF imaging provided better quality images and was able to detect 30% more capillaries than SDF imaging (total vessels density Cytocam-IDF: 21.60 ± 4.30 mm/mm(2) vs SDF: 16.35 ± 2.78 mm/mm(2), p < 0.0001). Comparison of the images showed increased contrast, sharpness, and image quality of both venules and capillaries.

Conclusions: Cytocam-IDF imaging detected more capillaries and provided better image quality than SDF imaging. It is concluded that Cytocam-IDF imaging may provide a new improved imaging modality for clinical assessment of microcirculatory alterations.

Figures

Figure 1
Figure 1
Smaller SDF image in larger Cytocam-IDF image. This figure shows the field of view of SDF and Cytocam-IDF imaging superimposed on each other showing the larger field of view offered by the larger image sensor used by the later technique.
Figure 2
Figure 2
Histogram points taken for analyses; square capillary; circle venule; left Cytocam-IDF imaging; right SDF-imaging.
Figure 3
Figure 3
Boxplots of TVD and PVD.

References

    1. De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado D, Scolletta S. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41(3):791–799. doi: 10.1097/CCM.0b013e3182742e8b.
    1. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9(Suppl 4):S13–S19. doi: 10.1186/cc3753.
    1. Top APC, Ince C, de Meij N, van Dijk M, Tibboel D. Persistent low microcirculatory vessel density in nonsurvivors of sepsis in pediatric intensive care. Crit Care Med. 2011;39(1):8–13. doi: 10.1097/CCM.0b013e3181fb7994.
    1. Edul VSK, Enrico C, Laviolle B, Vazquez AR, Ince C, Dubin A. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med. 2012;40(5):1443–1448. doi: 10.1097/CCM.0b013e31823dae59.
    1. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49(1):88–98. doi: 10.1016/j.annemergmed.2006.08.021.
    1. Krahl VE. Observations on the pulmonary alveolus and its capillary circulation in the living rabbit. Anat Rec. 1962;142:350.
    1. Sherman H, Klausner S, Cook WA. Incident dark-field illumination: a new method for microcirculatory study. Angiology. 1971;22(5):295–303. doi: 10.1177/000331977102200507.
    1. Slaaf DW, Tangelder GJ, Reneman RS, Jäger K, Bollinger A. A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp. 1987;6(4):391–397.
    1. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5(10):1209–1212. doi: 10.1038/13529.
    1. Mathura KR, Vollebregt KC, Boer K, De Graaff JC, Ubbink DT, Ince C. Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol. 2001;91(1):74–78.
    1. Mathura KR, Bouma GJ, Ince C. Abnormal microcirculation in brain tumours during surgery. Lancet. 2001;358(9294):1698–1699. doi: 10.1016/S0140-6736(01)06722-8.
    1. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98–104. doi: 10.1164/rccm.200109-016OC.
    1. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 2002;360(9343):1395–1396. doi: 10.1016/S0140-6736(02)11393-6.
    1. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15(23):15101–15114. doi: 10.1364/OE.15.015101.
    1. Dababneh L, Cikach F, Alkukhun L, Dweik RA, Tonelli AR. Sublingual microcirculation in pulmonary arterial hypertension. Ann Am Thoracic Soc. 2014;11(4):504–512. doi: 10.1513/AnnalsATS.201308-277OC.
    1. Mik EG, Johannes T, Fries M. Clinical microvascular monitoring: a bright future without a future? Crit Care Med. 2009;37(11):2980–2981. doi: 10.1097/CCM.0b013e3181aff81c.
    1. Sallisalmi M, Oksala N, Pettilä V, Tenhunen J. Evaluation of sublingual microcirculatory blood flow in the critically ill. Acta Anaesthesiol Scand. 2012;56(3):298–306. doi: 10.1111/j.1399-6576.2011.02569.x.
    1. Bezemer R, Bartels SA, Bakker J, Ince C. Clinical review: clinical imaging of the sublingual microcirculation in the critically ill - where do we stand? Crit Care. 2012;16(3):224. doi: 10.1186/cc11236.
    1. Ince C. The rationale for microcirculatory guided fluid therapy. Curr Opin Crit Care. 2014;20(3):301–308. doi: 10.1097/MCC.0000000000000091.
    1. Dobbe JGG, Streekstra GJ, Atasever B, van Zijderveld R, Ince C. Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput. 2008;46(7):659–670. doi: 10.1007/s11517-008-0349-4.
    1. Milstein D, Romay E, Ince C. A novel computer-controlled high resolution video microscopy imaging system enables measuring mucosal subsurface focal depth for rapid acquisition of oral microcirculation video images. Intensive Care Med. 2012;38:S271.
    1. De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11(5):R101. doi: 10.1186/cc6118.
    1. Dubin A, Pozo MO, Ferrara G, Murias G, Martins E, Canullán C. Systemic and microcirculatory responses to progressive hemorrhage. Intensive Care Med. 2009;35(3):556–564. doi: 10.1007/s00134-008-1385-0.
    1. Boerma EC, Mathura KR, van der Voort PHJ, Spronk PE, Ince C. Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care. 2005;9(6):R601–R606. doi: 10.1186/cc3809.
    1. van Elteren H, van den Berg V, de Jonge R, Ince C, Reiss I. Cutaneous microcirculation in preterm neonates: comparison between sidestream darkfield (SDF) and incident darkfield (IDF) imaging. Pediatr Crit Care Med. 2014;15(4):130–131. doi: 10.1097/01.pcc.0000449300.97563.98.
    1. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147(1):91–99. doi: 10.1016/j.ahj.2003.07.006.
    1. Hubble SMA, Kyte HL, Gooding K, Shore AC. Variability in sublingual microvessel density and flow measurements in healthy volunteers. Microcirculation. 2009;16(2):183–191. doi: 10.1080/10739680802461935.
    1. De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11(5):R101. doi: 10.1186/cc6118.
    1. Bracht H, Krejci V, Hiltebrand L, Brandt S, Sigurdsson G, Ali SZ. Orthogonal polarization spectroscopy to detect mesenteric hypoperfusion. Intensive Care Med. 2008;34(10):1883–1890. doi: 10.1007/s00134-008-1130-8.

Source: PubMed

3
Abonnieren