Distinct resting-state functional connections associated with episodic and visuospatial memory in older adults

Sana Suri, Anya Topiwala, Nicola Filippini, Enikő Zsoldos, Abda Mahmood, Claire E Sexton, Archana Singh-Manoux, Mika Kivimäki, Clare E Mackay, Stephen Smith, Klaus P Ebmeier, Sana Suri, Anya Topiwala, Nicola Filippini, Enikő Zsoldos, Abda Mahmood, Claire E Sexton, Archana Singh-Manoux, Mika Kivimäki, Clare E Mackay, Stephen Smith, Klaus P Ebmeier

Abstract

Episodic and spatial memory are commonly impaired in ageing and Alzheimer's disease. Volumetric and task-based functional magnetic resonance imaging (fMRI) studies suggest a preferential involvement of the medial temporal lobe (MTL), particularly the hippocampus, in episodic and spatial memory processing. The present study examined how these two memory types were related in terms of their associated resting-state functional architecture. 3T multiband resting state fMRI scans from 497 participants (60-82 years old) of the cross-sectional Whitehall II Imaging sub-study were analysed using an unbiased, data-driven network-modelling technique (FSLNets). Factor analysis was performed on the cognitive battery; the Hopkins Verbal Learning test and Rey-Osterreith Complex Figure test factors were used to assess verbal and visuospatial memory respectively. We present a map of the macroscopic functional connectome for the Whitehall II Imaging sub-study, comprising 58 functionally distinct nodes clustered into five major resting-state networks. Within this map we identified distinct functional connections associated with verbal and visuospatial memory. Functional anticorrelation between the hippocampal formation and the frontal pole was significantly associated with better verbal memory in an age-dependent manner. In contrast, hippocampus-motor and parietal-motor functional connections were associated with visuospatial memory independently of age. These relationships were not driven by grey matter volume and were unique to the respective memory domain. Our findings provide new insights into current models of brain-behaviour interactions, and suggest that while both episodic and visuospatial memory engage MTL nodes of the default mode network, the two memory domains differ in terms of the associated functional connections between the MTL and other resting-state brain networks.

Keywords: Connectomics; Hippocampus; Network modelling; Resting-state fMRI; Verbal memory; Visuospatial memory.

Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
The resting-state functional connectome estimated for 497 participants of the Whitehall II Imaging sub-study. High-dimensionality group ICA and network modelling were performed using the FSL-MELODIC and FSLNETS tools respectively. Z statistics for the full correlation (below the diagonal) and partial correlation (above the diagonal) were computed for the 58 nodes visualized at the top of each column. The nodes were reordered according to a hierarchical clustering of the full correlation matrix. Five clusters representing commonly observed resting-state networks are highlighted in black boxes and labelled at the top of the figure. The partial correlation netmats were used in the linear regression with memory.
Fig. 2
Fig. 2
Distinct resting-state connections representing episodic and visuospatial memory. (a) Verbal memory was significantly negatively correlated with temporal-frontal anticorrelation. Visuospatial memory was significantly positively correlated with (b) motor-parietal connectivity and (c) motor-hippocampal connectivity. The colour of the bar connecting the two nodes represents the sign of the group-average partial correlation (red: positive, blue: negative). Each subject's partial correlation edge strengths are plotted against the corresponding memory factor on the right. All images are thresholded at z > 4 for visualisation.

References

    1. Abou-Elseoud A., Starck T., Remes J., Nikkinen J., Tervonen O., Kiviniemi V. The effect of model order selection in group PICA. Hum. Brain Mapp. 2009;31 NA-NA.
    1. Achim A.M., Lepage M. Dorsolateral prefrontal cortex involvement in memory post-retrieval monitoring revealed in both item and associative recognition tests. Neuroimage. 2005;24:1113–1121.
    1. Allen G., Barnard H., McColl R., Hester A.L., Fields J.A., Weiner M.F., Ringe W.K., Lipton A.M., Brooker M., McDonald E., Rubin C.D., Cullum C.M. Reduced hippocampal functional connectivity in Alzheimer disease. Arch. Neurol. 2007;64:1482–1487.
    1. Andrews-Hanna J.R., Reidler J.S., Huang C., Buckner R.L. Evidence for the default network's role in spontaneous cognition. J. Neurophysiol. 2010;104:322–335.
    1. Andrews-Hanna J.R., Reidler J.S., Sepulcre J., Poulin R., Buckner R.L. Functional-anatomic fractionation of the Brain's default network. Neuron. 2010;65:550–562.
    1. Andrews-Hanna J.R., Snyder A.Z., Vincent J.L., Lustig C., Head D., Raichle M.E., Buckner R.L. Disruption of large-scale brain systems in advanced aging. Neuron. 2007;56:924–935.
    1. Baggio H.-C., Segura B., Sala-Llonch R., Marti M.-J., Valldeoriola F., Compta Y., Tolosa E., Junqué C. Cognitive impairment and resting-state network connectivity in Parkinson's disease. Hum. Brain Mapp. 2015;36:199–212.
    1. Beckmann, Mackay, Filippini, Smith Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. Neuroimage. 2009;47:S148.
    1. Buckner R.L. The role of the Hippocampus in prediction and imagination. Annu. Rev. Psychol. 2010;61:27–48.
    1. Buckner R.L., Andrews-Hanna J.R., Schacter D.L. The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008;1124:1–38.
    1. Chan M.Y., Park D.C., Savalia N.K., Petersen S.E., Wig G.S. Decreased segregation of brain systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. 2014;111:E4997–E5006.
    1. Cole D.M., Smith S.M., Beckmann C.F. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 2010;4:8.
    1. Damoiseaux J.S., Beckmann C.F., Arigita E.J.S., Barkhof F., Scheltens P., Stam C.J., Smith S.M., Rombouts S.A.R.B. Reduced resting-state brain activity in the “default network” in normal aging. Cereb. Cortex. 2008;18:1856–1864.
    1. Damoiseaux J.S., Rombouts S.A.R.B., Barkhof F., Scheltens P., Stam C.J., Smith S.M., Beckmann C.F. Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U. S. A. 2006;103:13848–13853.
    1. Delbeuck X., Van der Linden M., Collette F. Alzheimer's disease as a disconnection syndrome? Neuropsychol. Rev. 2003;13:79–92.
    1. Desgranges B., Baron J., Lalevée C., Giffard B., Viader F., de la Sayette V., Eustache F. The neural substrates of episodic memory impairment in Alzheimer's disease as revealed by FDG–PET: relationship to degree of deterioration. Brain. 2002;125
    1. Dipasquale O., Griffanti L., Clerici M., Nemni R., Baselli G., Baglio F. High-dimensional ICA analysis detects within-network functional connectivity damage of default-mode and sensory-motor networks in Alzheimer’s disease. Front. Hum. Neurosci. 2015;9:43.
    1. Eichenbaum, H., 2009. The cognitive neuroscience of memory: an introduction, the cognitive neuroscience of memory: an introduction..
    1. Ferreira L.K., Busatto G.F. Resting-state functional connectivity in normal brain aging. Neurosci. Biobehav. Rev. 2013;37:384–400.
    1. Filippini N., MacIntosh B.J., Hough M.G., Goodwin G.M., Frisoni G.B., Smith S.M., Matthews P.M., Beckmann C.F., Mackay C.E. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc. Natl. Acad. Sci. U. S. A. 2009;106:7209–7214.
    1. Filippini N., Zsoldos E., Haapakoski R., Sexton C.E., Mahmood A., Allan C.L., Topiwala A., Valkanova V., Brunner E.J., Shipley M.J., Auerbach E., Moeller S., Uğurbil K., Xu J., Yacoub E., Andersson J., Bijsterbosch J., Clare S., Griffanti L., Hess A.T., Jenkinson M., Miller K.L., Salimi-Khorshidi G., Sotiropoulos S.N., Voets N.L., Smith S.M., Geddes J.R., Singh-Manoux A., Mackay C.E., Kivimäki M., Ebmeier K.P. Study protocol: the Whitehall II imaging sub-study. BMC Psychiatry. 2014;14:159.
    1. Fjell A.M., McEvoy L., Holland D., Dale A.M., Walhovd K.B. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog. Neurobiol. 2014
    1. Fox M.D., Snyder A.Z., Vincent J.L., Corbetta M., Van Essen D.C., Raichle M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 2005;102:9673–9678.
    1. Geerligs L., Renken R.J., Saliasi E., Maurits N.M., Lorist M.M. A brain-wide study of age-related changes in functional connectivity. Cereb. Cortex. 2015;25:1987–1999.
    1. Grady C., Sarraf S., Saverino C., Campbell K. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiol. Aging. 2016;41:159–172.
    1. Grady C.L., McIntosh A.R., Beig S., Keightley M.L., Burian H., Black S.E. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer's disease. J. Neurosci. 2003;23
    1. Griffanti L., Salimi-Khorshidi G., Beckmann C.F., Auerbach E.J., Douaud G., Sexton C.E., Zsoldos E., Ebmeier K.P., Filippini N., Mackay C.E., Moeller S., Xu J., Yacoub E., Baselli G., Ugurbil K., Miller K.L., Smith S.M. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Neuroimage. 2014;95:232–247.
    1. Hafkemeijer A., van der Grond J., Rombouts S.A.R.B. Imaging the default mode network in aging and dementia. Biochim. Biophys. Acta - Mol. Basis Dis. 2012;1822:431–441.
    1. Hampson M., Driesen N., Roth J.K., Gore J.C., Constable R.T. Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magn. Reson. Imaging. 2010;28:1051–1057.
    1. Harada C.N., Natelson Love M.C., Triebel K.L. Normal cognitive aging. Clin. Geriatr. Med. 2013;29:737–752.
    1. Hirshhorn M., Grady C., Rosenbaum R.S., Winocur G., Moscovitch M. Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: an fMRI study. Neuropsychologia. 2012;50:3094–3106.
    1. Huijbers W., Pennartz C.M.A., Cabeza R., Daselaar S.M. The Hippocampus is coupled with the default network during memory retrieval but not during memory encoding. PLoS One. 2011;6:e17463.
    1. Jack C.R., Shiung M.M., Gunter J.L., O'Brien P.C., Weigand S.D., Knopman D.S., Boeve B.F., Ivnik R.J., Smith G.E., Cha R.H., Tangalos E.G., Petersen R.C. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology. 2004;62:591–600.
    1. Jenkinson M., Beckmann C., Behrens T.E., Woolrich M.W., Smith S.M. FSL. Neuroimage. 2012;62:782–790.
    1. Kim H.J., Cha J., Lee J.-M., Shin J.S., Jung N.-Y., Kim Y.J., Choe Y.S., Lee K.H., Kim S.T., Kim J.S., Lee J.H., Na D.L., Seo S.W. Distinctive resting state network disruptions among Alzheimer's disease, subcortical vascular dementia, and mixed dementia patients. J. Alzheimers. Dis. 2015;50:709–718.
    1. Kumaran D., Maguire E.A. The human Hippocampus: cognitive maps or relational memory? J. Neurosci. 2005;25:7254–7259.
    1. Lange K.L., Bondi M.W., Salmon D.P., Galasko D., Delis D.C., Thomas R.G., Thal L.J. Decline in verbal memory during preclinical Alzheimer's disease: examination of the effect of APOE genotype. J. Int. Neuropsychol. Soc. 2002;8:943–955.
    1. Maguire E.A., Mullally S.L. The hippocampus: a manifesto for change. J. Exp. Psychol. Gen. 2013;142:1180–1189.
    1. Mevel K., Chételat G., Eustache F., Desgranges B., Mevel K., Chételat G., Eustache F., Desgranges B., Ché, telat G.L., Eustache F., Desgranges B., Atrice The default mode network in healthy aging and Alzheimer's disease. Int. J. Alzheimers. Dis. 2011;2011:535816.
    1. Miller K.L., Alfaro-Almagro F., Bangerter N.K., Thomas D.L., Yacoub E., Xu J., Bartsch A.J., Jbabdi S., Sotiropoulos S.N., Andersson J.L.R., Griffanti L., Douaud G., Okell T.W., Weale P., Dragonu I., Garratt S., Hudson S., Collins R., Jenkinson M., Matthews P.M., Smith S.M. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 2016;19:1523–1536.
    1. Moscovitch M. Memory and working-with-memory: a component process model based on modules and central systems. J. Cogn. Neurosci. 1992;4:257–267.
    1. Nadel L., Hoscheidt S., Ryan L.R. Spatial cognition and the hippocampus: the anterior-posterior axis. J. Cogn. Neurosci. 2013;25:22–28.
    1. Nadel L., Moscovitch M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 1997;7:217–227.
    1. Nekovarova T., Fajnerova I., Horacek J., Spaniel F. Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory. Front. Behav. Neurosci. 2014;8:171.
    1. Nyberg L., Lovden M., Riklund K., Lindenberger U., Backman L. Memory aging and brain maintenance. Trends Cogn. Sci. 2012;16:292–305.
    1. O'Keefe J., Nadel L. Oxford Univ. Press; 1978. The Hippocampus as a Cognitive Map.
    1. Onoda K., Ishihara M., Yamaguchi S. Decreased functional connectivity by aging is associated with cognitive decline. J. Cogn. Neurosci. 2012;24:2186–2198.
    1. Poppenk J., Evensmoen H.R., Moscovitch M., Nadel L. Long-axis specialization of the human hippocampus. Trends Cogn. Sci. 2013;17:230–240.
    1. Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 2001;98:676–682.
    1. Robin J., Hirshhorn M., Rosenbaum R.S., Winocur G., Moscovitch M., Grady C.L. Functional connectivity of hippocampal and prefrontal networks during episodic and spatial memory based on real-world environments. Hippocampus. 2015;25:81–93.
    1. Ryan L., Lin C.-Y., Ketcham K., Nadel L. The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory. Hippocampus. 2009;20 NA-NA.
    1. Sala-Llonch R., Bartrés-Faz D., Junqué C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front. Psychol. 2015;6:663.
    1. Salimi-Khorshidi G., Douaud G., Beckmann C.F., Glasser M.F., Griffanti L., Smith S.M. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage. 2014;90:449–468.
    1. Schouten T.M., Koini M., de Vos F., Seiler S., van der Grond J., Lechner A., Hafkemeijer A., Möller C., Schmidt R., de Rooij M., Rombouts S.A.R.B. Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease. NeuroImage Clin. 2016;11:46–51.
    1. Serino S., Morganti F., Di Stefano F., Riva G. Detecting early egocentric and allocentric impairments deficits in Alzheimer's disease: an experimental study with virtual reality. Front. Aging Neurosci. 2015;7
    1. Serino S., Riva G. What is the role of spatial processing in the decline of episodic memory in Alzheimer's disease? The “mental frame syncing” hypothesis. Front. Aging Neurosci. 2014;6:33.
    1. Shapiro A.M., Benedict R.H., Schretlen D., Brandt J. Construct and concurrent validity of the Hopkins verbal learning test-revised. Clin. Neuropsychol. 1999;13:348–358.
    1. Shin M.-S., Park S.-Y., Park S.-R., Seol S.-H., Kwon J.S. Clinical and empirical applications of the rey–osterrieth complex figure test. Nat. Protoc. 2006;1:892–899.
    1. Shing Y.L., Werkle-Bergner M., Brehmer Y., Müller V., Li S.-C., Lindenberger U. Episodic memory across the lifespan: the contributions of associative and strategic components. Neurosci. Biobehav. Rev. 2010;34:1080–1091.
    1. Singh-Manoux A., Kivimaki M., Glymour M.M., Elbaz A., Berr C., Ebmeier K.P., Ferrie J.E., Dugravot A. Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ. 2012;344
    1. Smith S.M., Jenkinson M., Woolrich M.W., Beckmann C.F., Behrens T.E.J., Johansen-Berg H., Bannister P.R., De Luca M., Drobnjak I., Flitney D.E., Niazy R.K., Saunders J., Vickers J., Zhang Y., De Stefano N., Brady J.M., Matthews P.M. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:208–219.
    1. Smith S.M., Miller K.L., Salimi-Khorshidi G., Webster M., Beckmann C.F., Nichols T.E., Ramsey J.D., Woolrich M.W. Network modelling methods for FMRI. Neuroimage. 2011;54:875–891.
    1. Smith S.M., Nichols T.E., Vidaurre D., Winkler A.M., J Behrens T.E., Glasser M.F., Ugurbil K., Barch D.M., Van Essen D.C., Miller K.L. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 2015;18:1–7.
    1. Smith S.M., Vidaurre D., Beckmann C.F., Glasser M.F., Jenkinson M., Miller K.L., Nichols T.E., Robinson E.C., Salimi-Khorshidi G., Woolrich M.W., Barch D.M., Uğurbil K., Van Essen D.C. Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 2013
    1. Spreng R.N., Mar R.A., Kim A.S.N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 2009;21:489–510.
    1. Spreng R.N., Stevens W.D., Chamberlain J.P., Gilmore A.W., Schacter D.L. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage. 2010;53:303–317.
    1. Spreng R.N., Stevens W.D., Viviano J.D., Schacter D.L. Attenuated anticorrelation between the default and dorsal attention networks with aging: evidence from task and rest. Neurobiol. Aging. 2016;45:149–160.
    1. Sridharan D., Levitin D.J., Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. U. S. A. 2008;105:12569–12574.
    1. Uddin L.Q., Kelly A.M.C., Biswal B.B., Castellanos F.X., Milham M.P. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain Mapp. 2009;30:625–637.
    1. van den Heuvel M.P., Sporns O. Network hubs in the human brain. Trends Cogn. Sci. 2013;17:683–696.
    1. Walhovd K.B., Fjell A.M., Espeseth T. Cognitive decline and brain pathology in aging - need for a dimensional, lifespan and systems vulnerability view. Scand. J. Psychol. 2014;55:244–254.
    1. WPA . 2015. World Population Ageing 2015.
    1. Wu X., Li R., Fleisher A.S., Reiman E.M., Guan X., Zhang Y., Chen K., Yao L. Altered default mode network connectivity in Alzheimer's disease–a resting functional MRI and Bayesian network study. Hum. Brain Mapp. 2011;32:1868–1881.
    1. Zeidman P., Maguire E.A. Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nat. Rev. Neurosci. 2016;17:173–182.

Source: PubMed

3
Abonnieren