Association of Galectin-3 and Soluble ST2, and Their Changes, with Echocardiographic Parameters and Development of Heart Failure after ST-Segment Elevation Myocardial Infarction

Agata Tymińska, Agnieszka Kapłon-Cieślicka, Krzysztof Ozierański, Monika Budnik, Anna Wancerz, Piotr Sypień, Michał Peller, Paweł Balsam, Grzegorz Opolski, Krzysztof J Filipiak, Agata Tymińska, Agnieszka Kapłon-Cieślicka, Krzysztof Ozierański, Monika Budnik, Anna Wancerz, Piotr Sypień, Michał Peller, Paweł Balsam, Grzegorz Opolski, Krzysztof J Filipiak

Abstract

Purpose: To investigate the association of galectin-3 (Gal-3) and soluble ST2 (sST2) and their follow-up changes with the development of heart failure (HF) and echocardiographic parameters of HF (ejection fraction, atrial and ventricular size, left ventricular hypertrophy, e', and E/e') in patients with ST-segment elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (pPCI).

Methods: A prospective, observational study, BIOSTRAT (Biomarkers for Risk Stratification After STEMI), enrolled 117 patients between October 2014 and April 2017. Gal-3 and sST2 serum collection and echocardiography were performed twice (during index hospitalization and on a control visit at one-year follow-up). The primary endpoint was HF onset at one-year follow-up. Secondary assessments included associations of biomarker concentration with echocardiographic indices of systolic and diastolic dysfunction at baseline and at one year.

Results: Mean baseline concentrations of Gal-3 and sST2 (7.5 and 26.4 ng/mL, respectively) were significantly increased at one-year follow-up (8.5 ng/mL and p < 0.001 and 31.4 ng/mL and p = 0.001, respectively). Patients who reached the primary endpoint (50 patients (48%)) had significantly higher baseline concentrations of both biomarkers and a higher Gal-3 level at one year compared to patients who did not. Both Gal-3 and sST2 were predictors of the primary endpoint in univariate logistic regression analysis, but only Gal-3 remained significant in multivariate analysis. There was no clear association between both biomarkers and echocardiographic parameters.

Conclusions: Baseline, but not one-year, changes of Gal-3 and sST2 concentrations may be useful for risk stratification after STEMI. However, only Gal-3 was the independent predictor of HF development at one-year observation. This trial is registered with NCT03735719.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this article.

Copyright © 2019 Agata Tymińska et al.

Figures

Figure 1
Figure 1
Flow chart of patient enrolment in the current analysis. HF: heart failure; pPCI: primary percutaneous coronary intervention; STEMI: ST-segment elevation myocardial infarction.
Figure 2
Figure 2
Changes∗ in biomarker concentrations. ∗Changes were calculated as the one-year level minus the baseline level of each biomarker.

References

    1. St John Sutton M. G., Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101(25):2981–2988. doi: 10.1161/01.CIR.101.25.2981.
    1. Roberts E., Ludman A. J., Dworzynski K., et al. The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting. BMJ. 2015;350, article h910 doi: 10.1136/bmj.h910.
    1. Ponikowski P., Voors A. A., Anker S. D., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure. 2016;18(8):891–975. doi: 10.1002/ejhf.592.
    1. Anand I. S., Rector T. S., Kuskowski M., Adourian A., Muntendam P., Cohn J. N. Baseline and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis and effect of treatment with valsartan in the Val-HeFT. European Journal of Heart Failure. 2013;15(5):511–518. doi: 10.1093/eurjhf/hfs205.
    1. de Boer R. A., Lok D. J., Jaarsma T., et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Annals of Medicine. 2011;43(1):60–68. doi: 10.3109/07853890.2010.538080.
    1. Gruson D., Lepoutre T., Ahn S. A., Rousseau M. F. Increased soluble ST2 is a stronger predictor of long-term cardiovascular death than natriuretic peptides in heart failure patients with reduced ejection fraction. International Journal of Cardiology. 2014;172(1):e250–e252. doi: 10.1016/j.ijcard.2013.12.101.
    1. Llibre C., Zamora E., Caballero À., et al. The real-life value of ST2 monitoring during heart failure decompensation: impact on long-term readmission and mortality. Biomarkers. 2016;21(3):225–232. doi: 10.3109/1354750X.2015.1130747.
    1. Bayes-Genis A., de Antonio M., Vila J., et al. Head-to-head comparison of 2 myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 versus galectin-3. Journal of the American College of Cardiology. 2014;63(2):158–166. doi: 10.1016/j.jacc.2013.07.087.
    1. Tomaniak M., Sygitowicz G., Filipiak K. J., et al. Dysregulations of miRNAs and galectin-3 may underlie left ventricular dilatation in patients with systolic heart failure. Kardiologia Polska. 2018;76(6):1012–1014. doi: 10.5603/KP.2018.0118.
    1. Sygitowicz G., Tomaniak M., Filipiak K. J., Kołtowski Ł., Sitkiewicz D. Galectin-3 in patients with acute heart failure: preliminary report on first Polish experience. Advances in Clinical and Experimental Medicine. 2016;25(4):617–623. doi: 10.17219/acem/60527.
    1. Yancy C. W., Jessup M., Bozkurt B., et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–e161. doi: 10.1161/cir.0000000000000509.
    1. Yang R. Y., Rabinovich G. A., Liu F. T. Galectins: structure, function and therapeutic potential. Expert Reviews in Molecular Medicine. 2008;10, article e17 doi: 10.1017/S1462399408000719.
    1. Weinberg E. O., Shimpo M., de Keulenaer G. W., et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–2966. doi: 10.1161/01.CIR.0000038705.69871.D9.
    1. Grandin E. W., Jarolim P., Murphy S. A., et al. Galectin-3 and the development of heart failure after acute coronary syndrome: pilot experience from PROVE IT-TIMI 22. Clinical Chemistry. 2012;58(1):267–273. doi: 10.1373/clinchem.2011.174359.
    1. Di Tano G., Caretta G., De Maria R., et al. Galectin-3 predicts left ventricular remodelling after anterior-wall myocardial infarction treated by primary percutaneous coronary intervention. Heart. 2017;103(1):71–77. doi: 10.1136/heartjnl-2016-309673.
    1. Miñana G., Núñez J., Bayés-Genís A., et al. ST2 and left ventricular remodeling after ST-segment elevation myocardial infarction: a cardiac magnetic resonance study. International Journal of Cardiology. 2018;270:336–342. doi: 10.1016/j.ijcard.2018.06.073.
    1. Jenkins W. S., Roger V. L., Jaffe A. S., et al. Prognostic value of soluble ST2 after myocardial infarction: a community perspective. The American Journal of Medicine. 2017;130(9):1112.e9–1112.e15. doi: 10.1016/j.amjmed.2017.02.034.
    1. Steg P. G., James S. K., Atar D., et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. European Heart Journal. 2012;33(20):2569–2619. doi: 10.1093/eurheartj/ehs215.
    1. Lang R. M., Badano L. P., Mor-Avi V., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal – Cardiovascular Imaging. 2015;16(3):233–271. doi: 10.1093/ehjci/jev014.
    1. Nagueh S. F., Smiseth O. A., Appleton C. P., et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal – Cardiovascular Imaging. 2016;17(12):1321–1360. doi: 10.1093/ehjci/jew082.
    1. van der Velde A. R., Lexis C. P. H., Meijers W. C., et al. Galectin-3 and sST2 in prediction of left ventricular ejection fraction after myocardial infarction. Clinica Chimica Acta. 2016;452:50–57. doi: 10.1016/j.cca.2015.10.034.
    1. Vittinghoff E., McCulloch C. E. Relaxing the rule of ten events per variable in logistic and Cox regression. American Journal of Epidemiology. 2007;165(6):710–718. doi: 10.1093/aje/kwk052.
    1. Sun Y. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovascular Research. 2009;81(3):482–490. doi: 10.1093/cvr/cvn333.
    1. Tymińska A., Kapłon-Cieślicka A., Filipiak K. J. Heart failure — new biomarkers on the horizon? Choroby Serca i Naczyń. 2018;15(4):232–244.
    1. Sergeeva I. A., Christoffels V. M. Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2013;1832(12):2403–2413. doi: 10.1016/j.bbadis.2013.07.003.
    1. Sanchez-Mas J., Lax A., Asensio-Lopez M. C., et al. Galectin-3 expression in cardiac remodeling after myocardial infarction. International Journal of Cardiology. 2014;172(1):e98–e101. doi: 10.1016/j.ijcard.2013.12.129.
    1. de Boer R. A., Voors A. A., Muntendam P., van Gilst W. H., van Veldhuisen D. J. Galectin-3: a novel mediator of heart failure development and progression. European Journal of Heart Failure. 2009;11(9):811–817. doi: 10.1093/eurjhf/hfp097.
    1. van der Velde A. R., Gullestad L., Ueland T., et al. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circulation: Heart Failure. 2013;6(2):219–226. doi: 10.1161/CIRCHEARTFAILURE.112.000129.
    1. van Vark L. C., Lesman-Leegte I., Baart S. J., et al. Prognostic value of serial ST2 measurements in patients with acute heart failure. Journal of the American College of Cardiology. 2017;70(19):2378–2388. doi: 10.1016/j.jacc.2017.09.026.
    1. Januzzi J. L., Mebazaa A., Di Somma S. ST2 and prognosis in acutely decompensated heart failure: the International ST2 Consensus Panel. The American Journal of Cardiology. 2015;115(7):26B–31B. doi: 10.1016/j.amjcard.2015.01.037.
    1. Weir R. A. P., Petrie C. J., Murphy C. A., et al. Galectin-3 and cardiac function in survivors of acute myocardial infarction. Circulation: Heart Failure. 2013;6(3):492–498. doi: 10.1161/CIRCHEARTFAILURE.112.000146.
    1. Tsai T. H., Sung P. H., Chang L. T., et al. Value and level of galectin-3 in acute myocardial infarction patients undergoing primary percutaneous coronary intervention. Journal of Atherosclerosis and Thrombosis. 2012;19(12):1073–1082. doi: 10.5551/jat.12856.
    1. Szadkowska I., Wlazeł R. N., Migała M., et al. The association between galectin-3 and clinical parameters in patients with first acute myocardial infarction treated with primary percutaneous coronary angioplasty. Cardiology Journal. 2013;20(6):577–582. doi: 10.5603/CJ.2013.0157.
    1. van der Velde A. R., Meijers W. C., Ho J. E., et al. Serial galectin-3 and future cardiovascular disease in the general population. Heart. 2016;102(14):1134–1141. doi: 10.1136/heartjnl-2015-308975.
    1. Ghorbani A., Bhambhani V., Christenson R. H., et al. Longitudinal change in galectin-3 and incident cardiovascular outcomes. Journal of the American College of Cardiology. 2018;72(25):3246–3254. doi: 10.1016/j.jacc.2018.09.076.
    1. Sabatine M. S., Morrow D. A., Higgins L. J., et al. Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. Circulation. 2008;117(15):1936–1944. doi: 10.1161/CIRCULATIONAHA.107.728022.
    1. Kapłon-Cieślicka A., Tymińska A., Peller M., et al. Diagnosis, clinical course, and 1-year outcome in patients hospitalized for heart failure with preserved ejection fraction (from the Polish Cohort of the European Society of Cardiology Heart Failure Long-Term Registry) The American Journal of Cardiology. 2016;118(4):535–542. doi: 10.1016/j.amjcard.2016.05.046.
    1. Tymińska A., Kapłon-Cieślicka A., Ozierański K., et al. Anemia at hospital admission and its relation to outcomes in patients with heart failure (from the Polish Cohort of 2 European Society of Cardiology Heart Failure Registries) The American Journal of Cardiology. 2017;119(12):2021–2029. doi: 10.1016/j.amjcard.2017.03.035.
    1. Balsam P., Ozierański K., Kapłon-Cieślicka A., et al. Differences in clinical characteristics and 1-year outcomes of hospitalized patients with heart failure in ESC-HF Pilot and ESC-HF-LT registries. Polish Archives of Internal Medicine. 2019;129(2):106–116. doi: 10.20452/pamw.4418.

Source: PubMed

3
Abonnieren