Neural Basis of Video Gaming: A Systematic Review

Marc Palaus, Elena M Marron, Raquel Viejo-Sobera, Diego Redolar-Ripoll, Marc Palaus, Elena M Marron, Raquel Viejo-Sobera, Diego Redolar-Ripoll

Abstract

Background: Video gaming is an increasingly popular activity in contemporary society, especially among young people, and video games are increasing in popularity not only as a research tool but also as a field of study. Many studies have focused on the neural and behavioral effects of video games, providing a great deal of video game derived brain correlates in recent decades. There is a great amount of information, obtained through a myriad of methods, providing neural correlates of video games. Objectives: We aim to understand the relationship between the use of video games and their neural correlates, taking into account the whole variety of cognitive factors that they encompass. Methods: A systematic review was conducted using standardized search operators that included the presence of video games and neuro-imaging techniques or references to structural or functional brain changes. Separate categories were made for studies featuring Internet Gaming Disorder and studies focused on the violent content of video games. Results: A total of 116 articles were considered for the final selection. One hundred provided functional data and 22 measured structural brain changes. One-third of the studies covered video game addiction, and 14% focused on video game related violence. Conclusions: Despite the innate heterogeneity of the field of study, it has been possible to establish a series of links between the neural and cognitive aspects, particularly regarding attention, cognitive control, visuospatial skills, cognitive workload, and reward processing. However, many aspects could be improved. The lack of standardization in the different aspects of video game related research, such as the participants' characteristics, the features of each video game genre and the diverse study goals could contribute to discrepancies in many related studies.

Keywords: addiction; cognitive improvement; functional changes; internet gaming disorder; neural correlates; neuroimaging; structural changes; video games.

Figures

Figure 1
Figure 1
Increasing trend in VG-related articles. Since 2005, the average annual growth is around 20%. (Source: MEDLINE).
Figure 2
Figure 2
Study selection diagram flow. *Articles in these sections may not be mutually exclusive.

References

    1. Allison B. Z., Polich J. (2008). Workload assessment of computer gaming using a single-stimulus event-related potential paradigm. Biol. Psychol. 77, 277–283. 10.1016/j.biopsycho.2007.10.014
    1. Alvarez J. A., Emory E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychol. Rev. 16, 17–42. 10.1007/s11065-006-9002-x
    1. American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edn. Washington, DC.
    1. Anderson J. R., Bothell D., Fincham J. M., Moon J. (2015). The Sequential structure of brain activation predicts skill. Neuropsychologia 81, 94–106. 10.1016/j.neuropsychologia.2015.12.014
    1. Anderson J. R., Bothell D., Fincham J. M., Anderson A. R., Poole B., Qin Y. (2011). Brain regions engaged by part- and whole-task performance in a video game: a model-based test of the decomposition hypothesis. J. Cogn. Neurosci. 23, 3983–3997. 10.1162/jocn_a_00033
    1. Anguera J. A., Boccanfuso J., Rintoul J. L., Al-Hashimi O., Faraji F., Janowich J., et al. . (2013). Video game training enhances cognitive control in older adults. Nature 501, 97–101. 10.1038/nature12486
    1. Bailey K., West R. (2013). The effects of an action video game on visual and affective information processing. Brain Res. 1504, 35–46. 10.1016/j.brainres.2013.02.019
    1. Bailey K., West R., Anderson C. A. (2010). A negative association between video game experience and proactive cognitive control. Psychophysiology 47, 34–42. 10.1111/j.1469-8986.2009.00925.x
    1. Bailey K., West R., Anderson C. A. (2011). The association between chronic exposure to video game violence and affective picture processing: an ERP study. Cogn. Affect. Behav. Neurosci. 11, 259–276. 10.3758/s13415-011-0029-y.
    1. Barrouillet P., Bernardin S., Portrat S., Vergauwe E., Camos V. (2007). Time and cognitive load in working memory. J. Exp. Psychol. Learn. Mem. Cogn. 33, 570–585. 10.1037/0278-7393.33.3.570
    1. Bartholow B. D., Bushman B. J., Sestir M. A. (2006). Chronic violent video game exposure and desensitization to violence: behavioral and event-related brain potential data. J. Exp. Soc. Psychol. 42, 532–539. 10.1016/j.jesp.2005.08.006
    1. Basak C., Voss M. W., Erickson K. I., Boot W. R., Kramer A. F. (2011). Regional differences in brain volume predict the acquisition of skill in a complex real-time strategy videogame. Brain Cogn. 76, 407–414. 10.1016/j.bandc.2011.03.017
    1. Bavelier D., Achtman R. L., Mani M., Föcker J. (2012a). Neural bases of selective attention in action video game players. Vision Res. 61, 132–143. 10.1016/j.visres.2011.08.007
    1. Bavelier D., Green C. S., Pouget A., Schrater P. (2012b). Brain plasticity through the life span: learning to learn and action video games. Annu. Rev. Neurosci. 35, 391–416. 10.1146/annurev-neuro-060909-152832
    1. Berta R., Bellotti F., De Gloria A., Pranantha D., Schatten C. (2013). Electroencephalogram and physiological signal analysis for assessing flow in games. IEEE Trans. Comput. Intell. AI Games 5, 164–175. 10.1109/TCIAIG.2013.2260340
    1. Biswal B. B., Eldreth D. A., Motes M. A., Rypma B. (2010). Task-dependent individual differences in prefrontal connectivity. Cereb. Cortex 20, 2188–2197. 10.1093/cercor/bhp284
    1. Brody A. L., Mandelkern M. A., Olmstead R. E., Jou J., Tiongson E., Allen V., et al. . (2007). Neural substrates of resisting craving during cigarette cue exposure. Biol. Psychiatry 62, 642–651. 10.1016/j.biopsych.2006.10.026
    1. Brookings J. B., Wilson G. F., Swain C. R. (1996). Psychophysiological responses to changes in workload during simulated air traffic control. Biol. Psychol. 42, 361–377. 10.1016/0301-0511(95)05167-8
    1. Byrne E. (2006). Game Level Design, 1st Edn. Newton Center, MA: Charles River Media Inc.
    1. Carrington S. J., Bailey A. J. (2009). Are there theory of mind regions in the brain? A review of the neuroimaging literature. Hum. Brain Mapp. 30, 2313–2335. 10.1002/hbm.20671
    1. Casual Games Association (2013). Games Market Sector Report: Smartphone & Tablet Gaming 2013. Smithfield, UT.
    1. Chen C. Y., Huang M. F., Yen J. Y., Chen C. S., Liu G. C., Yen C. F., et al. . (2014). Brain correlates of response inhibition in Internet gaming disorder. Psychiatry Clin. Neurosci. 69, 201–209. 10.1111/pcn.12224
    1. Chen S. H., Weng L. J., Su Y. J., Wu H. M., Yang P. F. (2004). Development of Chinese Internet Addiction Scale and its psychometric study. Chinese J. Psychol. 45, 279–294.
    1. Chou Y.-H., Yang B.-H., Hsu J.-W., Wang S.-J., Lin C.-L., Huang K.-L., et al. . (2013). Effects of video game playing on cerebral blood flow in young adults: a SPECT study. Psychiatry Res. 212, 65–72. 10.1016/j.pscychresns.2012.10.002
    1. Cilia R., Ko J. H., Cho S. S., van Eimeren T., Marotta G., Pellecchia G., et al. . (2010). Reduced dopamine transporter density in the ventral striatum of patients with Parkinson's disease and pathological gambling. Neurobiol. Dis. 39, 98–104. 10.1016/j.nbd.2010.03.013
    1. Cole S. W., Yoo D. J., Knutson B. (2012). Interactivity and reward-related neural activation during a serious videogame. PLoS ONE 7:e33909. 10.1371/journal.pone.0033909
    1. Colom R., Quiroga M. Á., Solana A. B., Burgaleta M., Román F. J., Privado J., et al. (2012). Structural changes after videogame practice related to a brain network associated with intelligence. Intelligence 40, 479–489. 10.1016/j.intell.2012.05.004
    1. Corradi-Dell'Acqua C., Ueno K., Ogawa A., Cheng K., Rumiati R. I., Iriki A. (2008). Effects of shifting perspective of the self: an fMRI study. Neuroimage 40, 1902–1911. 10.1016/j.neuroimage.2007.12.062
    1. Csikszentmihalyi M. (1990). Flow: The Psychology of Optimal Experience. New York, NY: Harper and Row.
    1. Ding W., Sun J., Sun Y., Zhou Y., Li L., Xu J., et al. . (2013). Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction. PLoS ONE 8:e59902. 10.1371/journal.pone.0059902
    1. Dong G., Potenza M. N. (2016). Risk-taking and risky decision-making in Internet gaming disorder: implications regarding online gaming in the setting of negative consequences. J. Psychiatr. Res. 73, 1–8. 10.1016/j.jpsychires.2015.11.011
    1. Dong G., Huang J., Du X. (2012). Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts. Behav. Brain Funct. 8:41. 10.1186/1744-9081-8-41
    1. Doty R., Rosenthal S., McDonald D., O'Leary C., Donnelly M. (2011). EEG Prefrontal Activity During Video Game Reward Events. Boston, MA: Society for Psychophysiological Research.
    1. Dye M. W. G., Bavelier D. (2010). Differential development of visual attention skills in school-age children. Vision Res. 50, 452–459. 10.1016/j.visres.2009.10.010
    1. Dye M. W. G., Green C. S., Bavelier D. (2009). The development of attention skills in action video game players. Neuropsychologia 47, 1780–1789. 10.1016/j.neuropsychologia.2009.02.002
    1. Engelhardt C. R., Bartholow B. D., Kerr G. T., Bushman B. J. (2011). This is your brain on violent video games: neural desensitization to violence predicts increased aggression following violent video game exposure. J. Exp. Soc. Psychol. 47, 1033–1036. 10.1016/j.jesp.2011.03.027
    1. Entertainment Software Association (2014). 2014 Sales, Demographic, and Usage Data Essential Facts about the Computer and Video Game Industry. Washington, DC.
    1. Erickson K. I., Boot W. R., Basak C., Neider M. B., Prakash R. S., Voss M. W., et al. . (2010). Striatal volume predicts level of video game skill acquisition. Cereb. Cortex 20, 2522–2530. 10.1093/cercor/bhp293
    1. Everitt B. J., Robbins T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489. 10.1038/nn1579
    1. Feng J., Spence I., Pratt J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychol. Sci. 18, 850–855. 10.1111/j.1467-9280.2007.01990.x
    1. Feng Q., Chen X., Sun J., Zhou Y., Sun Y., Ding W., et al. . (2013). Voxel-level comparison of arterial spin-labeled perfusion magnetic resonance imaging in adolescents with internet gaming addiction. Behav. Brain Funct. 9:33. 10.1186/1744-9081-9-33
    1. Gobel E. W., Parrish T. B., Reber P. J. (2011). Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task. Neuroimage 58, 1150–1157. 10.1016/j.neuroimage.2011.06.090
    1. Gong D., He H., Liu D., Ma W., Dong L., Luo C., et al. . (2015). Enhanced functional connectivity and increased gray matter volume of insula related to action video game playing. Sci. Rep. 5:9763. 10.1038/srep09763
    1. Gong D., He H., Ma W., Liu D., Huang M., Dong L., et al. . (2016). Functional integration between salience and central executive networks: a role for action video game experience. Neural Plast. 2016:9803165. 10.1155/2016/9803165
    1. Goodale M. A., Milner A. D. (1992). Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25. 10.1016/0166-2236(92)90344-8
    1. Granek J. A., Gorbet D. J., Sergio L. E. (2010). Extensive video-game experience alters cortical networks for complex visuomotor transformations. Cortex 46, 1165–1177. 10.1016/j.cortex.2009.10.009
    1. Granic I., Lobel A., Engels R. C. M. E. (2014). The benefits of playing video games. Am. Psychol. 69, 66–78. 10.1037/a0034857
    1. Green C. S., Bavelier D. (2003). Action video game modifies visual selective attention. Nature 423, 534–537. 10.1038/nature01647
    1. Green C. S., Bavelier D. (2004). The cognitive neuroscience of video games, in Digital Media: Transformation in Human Communication, eds P. Messaris and L. Humphreys (New York, NY: Peter Lang; ), 211–224.
    1. Green C. S., Bavelier D. (2006). Effect of action video games on the spatial distribution of visuospatial attention. J. Exp. Psychol. Hum. Percept. Perform. 32, 1465–1478. 10.1037/0096-1523.32.6.1465
    1. Green C. S., Bavelier D. (2007). Action-video-game experience alters the spatial resolution of vision. Psychol. Sci. 18, 88–94. 10.1111/j.1467-9280.2007.01853.x
    1. Green C. S., Bavelier D. (2012). Learning, attentional control, and action video games. Curr. Biol. 22, R197–R206. 10.1016/j.cub.2012.02.012
    1. Green C. S., Seitz A. R. (2015). The impacts of video games on cognition (and how the government can guide the industry). Behav. Brain Sci. 2, 101–110. 10.1177/2372732215601121
    1. Haber S. N. (2011). Neuroanatomy of reward: a view from the ventral striatum, in Neurobiology of Sensation and Reward, ed J. Gottfried (Boca Raton, FL: CRC Press/Taylor & Francis; ), 235–261. 10.1201/b10776-15
    1. Hahn T., Notebaert K. H., Dresler T., Kowarsch L., Reif A., Fallgatter A. J. (2014). Linking online gaming and addictive behavior: converging evidence for a general reward deficiency in frequent online gamers. Front. Behav. Neurosci. 8:385. 10.3389/fnbeh.2014.00385
    1. Han D. H., Bolo N., Daniels M. A., Arenella L., Lyoo I. K., Renshaw P. F. (2012a). Brain activity and desire for Internet video game play. Compr. Psychiatry 52, 88–95. 10.1016/j.comppsych.2010.04.004
    1. Han D. H., Hwang J. W., Renshaw P. F. (2010a). Bupropion sustained release treatment decreases craving for video games and cue-induced brain activity in patients with Internet video game addiction. Exp. Clin. Psychopharmacol. 18, 297–304. 10.1037/a0020023
    1. Han D. H., Kim S. M., Bae S., Renshaw P. F., Anderson J. S. (2015). Brain connectivity and psychiatric comorbidity in adolescents with Internet gaming disorder. Addict. Biol. 22, 802–812. 10.1111/adb.12347
    1. Han D. H., Kim S. M., Bae S., Renshaw P. F., Anderson J. S. (2016). A failure of suppression within the default mode network in depressed adolescents with compulsive internet game play. J. Affect. Disord. 194, 57–64. 10.1016/j.jad.2016.01.013
    1. Han D. H., Kim Y. S., Lee Y. S., Min K. J., Renshaw P. F. (2010b). Changes in cue-induced, prefrontal cortex activity with video-game play. Cyberpsychol. Behav. Soc. Netw. 13, 655–661. 10.1089/cyber.2009.0327
    1. Han D. H., Lyoo I. K., Renshaw P. F. (2012b). Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. J. Psychiatr. Res. 46, 507–515. 10.1016/j.jpsychires.2012.01.004
    1. Hartanto A., Toh W. X., Yang H. (2016). Age matters: the effect of onset age of video game play on task-switching abilities. Attent. Percept. Psychophys. 78, 1125–1136. 10.3758/s13414-016-1068-9
    1. Havranek M., Langer N., Cheetham M., Jäncke L. (2012). Perspective and agency during video gaming influences spatial presence experience and brain activation patterns. Behav. Brain Funct. 8:34. 10.1186/1744-9081-8-34
    1. Heinz A., Beck A., Grüsser S. M., Grace A. A., Wrase J. (2009). Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addict. Biol. 14, 108–118. 10.1111/j.1369-1600.2008.00136.x
    1. Hong S.-B., Harrison B. J., Dandash O., Choi E.-J., Kim S.-C., Kim H.-H., et al. . (2015). A selective involvement of putamen functional connectivity in youth with internet gaming disorder. Brain Res. 1602, 85–95. 10.1016/j.brainres.2014.12.042
    1. Hou H., Jia S., Hu S., Fan R., Sun W., Sun T., et al. . (2012). Reduced striatal dopamine transporters in people with internet addiction disorder. J. Biomed. Biotechnol. 2012:854524. 10.1155/2012/854524
    1. Hsu W.-Y., Zanto T. P., Anguera J. A., Lin Y.-Y., Gazzaley A. (2015). Delayed enhancement of multitasking performance: effects of anodal transcranial direct current stimulation on the prefrontal cortex. Cortex 69, 175–185. 10.1016/j.cortex.2015.05.014
    1. Hubert-Wallander B., Green C. S., Sugarman M., Bavelier D. (2011). Changes in search rate but not in the dynamics of exogenous attention in action videogame players. Atten. Percept. Psychophys. 73, 2399–2412. 10.3758/s13414-011-0194-7
    1. Hummer T. A., Wang Y., Kronenberger W. G., Mosier K. M., Kalnin A. J., Dunn D. W., et al. (2010). Short-term violent video game play by adolescents alters prefrontal activity during cognitive inhibition. Media Psychol. 13, 136–154. 10.1080/15213261003799854
    1. Hunicke R. (2005). The case for dynamic difficulty adjustment in games, in Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology—ACE'05 (New York, NY: ACM Press: ), 429–433.
    1. Hyun G. J., Shin Y. W., Kim B.-N. N., Cheong J. H., Jin S. N., Han D. H. (2013). Increased cortical thickness in professional on-line gamers. Psychiatry Investig. 10, 388–392. 10.4306/pi.2013.10.4.388
    1. Ivarsson M., Anderson M., Åkerstedt T., Lindblad F. (2013). The effect of violent and nonviolent video games on heart rate variability, sleep, and emotions in adolescents with different violent gaming habits. Psychosom. Med. 75, 390–396. 10.1097/PSY.0b013e3182906a4c
    1. Izzetoglu K., Bunce S., Onaral B., Pourrezaei K., Chance B. (2004). Functional optical brain imaging using near-infrared during cognitive tasks. Int. J. Hum. Comput. Interact. 17, 211–227. 10.1207/s15327590ijhc1702_6
    1. Jin C., Zhang T., Cai C., Bi Y., Li Y., Yu D., et al. . (2016). Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder. Brain Imaging Behav. 10, 719–729. 10.1007/s11682-015-9439-8
    1. Kalivas P. W., Volkow N. D. (2005). The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry 162, 1403–1413. 10.1176/appi.ajp.162.8.1403
    1. Kätsyri J., Hari R., Ravaja N., Nummenmaa L. (2013a). Just watching the game ain't enough: striatal fMRI reward responses to successes and failures in a video game during active and vicarious playing. Front. Hum. Neurosci. 7:278. 10.3389/fnhum.2013.00278
    1. Kätsyri J., Hari R., Ravaja N., Nummenmaa L. (2013b). The opponent matters: elevated FMRI reward responses to winning against a human versus a computer opponent during interactive video game playing. Cereb. Cortex 23, 2829–2839. 10.1093/cercor/bhs259
    1. Kelley R. E., Chang J. Y., Scheinman N. J., Levin B. E., Duncan R. C., Lee S. C. (1992). Transcranial Doppler assessment of cerebral flow velocity during cognitive tasks. Stroke. 23, 9–14.
    1. Khairuddin H. R., Malik A. S., Mumtaz W., Kamel N., Xia L. (2013). Analysis of EEG signals regularity in adults during video game play in 2D and 3D. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 2064–2067. 10.1109/EMBC.2013.6609938
    1. Kim H., Kim Y. K., Gwak A. R., Lim J.-A. A., Lee J.-Y. Y., Jung H. Y., et al. . (2015). Resting-state regional homogeneity as a biological marker for patients with Internet gaming disorder: a comparison with patients with alcohol use disorder and healthy controls. Prog. Neuro Psychopharmacol. Biol. Psychiatry 60, 104–111. 10.1016/j.pnpbp.2015.02.004
    1. Kim P. W., Kim S. Y., Shim M., Im C.-H. H., Shon Y.-M. M. (2013). The influence of an educational course on language expression and treatment of gaming addiction for massive multiplayer online role-playing game (MMORPG) players. Comput. Educ. 63, 208–217. 10.1016/j.compedu.2012.12.008
    1. Kim S. H., Baik S.-H., Park C. S., Kim S. J., Choi S. W., Kim S. E. (2011). Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport 22, 407–411. 10.1097/WNR.0b013e328346e16e
    1. Kim Y.-H., Kang D.-W., Kim D., Kim H.-J., Sasaki Y., Watanabe T. (2015). Real-time strategy video game experience and visual perceptual learning. J. Neurosci. 35, 10485–10492. 10.1523/JNEUROSCI.3340-14.2015
    1. Klasen M., Weber R., Kircher T. T. J., Mathiak K. A., Mathiak K. (2012). Neural contributions to flow experience during video game playing. Soc. Cogn. Affect. Neurosci. 7, 485–495. 10.1093/scan/nsr021
    1. Ko C. H., Liu G. C., Hsiao S., Yen J. Y., Yang M. J., Lin W. C., et al. . (2009). Brain activities associated with gaming urge of online gaming addiction. J. Psychiatr. Res. 43, 739–747. 10.1016/j.jpsychires.2008.09.012
    1. Ko C. H., Liu G. C., Yen J. Y., Chen C. Y., Yen C. F., Chen C. S. (2013). Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects. Addict. Biol. 18, 559–569. 10.1111/j.1369-1600.2011.00405.x
    1. Ko C.-H., Yen J.-Y., Chen C.-C., Chen S.-H., Yen C.-F. (2005). Gender differences and related factors affecting online gaming addiction among Taiwanese adolescents. J. Nerv. Ment. Dis. 193, 273–277. 10.1097/01.nmd.0000158373.85150.57
    1. Koepp M. J., Gunn R. N., Lawrence A. D., Cunningham V. J., Dagher A., Jones T., et al. . (1998). Evidence for striatal dopamine release during a video game. Nature 393, 266–268. 10.1038/30498
    1. Kravitz D. J., Saleem K. S., Baker C. I., Mishkin M. (2011). A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12, 217–230. 10.1038/nrn3008
    1. Kringelbach M. L., Rolls E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 72, 341–372. 10.1016/j.pneurobio.2004.03.006
    1. Krishnan L., Kang A., Sperling G., Srinivasan R. (2013). Neural strategies for selective attention distinguish fast-action video game players. Brain Topogr. 26, 83–97. 10.1007/s10548-012-0232-3
    1. Kühn S., Gallinat J. (2014). Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume. Mol. Psychiatry 19, 842–847. 10.1038/mp.2013.100
    1. Kühn S., Gleich T., Lorenz R. C., Lindenberger U., Gallinat J. (2013). Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Mol. Psychiatry 19, 265–271. 10.1038/mp.2013.120
    1. Kühn S., Lorenz R. C., Banaschewski T., Barker G. J., Büchel C., Conrod P. J., et al. . (2014). Positive association of video game playing with left frontal cortical thickness in adolescents. PLoS ONE 9:e91506. 10.1371/journal.pone.0091506
    1. Lampit A., Hallock H., Valenzuela M. (2014). Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 11:e1001756. 10.1371/journal.pmed.1001756
    1. Latham A. J., Patston L. L. M., Westermann C., Kirk I. J., Tippett L. J. (2013). Earlier visual N1 latencies in expert video-game players: a temporal basis of enhanced visuospatial performance? PLoS ONE 8:e75231. 10.1371/journal.pone.0075231
    1. Lee A. C. H., Yeung L.-K., Barense M. D. (2012). The hippocampus and visual perception. Front. Hum. Neurosci. 6:91. 10.3389/fnhum.2012.00091
    1. Lee H., Voss M. W., Prakash R. S., Boot W. R., Vo L. T. K., Basak C., et al. . (2012). Videogame training strategy-induced change in brain function during a complex visuomotor task. Behav. Brain Res. 232, 348–357. 10.1016/j.bbr.2012.03.043
    1. Lee J., Lee S., Chun J. W., Cho H., Kim D., Jung Y.-C. (2015). Compromised prefrontal cognitive control over emotional interference in adolescents with internet gaming disorder. Cyberpsychol. Behav. Soc. Netw. 18, 661–668. 10.1089/cyber.2015.0231
    1. Lianekhammy J., Werner-Wilson R. (2015). Links to prosocial factors and alpha asymmetry in adolescents during violent and non-violent video game play. Child Stud. Asia Pac. Context 5, 63–81. 10.5723/csac.2015.5.2.063
    1. Liberati A., Altman D. G., Tetzlaff J., Mulrow C., Gøtzsche P. C., Ioannidis J. P. A., et al. . (2009). The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: explanation and Elaboration. PLoS Med. 6:e1000100. 10.1371/journal.pmed.1000100
    1. Liu J., Gao X.-P. P., Osunde I., Li X., Zhou S.-K. K., Zheng H.-R., et al. . (2010). Increased regional homogeneity in internet addiction disorder: a resting state functional magnetic resonance imaging study. Chin. Med. J. 123, 1904–1908. 10.3760/cma.j.issn.0366-6999.2010.14.014
    1. Liu J., Li W., Zhou S., Zhang L., Wang Z., Zhang Y., et al. . (2015). Functional characteristics of the brain in college students with internet gaming disorder. Brain Imaging Behav. 10, 60–67. 10.1007/s11682-015-9364-x
    1. Liu T., Saito H., Oi M. (2012). Distinctive activation patterns under intrinsically versus extrinsically driven cognitive loads in prefrontal cortex: a near-infrared spectroscopy study using a driving video game. Neurosci. Lett. 506, 220–224. 10.1016/j.neulet.2011.11.009
    1. Liu T., Saito H., Oi M. (2015). Online monitoring of the social presence effects in a two-person-like driving video game using near-infrared spectroscopy. Jpn. Psychol. Res. 57, 242–253. 10.1111/jpr.12080
    1. Liu Y., Teng Z., Lan H., Zhang X., Yao D. (2015). Short-term effects of prosocial video games on aggression: an event-related potential study. Front. Behav. Neurosci. 9:193. 10.3389/fnbeh.2015.00193
    1. Lohse K., Shirzad N., Verster A., Hodges N., Van der Loos H. F. M. (2013). Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J. Neurol. Phys. Ther. 37, 166–175. 10.1097/NPT.0000000000000017
    1. Lorenz R. C., Gleich T., Gallinat J., Kühn S. (2015). Video game training and the reward system. Front. Hum. Neurosci. 9:40. 10.3389/fnhum.2015.00040
    1. Luijten M., Meerkerk G.-J., Franken I. H. A., van de Wetering B. J. M., Schoenmakers T. M. (2015). An fMRI study of cognitive control in problem gamers. Psychiatry Res. Neuroimaging 231, 262–268. 10.1016/j.pscychresns.2015.01.004
    1. Maclin E. L., Mathewson K. E., Low K. A., Boot W. R., Kramer A. F., Fabiani M., et al. . (2011). Learning to multitask: effects of video game practice on electrophysiological indices of attention and resource allocation. Psychophysiology 48, 1173–1183. 10.1111/j.1469-8986.2011.01189.x
    1. Markey P. M., Markey C. N. (2010). Vulnerability to violent video games: a review and integration of personality research. Rev. Gen. Psychol. 14, 82–91. 10.1037/a0019000
    1. Martínez K., Solana A. B., Burgaleta M., Hernández-Tamames J. A., Alvarez-Linera J., Román F. J., et al. . (2013). Changes in resting-state functionally connected parietofrontal networks after videogame practice. Hum. Brain Mapp. 34, 3143–3157. 10.1002/hbm.22129
    1. Mathewson K. E., Basak C., Maclin E. L., Low K. A., Boot W. R., Kramer A. F., et al. . (2012). Different slopes for different folks: alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks. Psychophysiology 49, 1558–1570. 10.1111/j.1469-8986.2012.01474.x
    1. Mathiak K. A., Klasen M., Weber R., Ackermann H., Shergill S. S., Mathiak K. (2011). Reward system and temporal pole contributions to affective evaluation during a first person shooter video game. BMC Neurosci. 12:66. 10.1186/1471-2202-12-66
    1. Mathiak K. A., Klasen M., Zvyagintsev M., Weber R., Mathiak K. (2013). Neural networks underlying affective states in a multimodal virtual environment: contributions to boredom. Front. Hum. Neurosci. 7:820. 10.3389/fnhum.2013.00820
    1. Mathiak K., Weber R. (2006). Toward brain correlates of natural behavior: fMRI during violent video games. Hum. Brain Mapp. 27, 948–956. 10.1002/hbm.20234
    1. Matsuda G., Hiraki K. (2004). Prefrontal cortex deactivation during video game play, in Gaming, Simulations, and Society, eds R. Shiratori, K. Arai, and F. Kato (Tokyo: Springer-Verlag; ), 101–109. 10.1007/4-431-26797-2_11
    1. Matsuda G., Hiraki K. (2006). Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: a NIRS study of children. Neuroimage 29, 706–711. 10.1016/j.neuroimage.2005.08.019
    1. McGarry W., Strenziok M., Cisler D. S., Clarke E., Santa Cruz S. A., Thompson J. C., et al. (2013). Real-time strategy video game training increases fronto-parietal cortical thickness, default mode network connectivity, and reasoning ability in healthy older adults, in 20th Annual Meeting of the Cognitive-Neuroscience-Society (San Francisco, CA: ), 132–132.
    1. McMahan T., Parberry I., Parsons T. D. (2015). Modality specific assessment of video game player's experience using the Emotiv. Entertain. Comput. 7, 1–6. 10.1016/j.entcom.2015.03.001
    1. Miller J. F., Fried I., Suthana N., Jacobs J. (2015). Repeating spatial activations in human entorhinal cortex. Curr. Biol. 25, 1080–1085. 10.1016/j.cub.2015.02.045
    1. Mishra J., Zinni M., Bavelier D., Hillyard S. A. (2011). Neural basis of superior performance of action videogame players in an attention-demanding task. J. Neurosci. 31, 992–998. 10.1523/JNEUROSCI.4834-10.2011
    1. Montag C., Weber B., Trautner P., Newport B., Markett S., Walter N. T., et al. . (2012). Does excessive play of violent first-person-shooter-video-games dampen brain activity in response to emotional stimuli? Biol. Psychol. 89, 107–111. 10.1016/j.biopsycho.2011.09.014
    1. Nachev P., Kennard C., Husain M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 9, 856–869. 10.1038/nrn2478
    1. Nagamitsu S., Nagano M., Yamashita Y., Takashima S., Matsuishi T. (2006). Prefrontal cerebral blood volume patterns while playing video games-A near-infrared spectroscopy study. Brain Dev. 28, 315–321. 10.1016/j.braindev.2005.11.008
    1. Naqvi N. H., Bechara A. (2009). The hidden island of addiction: the insula. Trends Neurosci. 32, 56–67. 10.1016/j.tins.2008.09.009
    1. Nikolaidis A., Voss M. W., Lee H., Vo L. T. K., Kramer A. F. (2014). Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Front. Hum. Neurosci. 8:169. 10.3389/fnhum.2014.00169
    1. Obeso I., Robles N., Marrón E. M., Redolar-Ripoll D. (2013). Dissociating the role of the pre-SMA in response Inhibition and switching: a combined online and offline TMS approach. Front. Hum. Neurosci. 7:150. 10.3389/fnhum.2013.00150
    1. O'Brien C. P., Childress A. R., Ehrman R., Robbins S. J. (1998). Conditioning factors in drug abuse: can they explain compulsion? J. Psychopharmacol. 12, 15–22.
    1. O'Doherty J. P. (2004). Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr. Opin. Neurobiol. 14, 769–776. 10.1016/j.conb.2004.10.016
    1. Park H. S., Kim S. H., Bang S. A., Yoon E. J., Cho S. S., Kim S. E. (2010). Altered regional cerebral glucose metabolism in internet game overusers: a 18F-fluorodeoxyglucose positron emission tomography study. CNS Spectr. 15, 159–166. 10.1017/S1092852900027437
    1. Park S. Y., Kim S. M., Roh S., Soh M.-A., Lee S. H., Kim H., et al. . (2016). The effects of a virtual reality treatment program for online gaming addiction. Comput. Methods Programs Biomed. 129, 99–108. 10.1016/j.cmpb.2016.01.015
    1. Patten J., Gaspar J., McDonald J., Spalek T. (2015). Active Suppression in video-game players: an ERP study. J. Vis. 15:872 10.1167/15.12.872
    1. Pellouchoud E., Smith M. E., McEvoy L. K., Gevins A. (1999). Mental effort-related EEG modulation during video-game play: comparison between juvenile subjects with epilepsy and normal control subjects. Epilepsia 40 (Suppl. 4), 38–43. 10.1111/j.1528-1157.1999.tb00905.x
    1. Petras K., Ten Oever S., Jansma B. M. (2015). The effect of distance on moral engagement: event related potentials and alpha power are sensitive to perspective in a virtual shooting task. Front. Psychol. 6:2008. 10.3389/fpsyg.2015.02008
    1. Petry N. M., Rehbein F., Gentile D. A., Lemmens J. S., Rumpf H.-J., Mößle T., et al. . (2014). An international consensus for assessing internet gaming disorder using the new DSM-5 approach. Addiction 109, 1399–1406. 10.1111/add.12457
    1. Powers K. L., Brooks P. J., Aldrich N. J., Palladino M. A., Alfieri L. (2013). Effects of video-game play on information processing: a meta-analytic investigation. Psychon. Bull. Rev. 20, 1055–1079. 10.3758/s13423-013-0418-z
    1. Prakash R. S., De Leon A. A., Mourany L., Lee H., Voss M. W., Boot W. R., et al. . (2012). Examining neural correlates of skill acquisition in a complex videogame training program. Front. Hum. Neurosci. 6:115. 10.3389/fnhum.2012.00115
    1. Regenbogen C., Herrmann M., Fehr T. (2010). The neural processing of voluntary completed, real and virtual violent and nonviolent computer game scenarios displaying predefined actions in gamers and nongamers. Soc. Neurosci. 5, 221–240. 10.1080/17470910903315989
    1. Russoniello C. V., O'brien K., Parks J. M. (2009). EEG, HRV and psychological correlates while playing Bejeweled II: a randomized controlled study. Annu. Rev. CyberTherapy Telemed. 7, 189–192. 10.3233/978-1-60750-017-9-189
    1. Salminen M., Ravaja N. (2007). Oscillatory brain responses evoked by video game events: the case of super monkey ball 2. Cyberpsychol. Behav. 10, 330–338. 10.1089/cpb.2006.9947
    1. Sánchez-González M. A., García-Cabezas M. A., Rico B., Cavada C. (2005). The primate thalamus is a key target for brain dopamine. J. Neurosci. 25, 6076–6083. 10.1523/JNEUROSCI.0968-05.2005
    1. Schmidt-Hieber C., Häusser M. (2013). Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat. Neurosci. 16, 325–331. 10.1038/nn.3340
    1. Sheikholeslami C., Yuan H., He E. J., Bai X., Yang L., He B. (2007). A high resolution EEG study of dynamic brain activity during video game play. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 2489–2491. 10.1109/IEMBS.2007.4352833
    1. Smith E. E., Jonides J. (1999). Storage and executive processes in the frontal lobes. Science 283, 1657–1661. 10.1126/science.283.5408.1657
    1. Smith M. E., McEvoy L. K., Gevins A. (1999). Neurophysiological indices of strategy development and skill acquisition. Cogn. Brain Res. 7, 389–404. 10.1016/S0926-6410(98)00043-3
    1. Song W. H., Han D. H., Shim H. J. (2013). Comparison of brain activation in response to two dimensional and three dimensional on-line games. Psychiatry Investig. 10, 115–120. 10.4306/pi.2013.10.2.115
    1. Strenziok M., Clarke E., Santa Cruz S. A., Thompson J. C., Parasuraman R., Greenwood P. M. (2013). Effects of real-time strategy video game training on white matter integrity in interhemispheric posterior callosal connections of the precuneus in healthy aging, in 20th Annu. Meet. Cogn. (San Francisco, CA: ), 190.
    1. Strenziok M., Krueger F., Deshpande G., Lenroot R. K., Van der meer E., Grafman J. (2011). Fronto-parietal regulation of media violence exposure in adolescents: a multi-method study. Soc. Cogn. Affect. Neurosci. 6, 537–547. 10.1093/scan/nsq079
    1. Strenziok M., Parasuraman R., Clarke E., Cisler D. S., Thompson J. C., Greenwood P. M. (2014). Neurocognitive enhancement in older adults: comparison of three cognitive training tasks to test a hypothesis of training transfer in brain connectivity. Neuroimage 85(Pt 3), 1027–1039. 10.1016/j.neuroimage.2013.07.069
    1. Subhani A. R., Likun X., Saeed Malik A. (2012). Association of autonomic nervous system and EEG scalp potential during playing 2D grand turismo 5. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 3420–3423. 10.1109/EMBC.2012.6346700
    1. Szabó C., Kelemen O., Kéri S. (2014). Low-grade inflammation disrupts structural plasticity in the human brain. Neuroscience 275, 81–88. 10.1016/j.neuroscience.2014.06.002
    1. Tsai M.-H., Cherng R.-J., Chen J.-Y. (2013). Visuospatial attention abilities in the action and real time strategy video game players as compared with nonplayers, in 2013 1st International Conference on Orange Technologies (ICOT) (Tainan: IEEE; ), 264–265.
    1. Tachtsidis I., Papaioannou A. (2013). Investigation of frontal lobe activation with fNIRS and systemic changes during video gaming. Adv. Exp. Med. Biol. 789, 89–95. 10.1007/978-1-4614-7411-1_13
    1. Takeuchi H., Taki Y., Hashizume H., Asano K., Asano M., Sassa Y., et al. . (2016). Impact of videogame play on the brain's microstructural properties: cross-sectional and longitudinal analyses. Mol. Psychiatry 21, 1781–1789. 10.1038/mp.2015.193
    1. Tanaka S., Ikeda H., Kasahara K., Kato R., Tsubomi H., Sugawara S. K., et al. . (2013). Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM) study. PLoS ONE 8:e66998. 10.1371/journal.pone.0066998
    1. Thalemann R., Wölfling K., Grüsser S. M. (2007). Specific cue reactivity on computer game-related cues in excessive gamers. Behav. Neurosci. 121, 614–618. 10.1037/0735-7044.121.3.614
    1. Tian M., Chen Q., Zhang Y., Du F., Hou H., Chao F., et al. . (2014). PET imaging reveals brain functional changes in internet gaming disorder. Eur. J. Nucl. Med. Mol. Imaging 41, 1388–1397. 10.1007/s00259-014-2708-8
    1. Toril P., Reales J. M., Ballesteros S. (2014). Video game training enhances cognition of older adults: a meta-analytic study. Psychol. Aging 29, 706–716. 10.1037/a0037507
    1. Turel O., Romashkin A., Morrison K. M. (2016). Health outcomes of information system use lifestyles among adolescents: videogame addiction, sleep curtailment and cardio-metabolic deficiencies. PLoS ONE 11:e0154764. 10.1371/journal.pone.0154764
    1. Vo L. T. K., Walther D. B., Kramer A. F., Erickson K. I., Boot W. R., Voss M. W., et al. . (2011). Predicting individuals' learning success from patterns of pre-learning MRI activity. PLoS ONE 6:e16093. 10.1371/journal.pone.0016093
    1. Vogan V. M. M., Morgan B. R. R., Powell T. L. L., Smith M. L. L., Taylor M. J. J. (2016). The neurodevelopmental differences of increasing verbal working memory demand in children and adults. Dev. Cogn. Neurosci. 17, 19–27. 10.1016/j.dcn.2015.10.008
    1. Volkow N. D., Wang G.-J., Fowler J. S., Tomasi D., Telang F., Baler R. (2010). Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit. Bioessays 32, 748–755. 10.1002/bies.201000042
    1. Voss M. W., Prakash R. S., Erickson K. I., Boot W. R., Basak C., Neider M. B., et al. . (2012). Effects of training strategies implemented in a complex videogame on functional connectivity of attentional networks. Neuroimage 59, 138–148. 10.1016/j.neuroimage.2011.03.052
    1. Vossel S., Geng J. J., Fink G. R. (2014). Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist 20, 150–159. 10.1177/1073858413494269
    1. Wang P., Liu H.-H., Zhu X.-T., Meng T., Li H.-J., Zuo X.-N. (2016). Action video game training for healthy adults: a meta-analytic study. Front. Psychol. 7:907. 10.3389/fpsyg.2016.00907
    1. Wang Y., Mathews V. P., Kalnin A. J., Mosier K. M., Dunn D. W., Saykin A. J., et al. (2009). Short term exposure to a violent video game induces changes in frontolimbic circuitry in adolescents. Brain Imaging Behav. 3, 38–50. 10.1007/s11682-008-9058-8
    1. Wang Y., Yin Y., Sun Y., Zhou Y., Chen X., Ding W., et al. . (2015). Decreased prefrontal lobe interhemispheric functional connectivity in adolescents with internet gaming disorder: a primary study using resting-state fMRI. PLoS ONE 10:e0118733. 10.1371/journal.pone.0118733
    1. Watter S., Geffen G. M., Geffen L. B. (2001). The n-back as a dual-task: P300 morphology under divided attention. Psychophysiology 38, 998–1003. 10.1111/1469-8986.3860998
    1. Weber R., Ritterfeld U., Mathiak K. (2006). Does playing violent video games induce aggression? Empirical evidence of a functional magnetic resonance imaging study. Media Psychol. 8, 39–60. 10.1207/S1532785XMEP0801_4
    1. Weber R., Tamborini R., Westcott-Baker A., Kantor B. (2009). Theorizing flow and media enjoyment as cognitive synchronization of attentional and reward networks. Commun. Theor. 19, 397–422. 10.1111/j.1468-2885.2009.01352.x
    1. Wee C.-Y., Zhao Z., Yap P.-T., Wu G., Shi F., Price T., et al. . (2014). Disrupted brain functional network in internet addiction disorder: a resting-state functional magnetic resonance imaging study. PLoS ONE 9:e107306. 10.1371/journal.pone.0107306
    1. West G. L., Drisdelle B. L., Konishi K., Jackson J., Jolicoeur P., Bohbot V. D. (2015). Habitual action video game playing is associated with caudate nucleus- dependent navigational strategies. Proc. R. Soc. London B Biol. Sci. 282:20142952. 10.1098/rspb.2014.2952
    1. Wu S., Cheng C. K., Feng J., D'Angelo L., Alain C., Spence I. (2012). Playing a first-person shooter video game induces neuroplastic change. J. Cogn. Neurosci. 24, 1286–1293. 10.1162/jocn_a_00192
    1. Xing L., Yuan K., Bi Y., Yin J., Cai C., Feng D., et al. . (2014). Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder. Brain Res. 1586, 109–117. 10.1016/j.brainres.2014.08.044
    1. Yoshida K., Sawamura D., Inagaki Y., Ogawa K., Ikoma K., Sakai S. (2014). Brain activity during the flow experience: a functional near-infrared spectroscopy study. Neurosci. Lett. 573, 30–34. 10.1016/j.neulet.2014.05.011
    1. Young K. S. (1998). Internet addiction: the emergence of a new clinical disorder. CyberPsychol. Behav. 1, 237–244. 10.1089/cpb.1998.1.237
    1. Yuan K., Cheng P., Dong T., Bi Y., Xing L., Yu D., et al. . (2013a). Cortical thickness abnormalities in late adolescence with online gaming addiction. PLoS ONE 8:e53055. 10.1371/journal.pone.0053055
    1. Yuan K., Jin C., Cheng P., Yang X., Dong T., Bi Y., et al. . (2013b). Amplitude of low frequency fluctuation abnormalities in adolescents with online gaming addiction. PLoS ONE 8:e78708. 10.1371/journal.pone.0078708
    1. Zhang J.-T., Yao Y.-W., Li C.-S. R., Zang Y.-F., Shen Z.-J., Liu L., et al. . (2016). Altered resting-state functional connectivity of the insula in young adults with Internet gaming disorder. Addict. Biol. 21, 743–751. 10.1111/adb.12247
    1. Zhang Y., Du G., Yang Y., Qin W., Li X., Zhang Q. (2015). Higher integrity of the motor and visual pathways in long-term video game players. Front. Hum. Neurosci. 9:98. 10.3389/fnhum.2015.00098
    1. Zvyagintsev M., Klasen M., Weber R., Sarkheil P., Esposito F., Mathiak K. A., et al. . (2016). Violence-related content in video game may lead to functional connectivity changes in brain networks as revealed by fMRI-ICA in young men. Neuroscience 320, 247–258. 10.1016/j.neuroscience.2016.01.056

Source: PubMed

3
Abonnieren