Randomised sham-controlled double-blind trial evaluating remote ischaemic preconditioning in solid organ transplantation: a study protocol for the RIPTRANS trial

Aki Uutela, Ilkka Helanterä, Karl Lemström, Arie Passov, Simo Syrjälä, Fredrik Åberg, Heikki Mäkisalo, Arno Nordin, Marko Lempinen, Ville Sallinen, RIPTRANS Study Group collaborators, Minna Bäcklund, Markus Skrifvars, Teemu Luostarinen, Janne Reitala, Maarit Lång, Ilona Leppänen, Jaakko Långsjö, Juha Grönlund, Pekka Loisa, Anni Pulkkinen, Björn Jäschke, Aki Uutela, Ilkka Helanterä, Karl Lemström, Arie Passov, Simo Syrjälä, Fredrik Åberg, Heikki Mäkisalo, Arno Nordin, Marko Lempinen, Ville Sallinen, RIPTRANS Study Group collaborators, Minna Bäcklund, Markus Skrifvars, Teemu Luostarinen, Janne Reitala, Maarit Lång, Ilona Leppänen, Jaakko Långsjö, Juha Grönlund, Pekka Loisa, Anni Pulkkinen, Björn Jäschke

Abstract

Introduction: Remote ischaemic preconditioning (RIPC) using a non-invasive pneumatic tourniquet is a potential method for reducing ischaemia-reperfusion injury. RIPC has been extensively studied in animal models and cardiac surgery, but scarcely in solid organ transplantation. RIPC could be an inexpensive and simple method to improve function of transplanted organs. Accordingly, we aim to study whether RIPC performed in brain-dead organ donors improves function and longevity of transplanted organs.

Methods and analyses: RIPTRANS is a multicentre, sham-controlled, parallel group, randomised superiority trial comparing RIPC intervention versus sham-intervention in brain-dead organ donors scheduled to donate at least one kidney. Recipients of the organs (kidney, liver, pancreas, heart, lungs) from a randomised donor will be included provided that they give written informed consent. The RIPC intervention is performed by inflating a thigh tourniquet to 300 mm Hg 4 times for 5 min. The intervention is done two times: first right after the declaration of brain death and second immediately before transferring the donor to the operating theatre. The sham group receives the tourniquet, but it is not inflated. The primary endpoint is delayed graft function (DGF) in kidney allografts. Secondary endpoints include short-term functional outcomes of transplanted organs, rejections and graft survival in various time points up to 20 years. We aim to show that RIPC reduces the incidence of DGF from 25% to 15%. According to this, the sample size is set to 500 kidney transplant recipients.

Ethics and dissemination: This study has been approved by Helsinki University Hospital Ethics Committee and Helsinki University Hospital's Institutional Review Board. The study protocol was be presented at the European Society of Organ Transplantation congress in Copenhagen 14-15 September 2019. The study results will be submitted to an international peer-reviewed scientific journal for publication.

Trial registration number: NCT03855722.

Keywords: adult intensive & critical care; cardiac surgery; hepatology; renal transplantation; transplant medicine; transplant surgery.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

References

    1. Hart A, Smith JM, Skeans MA, et al. . OPTN/SRTR 2017 annual data report: kidney. Am J Transplant 2019;19:19–123. 10.1111/ajt.15274
    1. Kandaswamy R, Stock PG, Gustafson SK, et al. . OPTN/SRTR 2017 annual data report: pancreas. Am J Transplant 2019;19:124–83. 10.1111/ajt.15275
    1. Kim WR, Lake JR, Smith JM, et al. . OPTN/SRTR 2017 annual data report: liver. Am J Transplant 2019;19:184–283. 10.1111/ajt.15276
    1. Colvin M, Smith JM, Hadley N, et al. . OPTN/SRTR 2017 annual data report: heart. Am J Transplant 2019;19:323–403. 10.1111/ajt.15278
    1. Valapour M, Lehr CJ, Skeans MA, et al. . OPTN/SRTR 2017 annual data report: lung. Am J Transplant 2019;19:404–84. 10.1111/ajt.15279
    1. Israni AK, Zaun D, Rosendale JD, et al. . OPTN/SRTR 2017 annual data report: deceased organ donation. Am J Transplant 2019;19:485–516. 10.1111/ajt.15280
    1. Aydin Z, van Zonneveld AJ, de Fijter JW, et al. . New horizons in prevention and treatment of ischaemic injury to kidney transplants. Nephrology Dialysis Transplantation 2007;22:342–6. 10.1093/ndt/gfl690
    1. Kanoria S, Jalan R, Seifalian AM, et al. . Protocols and mechanisms for remote ischemic preconditioning: a novel method for reducing ischemia reperfusion injury. Transplantation 2007;84:445–58. 10.1097/01.tp.0000228235.55419.e8
    1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–36. 10.1161/01.CIR.74.5.1124
    1. Przyklenk K, Bauer B, Ovize M, et al. . Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993;87:893–9. 10.1161/01.CIR.87.3.893
    1. Kharbanda RK, Mortensen UM, White PA, et al. . Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 2002;106:2881–3. 10.1161/01.CIR.0000043806.51912.9B
    1. Meybohm P, Bein B, Brosteanu O, et al. . A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med 2015;373:1397–407. 10.1056/NEJMoa1413579
    1. Hausenloy DJ, Candilio L, Evans R. Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing coronary artery bypass graft surgery (ERICCA study): a multicentre double-blind randomised controlled clinical trial. efficacy and mechanism evaluation. Southampton (UK): NIHR Journals Library, 2016.
    1. Hausenloy DJ, Kharbanda RK, Møller UK, et al. . Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial. The Lancet 2019;394:1415–24. 10.1016/S0140-6736(19)32039-2
    1. Zarbock A, Schmidt C, Van Aken H, et al. . Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery. JAMA 2015;313:2133–41. 10.1001/jama.2015.4189
    1. Benstoem C, Goetzenich A, Autschbach R, et al. . Volatile anesthetics versus propofol in the cardiac surgical setting of remote ischemic preconditioning: a secondary analysis of a Cochrane systematic review. Minerva Anestesiol 2018;84:1298–306. 10.23736/S0375-9393.18.12465-5
    1. Chen K, Yu J, Wang Q, et al. . The timing of propofol administration affects the effectiveness of remote ischemic preconditioning induced cardioprotection in rats. J Cell Biochem 2020;121:4535–41. 10.1002/jcb.29671
    1. Wang G, Zhang Y, Yang L, et al. . Cardioprotective effect of remote ischemic preconditioning with postconditioning on donor hearts in patients undergoing heart transplantation: a single-center, double-blind, randomized controlled trial. BMC Anesthesiol 2019;19:48 10.1186/s12871-019-0720-z
    1. Jung K-W, Kang J, Kwon H-M, et al. . Effect of remote ischemic preconditioning conducted in living liver donors on postoperative liver function in donors and recipients following liver transplantation. Ann Surg 2020;271:646–53. 10.1097/SLA.0000000000003498
    1. Robertson FP, Goswami R, Wright GP, et al. . Remote ischaemic preconditioning in orthotopic liver transplantation (RIPCOLT trial): a pilot randomized controlled feasibility study. HPB 2017;19:757–67. 10.1016/j.hpb.2017.05.005
    1. Koneru B, Shareef A, Dikdan G, et al. . The ischemic preconditioning paradox in deceased donor liver Transplantation—Evidence from a prospective randomized single blind clinical trial. Am J Transplant 2007;7:2788–96. 10.1111/j.1600-6143.2007.02009.x
    1. Desai KK, Mora-Esteves C, Holland BK, et al. . Does liver ischemic preconditioning in brain death donors induce kidney preconditioning? A retrospective analysis. Transplantation Journal 2014;97:337–43. 10.1097/01.TP.0000436926.30897.56
    1. Zapata-Chavira H, Hernández-Guedea M, Jiménez-Pérez JC, et al. . Modulation of remote ischemic preconditioning by proinflammatory cytokines in renal transplant recipients. J Invest Surg 2019;32:63–71. 10.1080/08941939.2017.1375052
    1. Chen Y, Zheng H, Wang X, et al. . Remote ischemic preconditioning fails to improve early renal function of patients undergoing living-donor renal transplantation: a randomized controlled trial. Transplantation 2013;95:e4–6. 10.1097/TP.0b013e3182782f3a
    1. Bang J-Y, Kim S-G, Oh J, et al. . Impact of remote ischemic preconditioning conducted in living kidney donors on renal function in donors and recipients following living donor kidney transplantation: a randomized clinical trial. J Clin Med 2019;8:713. 10.3390/jcm8050713
    1. Krogstrup NV, Oltean M, Nieuwenhuijs-Moeke GJ, et al. . Remote ischemic conditioning on recipients of deceased renal transplants does not improve early graft function: a multicenter randomized, controlled clinical trial. Am J Transplant 2017;17:1042–9. 10.1111/ajt.14075
    1. Chan A-W, Tetzlaff JM, Altman DG, et al. . Spirit 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med 2013;158:200–7. 10.7326/0003-4819-158-3-201302050-00583
    1. MacAllister R, Clayton T, Knight R. Remote preconditioning for protection against ischaemia-reperfusion in renal transplantation (repair): a multicentre, multinational, double-blind, factorial designed randomised controlled trial. efficacy and mechanism evaluation. Southampton (UK): NIHR Journals Library, 2015.
    1. Veighey KV, Nicholas JM, Clayton T, et al. . Early remote ischaemic preconditioning leads to sustained improvement in allograft function after live donor kidney transplantation: long-term outcomes in the renal protection against Ischaemia–reperfusion in transplantation (repair) randomised trial. Br J Anaesth 2019;123:584–91. 10.1016/j.bja.2019.07.019
    1. Jochmans I, Fieuws S, Monbaliu D, et al. . “Model for early allograft function” outperforms “early allograft dysfunction” as a predictor of transplant survival. Transplantation 2017;101:e258–64. 10.1097/TP.0000000000001833
    1. Nadim MK, Genyk YS, Tokin C, et al. . Impact of the etiology of acute kidney injury on outcomes following liver transplantation: acute tubular necrosis versus hepatorenal syndrome. Liver Transpl 2012;18:539–48. 10.1002/lt.23384
    1. Kobashigawa J, Zuckermann A, Macdonald P, et al. . Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J Heart Lung Transplant 2014;33:327–40. 10.1016/j.healun.2014.02.027
    1. Mehra MR, Crespo-Leiro MG, Dipchand A, et al. . International Society for heart and lung transplantation working formulation of a standardized Nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant 2010;29:717–27. 10.1016/j.healun.2010.05.017
    1. Snell GI, Yusen RD, Weill D, et al. . Report of the ISHLT Working group on primary lung graft dysfunction, part I: definition and grading-A 2016 consensus group statement of the International Society for heart and lung transplantation. J Heart Lung Transplant 2017;36:1097–103. 10.1016/j.healun.2017.07.021
    1. Meyer KC, Raghu G, Verleden GM, et al. . An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J 2014;44:1479–503. 10.1183/09031936.00107514

Source: PubMed

3
Abonnieren