Allogeneic human umbilical cord-derived mesenchymal stem cells for severe bronchopulmonary dysplasia in children: study protocol for a randomized controlled trial (MSC-BPD trial)

Xian Wu, Yunqiu Xia, Ou Zhou, Yan Song, Xianhong Zhang, Daiyin Tian, Qubei Li, Chang Shu, Enmei Liu, Xiaoping Yuan, Ling He, Chengjun Liu, Jing Li, Xiaohua Liang, Ke Yang, Zhou Fu, Lin Zou, Lei Bao, Jihong Dai, Xian Wu, Yunqiu Xia, Ou Zhou, Yan Song, Xianhong Zhang, Daiyin Tian, Qubei Li, Chang Shu, Enmei Liu, Xiaoping Yuan, Ling He, Chengjun Liu, Jing Li, Xiaohua Liang, Ke Yang, Zhou Fu, Lin Zou, Lei Bao, Jihong Dai

Abstract

Background: Bronchopulmonary dysplasia (BPD) is a complex lung pathological lesion secondary to multiple factors and one of the most common chronic lung diseases. It has a poor prognosis, especially in preterm infants. However, effective therapies for this disease are lacking. Stem-cell therapy is a promising way to improve lung injury and abnormal alveolarization, and the human umbilical cord (hUC) is a good source of mesenchymal stem cells (MSCs), which have demonstrated efficacy in other diseases. We hypothesized that intravenously administered allogeneic hUC-MSCs are safe and effective for severe BPD.

Methods: The MSC-BPD trial is a randomized, single-center, open-label, dose-escalation, phase-II trial designed to investigate the safety and efficacy of hUC-MSCs in children with severe BPD. In this study, 72 patients will be enrolled and randomly divided into two intervention groups and one control group. Patients in the intervention groups will receive a low dose of hUC-MSCs (n = 24; 2.5 million cells/kg) or a high dose of hUC-MSCs (n = 24; 5 million cells/kg) in combination with traditional supportive treatments for BPD. The patients in the control group (n = 24) will be treated with traditional supportive treatments alone without hUC-MSCs. The primary outcome measures will be cumulative duration of oxygen therapy. Follow-up assessments will be performed at 1, 3, 6, 12, and 24 months post intervention, and the key outcome during follow-up will be changes on chest radiography. Statistical analyses will evaluate the efficacy of the hUC-MSC treatment.

Discussion: This will be the first randomized controlled trial to evaluate the safety and efficacy of intravenously administered hUC-MSCs in children with severe BPD. Its results should provide a new evidence-based therapy for severe BPD.

Trial registration: ClinicalTrials.gov, ID: NCT03601416. Registered on 26 July 2018.

Keywords: Bronchopulmonary dysplasia; Clinical trial; Human umbilical cord-derived mesenchymal stem cells; Protocol.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study flow diagram

References

    1. Bhandari A, Panitch H. An update on the post-NICU discharge management of bronchopulmonary dysplasia. Semin Perinatol. 2018;42(7):471–477. doi: 10.1053/j.semperi.2018.09.011.
    1. Geenongh A. Long term respiratory outcomes of very premature birth (< 32 weeks) Semin Fetal Neonatal Med. 2012;17(2):73–76. doi: 10.1016/j.siny.2012.01.009.
    1. Principi N, DiPietro GM, Esposito S. Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies. J Transl Med. 2018;16(1):36. doi: 10.1186/s12967-018-1417-7.
    1. Landry JS, Chan T, Lands L, Menzies D. Long-term impact of bronchopulmonary dysplasia on pulmonary function. Can Respir J. 2011;18(5):265–270. doi: 10.1155/2011/547948.
    1. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–1729. doi: 10.1164/ajrccm.163.7.2011060.
    1. Payne NR, LaCorte M, Karna P, Chen S, Finkelstein M, Goldsmith JP, et al. Reduction of bronchopulmonary dysplasia after participation in the Breathsavers Group of the Vermont Oxford Network Neonatal Intensive Care Quality Improvement Collaborative. J Pediatr. 2006;118:S73–S77. doi: 10.1542/peds.2006-0913C.
    1. Bhutta AZ, Yusuf K. Neonatal respiratory distress syndrome in Karachi: some epidemiological considerations. Paediatr Perinat Epidemiol. 1997;11:37–43. doi: 10.1046/j.1365-3016.1997.d01-9.x.
    1. Smith VC, Zupancic JA, McCormick MC, Croen LA, Greene J, Escobar GJ, et al. Rehospitalization in the first year of life among infants with bronchopulmonary dysplasia. J Pediatr. 2004;144(6):799–803.
    1. Iyengar A, Davis JM. Drug therapy for the prevention and treatment of bronchopulmonary dysplasia. Front Pharmacol. 2015;6:12. doi: 10.3389/fphar.2015.00012.
    1. Shah SS, Ohlsson A, Halliday HL, Shah VS. Inhaled versus systemic corticosteroids for preventing bronchopulmonary dysplasia in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2017;10:CD002058.
    1. Keszler M, Sant’Anna G. Mechanical ventilation and bronchopulmonary dysplasia. Clin Perinatol. 2015;42(4):781–796. doi: 10.1016/j.clp.2015.08.006.
    1. Meyer S, Gortner L. Early postmatal additional high-dose oral vitamin A supplementation versus placebo for 28 days for preventing bronchopulmonary dysplasia or death in extremely low birth weight infants. Neonatology. 2014;105(3):182–188. doi: 10.1159/000357212.
    1. Higgins RD, Jobe AH, Koso-Thomas M, Bancalari E, Viscardi RM, Hartert TV, et al. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr. 2018;197:300–308. doi: 10.1016/j.jpeds.2018.01.043.
    1. Gupta N, Henry RG, Strober J, Kang SM, Lim DA, Bucci M, et al. Neural stem cell engraftment and myelination in the human brain. Sci Transl Med. 2012;4(155):155ra137. doi: 10.1126/scitranslmed.3004373.
    1. Ayuzawa R, Doi C, Rachakatla RS, Pyle MM, Maurya DK, Troyer D, et al. Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett. 2009;280(1):31–37. doi: 10.1016/j.canlet.2009.02.011.
    1. Antunes MA, Laffey JG, Pelosi P, Rocco PR. Mesenchymal stem cell trials for pulmonary diseases. J Cell Biochem. 2014;115:1023–1032. doi: 10.1002/jcb.24783.
    1. Bianco P. “Mesenchymal” stem cells. Annu Rev Cell Dev Biol. 2014;30:677–704. doi: 10.1146/annurev-cellbio-100913-013132.
    1. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–319. doi: 10.1016/j.stem.2008.03.002.
    1. Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339–347. doi: 10.3727/096368915X686841.
    1. Jungebluth P, Luedde M, Ferrer E, Luedde T, Vucur M, Peinado VI, et al. Mesenchymal stem cells restore lung function by recruiting resident and non-resident proteins. Cell Transplant. 2011;20:1561–1574. doi: 10.3727/096368910X557254.
    1. Moodley Y, Atienza D, Manuelpillai U, Samuel CS, Tchongue J, Ilancheran S, et al. Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin induced lung injury. Am J Pathol. 2009;175:303–313. doi: 10.2353/ajpath.2009.080629.
    1. Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010;28:2229–2238. doi: 10.1002/stem.544.
    1. Chang YS, Ahn SY, Jeon HB, Sung DK, Kim ES, Sung SI, et al. Critical role of vascular endothelial growth factor secreted by mesenchymal stem cells in hyperoxic lung injury. Am J Respir Cell Mol Biol. 2014;51(3):391–399. doi: 10.1165/rcmb.2013-0385OC.
    1. Hou C, Peng D, Gao L, Tian D, Dai J, Luo Z, et al. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O2-exposed newborn rat. Biochem Biophys Res Commun. 2018;495(2):1972–1979. doi: 10.1016/j.bbrc.2017.12.055.
    1. Zhu H, Xiong Y, Xia Y, Zhang R, Tian D, Wang T, et al. Therapeutic effects of human umbilical cord-derived mesenchymal stem cells in acute lung injury mice. Sci Rep. 2017;7:39889. doi: 10.1038/srep39889.
    1. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015;16(1):51–66. doi: 10.1016/j.stem.2014.11.004.
    1. Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32. doi: 10.1016/S2213-2600(14)70291-7.
    1. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo- controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143(6):1590–1598. doi: 10.1378/chest.12-2094.
    1. Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. J Pediatr. 2014;164(5):966–972.e6. doi: 10.1016/j.jpeds.2013.12.011.
    1. Ahn SY, Chang YS, Kim JH, Sung SI, Park WS. Two-year follow-up outcomes of premature infants enrolled in the phase I trial of mesenchymal stem cells transplantation for bronchopulmonary dysplasia. J Pediatr. 2017;185:49–54.e2. doi: 10.1016/j.jpeds.2017.02.061.
    1. Vom Hove M, Prenzel F, Uhlig HH, Robel-Tillig E. Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. J Pediatr. 2014;164(1):40–45.e4. doi: 10.1016/j.jpeds.2013.07.045.
    1. Silverman WA, Andersen DH. A controlled clinical trial of effects of water mist on obstructive respiratory signs, death rate and necropsy findings among premature infants. J Pediatr. 1956;17(1):1–10.
    1. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med. 2007;357:1946–1955. doi: 10.1056/NEJMra067279.
    1. Chang YS, Choi SJ, Ahn SY, Sung DK, Sung SI, Yoo HS, et al. Timing of umbilical cord blood derived mesenchymal stem cells transplantation determines therapeutic efficacy in the neonatal hyperoxic lung injury. PLoS One. 2013;8:e52419. doi: 10.1371/journal.pone.0052419.
    1. Pierro M, Ionescu L, Montemurro T, Vadivel A, Weissmann G, Oudit G, et al. Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia. Thorax. 2012;68:475–484. doi: 10.1136/thoraxjnl-2012-202323.
    1. Wang L, Li J, Liu H, Li Y, Fu J, Sun Y, et al. Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J Gastroenterol Hepatol. 2013;28(Suppl 1):85–92. doi: 10.1111/jgh.12029.
    1. He X, Ai S, Guo W, Yang Y, Wang Z, Jiang D, et al. Umbilical cord-derived mesenchymal stem (stromal) cells for treatment of severe sepsis: a phase 1 clinical trial. Transl Res. 2018;199:52–61. doi: 10.1016/j.trsl.2018.04.006.

Source: PubMed

3
Abonnieren