Carbon Ion Radiobiology

Walter Tinganelli, Marco Durante, Walter Tinganelli, Marco Durante

Abstract

Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.

Keywords: RBE; carbon ions; hypoxia; immunotherapy; metastasis; particle therapy; radiobiology; radiotherapy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Physical properties of carbon ions in comparison to X-rays, protons, and helium ions. (A). Depth-dose distributions showing the Bragg peak for all ions at the same range, and the reduced straggling of heavier ions. (B). Lateral scattering is reduced by increasing the ion mass.
Figure 2
Figure 2
Summary of the physical and radiobiological properties of heavy ions along the Bragg curve. The figures on top right show a sketch of the quality of DNA damage and the corresponding γH2AX foci distribution with carbon ions and X-rays. Adapted from [12].
Figure 3
Figure 3
LET versus depth in tissue for a single SOBP of p, He, C, and O providing a uniform physical dose (2 Gy). The grey area represents the tumor region, a 2.5 × 2.5 × 2.5 cm3 volume centered at 8 cm in water. The yellow and orange lines are 100 and 20 keV/μm level, respectively. Figure from [15], distributed under Creative Commons CC-BY.
Figure 4
Figure 4
DNA DSB repair kinetics of human fibroblasts exposed in the entrance channel (EC) or SOBP (2.4 cm width at a water-equivalent depth of 16 cm, two opposite fields, 2 Gy dose). Figure from [47], distributed under Creative Commons CC-BY.
Figure 5
Figure 5
Karyotypes of peripheral blood lymphocytes from two esophageal cancer patients treated with either C-ions (RBE-weighted dose 36 Gy in 10 fractions, radiation field 61 cm2) or X-rays (41.4 Gy in 23 fractions, radiation field 141 cm2 ) at NIRS-QST, Japan. The C-ion (left) karyotype is 46, XY, t(6;18). The X-ray karyotype (right) is 46, XY, t (4;12), t(8;9). Samples were obtained as described in [74].
Figure 6
Figure 6
Survival of CHO cells irradiated in a phantom with two opposite beams of protons or C-ions. Proton and carbon ion irradiations were performed at the HIT facility using an active pencil beam scanning technique with energies of 90–120 MeV/u and 175–230 MeV/u for protons and carbon ions, respectively. The dose levels were 1.5 Gy in the entrance channel for both protons and carbon ions; in the center of target region, doses of 5.3 Gy and 3.9 Gy were applied with protons and carbon ions, respectively. Lines are predictions from the LEM-IV model. The model use the X-rays survival dose of CHO cells with α/β = 4 Gy and a threshold dose Dt = 20 Gy. Adapted from [75], reproduced with permission from Elsevier.
Figure 7
Figure 7
Physical (dashed lines) and RBE-weighted dose (solid lines) for a single 5-cm SOBP using protons, He- or C-ions. The physical dose shape is calculated with LEM-IV to achieve the same RBE-weighted dose in the target region for all ions. Figure modified from [78].
Figure 8
Figure 8
RBE of C-ions from the PIDE database. The 3 panels represent the RBEα, RBE50, and RBE10 for radioresistant (red; α/β < 4 Gy) and radiosensitive (blu; α/β > 4 Gy) cells. Plot courtesy of Dr. Thomas Friedrich, GSI.
Figure 9
Figure 9
RBE of C-ions as a function of the dose per fraction calculated with the liner quadratic model for different α/β values. Figure from reference [96], reproduced with permission by Elsevier.
Figure 10
Figure 10
OER vs. LET of CHO cells at different oxygen concentration levels. Figure from reference [158], distributed under Creative Commons CC-BY.
Figure 11
Figure 11
Comparison of the computed OER along an SOBP for carbon (black curves) and oxygen (red curves) at different pO2 levels. The hatched areas represent the clinical interesting regions for hypoxia (0.15% < pO2 < 0.5%). Doses indicated are prescribed RBE-weighted doses in the target to achieve iso-survival. Plans for using 16O in the clinics are currently under way at HIT (Heidelberg). Plot from [159], © Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP Publishing. All rights reserved.
Figure 12
Figure 12
Typical protocol used in various laboratories to compare C-ions and X-rays in combination to immunotherapy. Reproduced from ref. [295], distributed under Creative Commons CC-BY.

References

    1. Wilson R.R. Radiological use of fast protons. Radiology. 1946;47:487–491. doi: 10.1148/47.5.487.
    1. Tobias C.A. Failla Memorial lecture. The future of heavy-ion science in biology and medicine. Radiat. Res. 1985;103:1–33. doi: 10.2307/3576668.
    1. Durante M., Paganetti H. Nuclear physics in particle therapy: A review. Rep. Prog. Phys. 2016;79:096702. doi: 10.1088/0034-4885/79/9/096702.
    1. Schardt D., Elsässer T., Schulz-Ertner D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 2010;82:383–425. doi: 10.1103/RevModPhys.82.383.
    1. Durante M., Cucinotta F.A. Physical basis of radiation protection in space travel. Rev. Mod. Phys. 2011;83:1245–1281. doi: 10.1103/RevModPhys.83.1245.
    1. Sørensen B.S., Overgaard J., Bassler N. In vitro RBE-LET dependence for multiple particle types. Acta Oncol. 2011;50:757–762. doi: 10.3109/0284186X.2011.582518.
    1. Friedrich T., Scholz U., Elsässer T., Durante M., Scholz M. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation. J. Radiat. Res. 2013;54:494–514. doi: 10.1093/jrr/rrs114.
    1. Blakely E.A., Ngo F., Curtis S., Tobias C.A. Heavy-ion radiobiology: Cellular studies. Adv. Radiat. Biol. 1984;11:295–389. doi: 10.1016/B978-0-12-035411-5.50013-7.
    1. Durante M. New challenges in high-energy particle radiobiology. Br. J. Radiol. 2014;87:20130626. doi: 10.1259/bjr.20130626.
    1. Skarsgard L.D. Radiobiology with heavy charged particles: A historical review. Phys. Medica. 1998;14(Suppl. 1):1–19.
    1. Durante M., Loeffler J.S. Charged particles in radiation oncology. Nat. Rev. Clin. Oncol. 2010;7:37–43. doi: 10.1038/nrclinonc.2009.183.
    1. Durante M. Eighth Warren K. Sinclair Keynote Address: Heavy Ions in Therapy and Space: Benefits and Risks. Health Phys. 2012;103:532–539. doi: 10.1097/HP.0b013e318264b4b6.
    1. Castro J.R. Results of heavy ion radiotherapy. Radiat. Environ. Biophys. 1995;34:45–48. doi: 10.1007/BF01210545.
    1. Horsman M.R., Mortensen L.S., Busk M., Overgaard J., Horsman M.R., Mortensen L.S., Petersen J.B., Busk M., Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat. Rev. Clin. Oncol. 2012;9:674–687. doi: 10.1038/nrclinonc.2012.171.
    1. Tommasino F., Scifoni E., Durante M. New Ions for Therapy. Int. J. Part. Ther. 2015;2:428–438. doi: 10.14338/IJPT-15-00027.1.
    1. Tsujii H., Kamada T., Shirai T., Al. E. In: Carbon-Ion Radiotherapy. Tsujii H., Kamada T., Shirai T., Noda K., Tsuji H., Karasawa K., editors. Springer; Japan, Tokyo: 2014.
    1. Kamada T., Tsujii H., Blakely E.A., Debus J., De Neve W., Durante M., Jäkel O., Mayer R., Orecchia R., Pötter R., et al. Carbon ion radiotherapy in Japan: An assessment of 20 years of clinical experience. Lancet Oncol. 2015;16:e93–e100. doi: 10.1016/S1470-2045(14)70412-7.
    1. Kraft G. Tumor therapy with heavy charged particles. Prog. Part. Nucl. Phys. 2000;45:473–544. doi: 10.1016/S0146-6410(00)00112-5.
    1. Amaldi U., Kraft G. Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 2005;68:1861–1882. doi: 10.1088/0034-4885/68/8/R04.
    1. Brower V. Carbon Ion Therapy To Debut in Europe. JNCI J. Natl. Cancer Inst. 2009;101:74–76. doi: 10.1093/jnci/djn496.
    1. Malouff T.D., Mahajan A., Krishnan S., Beltran C., Seneviratne D.S., Trifiletti D.M. Carbon Ion Therapy: A Modern Review of an Emerging Technology. Front. Oncol. 2020;10 doi: 10.3389/fonc.2020.00082.
    1. Pompos A., Durante M., Choy H. Heavy Ions in Cancer Therapy. JAMA Oncol. 2016;2:1539. doi: 10.1001/jamaoncol.2016.2646.
    1. Bortfeld T.R., Loeffler J.S. Three ways to make proton therapy affordable. Nature. 2017;549:451–453. doi: 10.1038/549451a.
    1. Jäkel O., Smith A.R., Orton C.G. The more important heavy charged particle radiotherapy of the future is more likely to be with heavy ions rather than protons. Med. Phys. 2013;40:090601. doi: 10.1118/1.4798945.
    1. Uhl M., Mattke M., Welzel T., Roeder F., Oelmann J., Habl G., Jensen A., Ellerbrock M., Jäkel O., Haberer T., et al. Highly effective treatment of skull base chordoma with carbon ion irradiation using a raster scan technique in 155 patients: First long-term results. Cancer. 2014;120:3410–3417. doi: 10.1002/cncr.28877.
    1. Shinoto M., Yamada S., Terashima K., Yasuda S., Shioyama Y., Honda H., Kamada T., Tsujii H., Saisho H., Asano T., et al. Carbon Ion Radiation Therapy With Concurrent Gemcitabine for Patients With Locally Advanced Pancreatic Cancer. Int. J. Radiat. Oncol. 2016;95:498–504. doi: 10.1016/j.ijrobp.2015.12.362.
    1. Kawashiro S., Yamada S., Okamoto M., Ohno T., Nakano T., Shinoto M., Shioyama Y., Nemoto K., Isozaki Y., Tsuji H., et al. Multi-institutional Study of Carbon-ion Radiotherapy for Locally Advanced Pancreatic Cancer: Japan Carbon-ion Radiation Oncology Study Group (J-CROS) Study 1403 Pancreas. Int. J. Radiat. Oncol. 2018;101:1212–1221. doi: 10.1016/j.ijrobp.2018.04.057.
    1. Shinoto M., Yamada S., Okamoto M., Shioyama Y., Ohno T., Nakano T., Nemoto K., Isozaki Y., Kawashiro S., Tsuji H., et al. Carbon-ion radiotherapy for locally recurrent rectal cancer: Japan Carbon-ion Radiation Oncology Study Group (J-CROS) Study 1404 Rectum. Radiother. Oncol. 2019;132:236–240. doi: 10.1016/j.radonc.2018.10.007.
    1. Durante M., Debus J. Heavy Charged Particles: Does Improved Precision and Higher Biological Effectiveness Translate to Better Outcome in Patients? Semin. Radiat. Oncol. 2018;28:160–167. doi: 10.1016/j.semradonc.2017.11.004.
    1. Tommasino F., Durante M. Proton radiobiology. Cancers. 2015;7:353–381. doi: 10.3390/cancers7010353.
    1. Tracy B.L., Stevens D.L., Goodhead D.T., Hill M.A. Variation in RBE for Survival of V79-4 Cells as a Function of Alpha-Particle (Helium Ion) Energy. Radiat. Res. 2015;184:33. doi: 10.1667/RR13835.1.
    1. Brenner D.J., Sachs R.K. Do low dose-rate bystander effects influence domestic radon risks? Int. J. Radiat. Biol. 2002;78:593–604. doi: 10.1080/09553000210121740.
    1. Parker C., Lewington V., Shore N., Kratochwil C., Levy M., Lindén O., Noordzij W., Park J., Saad F. Targeted Alpha Therapy, an Emerging Class of Cancer Agents. JAMA Oncol. 2018 doi: 10.1001/jamaoncol.2018.4044.
    1. La Tessa C., Sivertz M., Chiang I.H., Lowenstein D., Rusek A. Overview of the NASA space radiation laboratory. Life Sci. Space Res. 2016;11:18–23. doi: 10.1016/j.lssr.2016.10.002.
    1. Walsh L., Schneider U., Fogtman A., Kausch C., McKenna-Lawlor S., Narici L., Ngo-Anh J., Reitz G., Sabatier L., Santin G., et al. Research plans in Europe for radiation health hazard assessment in exploratory space missions. Life Sci. Space Res. 2019;21:73–82. doi: 10.1016/j.lssr.2019.04.002.
    1. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys. Med. Biol. 2014;59:R419–R472. doi: 10.1088/0031-9155/59/22/R419.
    1. Underwood T.S.A., Grassberger C., Bass R., MacDonald S.M., Meyersohn N.M., Yeap B.Y., Jimenez R.B., Paganetti H. Asymptomatic Late-phase Radiographic Changes Among Chest-Wall Patients Are Associated with a Proton RBE Exceeding 1.1. Int. J. Radiat. Oncol. 2018;101:809–819. doi: 10.1016/j.ijrobp.2018.03.037.
    1. Haas-Kogan D., Indelicato D., Paganetti H., Esiashvili N., Mahajan A., Yock T., Flampouri S., MacDonald S., Fouladi M., Stephen K., et al. National Cancer Institute Workshop on Proton Therapy for Children: Considerations Regarding Brainstem Injury. Int. J. Radiat. Oncol. 2018;101:152–168. doi: 10.1016/j.ijrobp.2018.01.013.
    1. Paganetti H., Blakely E., Carabe-Fernandez A., Carlson D.J., Das I.J., Dong L., Grosshans D., Held K.D., Mohan R., Moiseenko V., et al. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Med. Phys. 2019;46:e53–e78. doi: 10.1002/mp.13390.
    1. Lea D.E. Action of Radiations on Living Cells. Cambridge University Press; New York, NY, USA: 1947.
    1. Goodhead D.T. Initial events in the cellular effects of ionizing radiations: Clustered damage in DNA. Int. J. Radiat. Biol. 1994;65:7–17. doi: 10.1080/09553009414550021.
    1. Sokol O., Scifoni E., Tinganelli W., Kraft-Weyrather W., Wiedemann J., Maier A., Boscolo D., Friedrich T., Brons S., Durante M., et al. Oxygen beams for therapy: Advanced biological treatment planning and experimental verification. Phys. Med. Biol. 2017;62:7798–7813. doi: 10.1088/1361-6560/aa88a0.
    1. Claesson K., Magnander K., Kahu H., Lindegren S., Hultborn R., Elmroth K. RBE of α-particles from 211 At for complex DNA damage and cell survival in relation to cell cycle position. Int. J. Radiat. Biol. 2011;87:372–384. doi: 10.3109/09553002.2011.538127.
    1. Pinto M., Prise K.M., Michael B.D. Evidence for Complexity at the Nanometer Scale of Radiation-Induced DNA DSBs as a Determinant of Rejoining Kinetics. Radiat. Res. 2005;164:73–85. doi: 10.1667/RR3394.
    1. Asaithamby A., Hu B., Chen D.J. Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc. Natl. Acad. Sci. USA. 2011;108:8293–8298. doi: 10.1073/pnas.1016045108.
    1. Anderson J.A., Harper J.V., Cucinotta F.A., O’Neill P. Participation of DNA-PKcs in DSB Repair after Exposure to High- and Low-LET Radiation. Radiat. Res. 2010;174:195–205. doi: 10.1667/RR2071.1.
    1. Averbeck N.B., Topsch J., Scholz M., Kraft-Weyrather W., Durante M., Taucher-Scholz G. Efficient Rejoining of DNA Double-Strand Breaks despite Increased Cell-Killing Effectiveness following Spread-Out Bragg Peak Carbon-Ion Irradiation. Front. Oncol. 2016;6:1–8. doi: 10.3389/fonc.2016.00028.
    1. Durante M., Furusawa Y., George K., Gialanella G., Greco O., Grossi G., Matsufuji N., Pugliese M., Yang T.C. Rejoining and misrejoining of radiation-induced chromatin breaks. IV. Charged particles. Radiat. Res. 1998;149:446–454. doi: 10.2307/3579784.
    1. Oike T., Niimi A., Okonogi N., Murata K., Matsumura A., Noda S.-E., Kobayashi D., Iwanaga M., Tsuchida K., Kanai T., et al. Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy. Sci. Rep. 2016;6:22275. doi: 10.1038/srep22275.
    1. Depes D., Lee J.-H., Bobkova E., Jezkova L., Falkova I., Bestvater F., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., et al. Single-molecule localization microscopy as a promising tool for γH2AX/53BP1 foci exploration. Eur. Phys. J. D. 2018;72:158. doi: 10.1140/epjd/e2018-90148-1.
    1. Bobkova E., Depes D., Lee J.-H., Jezkova L., Falkova I., Pagacova E., Kopecna O., Zadneprianetc M., Bacikova A., Kulikova E., et al. Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy. Int. J. Mol. Sci. 2018;19:3713. doi: 10.3390/ijms19123713.
    1. Frese M.C., Yu V.K., Stewart R.D., Carlson D.J. A Mechanism-Based Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions in Radiation Therapy. Int. J. Radiat. Oncol. 2012;83:442–450. doi: 10.1016/j.ijrobp.2011.06.1983.
    1. Georgakilas A.G., O’Neill P., Stewart R.D. Induction and Repair of Clustered DNA Lesions: What do We Know so far? Radiat. Res. 2013;180:100–109. doi: 10.1667/RR3041.1.
    1. Iliakis G., Mladenov E., Mladenova V. Necessities in the Processing of DNA Double Strand Breaks and Their Effects on Genomic Instability and Cancer. Cancers. 2019;11:1671. doi: 10.3390/cancers11111671.
    1. Yajima H., Fujisawa H., Nakajima N.I., Hirakawa H., Jeggo P.A., Okayasu R., Fujimori A. The complexity of DNA double strand breaks is a critical factor enhancing end-resection. DNA Repair (Amst) 2013;12:936–946. doi: 10.1016/j.dnarep.2013.08.009.
    1. Iliakis G., Murmann T., Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. Mutat. Res. Toxicol. Environ. Mutagen. 2015;793:166–175. doi: 10.1016/j.mrgentox.2015.07.001.
    1. Sallmyr A., Tomkinson A.E. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J. Biol. Chem. 2018;293:10536–10546. doi: 10.1074/jbc.TM117.000375.
    1. Zhang Y., Jasin M. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat. Struct. Mol. Biol. 2011;18:80–84. doi: 10.1038/nsmb.1940.
    1. Lee-Theilen M., Matthews A.J., Kelly D., Zheng S., Chaudhuri J. CtIP promotes microhomology-mediated alternative end joining during class-switch recombination. Nat. Struct. Mol. Biol. 2010;18:75–79. doi: 10.1038/nsmb.1942.
    1. Averbeck N.B., Ringel O., Herrlitz M., Jakob B., Durante M., Taucher-Scholz G. DNA end resection is needed for the repair of complex lesions in G1-phase human cells. Cell Cycle. 2014;13:2509–2516. doi: 10.4161/15384101.2015.941743.
    1. Jeggo P.A., Geuting V., Löbrich M. The role of homologous recombination in radiation-induced double-strand break repair. Radiother. Oncol. 2011;101:7–12. doi: 10.1016/j.radonc.2011.06.019.
    1. Gerelchuluun A., Manabe E., Ishikawa T., Sun L., Itoh K., Sakae T., Suzuki K., Hirayama R., Asaithamby A., Chen D.J., et al. The Major DNA Repair Pathway after Both Proton and Carbon-Ion Radiation is NHEJ, but the HR Pathway is More Relevant in Carbon Ions. Radiat. Res. 2015;183:345–356. doi: 10.1667/RR13904.1.
    1. Takahashi A., Kubo M., Ma H., Nakagawa A., Yoshida Y., Isono M., Kanai T., Ohno T., Furusawa Y., Funayama T., et al. Nonhomologous End-Joining Repair Plays a More Important Role than Homologous Recombination Repair in Defining Radiosensitivity after Exposure to High-LET Radiation. Radiat. Res. 2014;182:338–344. doi: 10.1667/RR13782.1.
    1. Fontana A.O., Augsburger M.A., Grosse N., Guckenberger M., Lomax A.J., Sartori A.A., Pruschy M.N. Differential DNA repair pathway choice in cancer cells after proton- and photon-irradiation. Radiother. Oncol. 2015;116:374–380. doi: 10.1016/j.radonc.2015.08.014.
    1. Grosse N., Fontana A.O., Hug E.B., Lomax A., Coray A., Augsburger M., Paganetti H., Sartori A.A., Pruschy M. Deficiency in homologous recombination renders mammalian cells more sensitive to proton versus photon irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2014;88:175–181. doi: 10.1016/j.ijrobp.2013.09.041.
    1. Soni A., Murmann-Konda T., Siemann-Loekes M., Pantelias G.E., Iliakis G. Chromosome breaks generated by low doses of ionizing radiation in G2-phase are processed exclusively by gene conversion. DNA Repair (Amst.) 2020;89:102828. doi: 10.1016/j.dnarep.2020.102828.
    1. Durante M., Yamada S., Ando K., Furusawa Y., Kawata T., Majima H., Nakano T., Tsujii H. Measurements of the equivalent whole-body dose during radiation therapy by cytogenetic methods. Phys. Med. Biol. 1999;44:1289–1298. doi: 10.1088/0031-9155/44/5/314.
    1. George K., Durante M., Willingham V., Wu H., Yang T.C., Cucinotta F.A. Biological effectiveness of accelerated particles for the induction of chromosome damage measured in metaphase and interphase human lymphocytes. Radiat. Res. 2003;160:425–435. doi: 10.1667/RR3064.
    1. Ritter S., Durante M. Heavy-ion induced chromosomal aberrations: A review. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2010;701:38–46. doi: 10.1016/j.mrgentox.2010.04.007.
    1. Anderson R.M., Stevens D.L., Goodhead D.T. M-FISH analysis shows that complex chromosome aberrations induced by alpha-particle tracks are cumulative products of localized rearrangements. Proc. Natl. Acad. Sci. USA. 2002;99:12167–12172. doi: 10.1073/pnas.182426799.
    1. Durante M., George K., Wu H., Cucinotta F. a Karyotypes of human lymphocytes exposed to high-energy iron ions. Radiat. Res. 2002;158:581–590. doi: 10.1667/0033-7587(2002)158[0581:KOHLET];2.
    1. Hartel C., Nikoghosyan A., Durante M., Sommer S., Nasonova E., Fournier C., Lee R., Debus J., Schulz-Ertner D., Ritter S. Chromosomal aberrations in peripheral blood lymphocytes of prostate cancer patients treated with IMRT and carbon ions. Radiother. Oncol. 2010;95:73–78. doi: 10.1016/j.radonc.2009.08.031.
    1. Pignalosa D., Lee R., Hartel C., Sommer S., Nikoghosyan A., Debus J., Ritter S., Durante M. Chromosome inversions in lymphocytes of prostate cancer patients treated with X-rays and carbon ions. Radiother. Oncol. 2013;109:256–261. doi: 10.1016/j.radonc.2013.09.021.
    1. Durante M., Yamada S., Ando K., Furusawa Y., Kawata T., Majima H., Nakano T., Tsujii H. X-rays vs. carbon-ion tumor therapy: Cytogenetic damage in lymphocytes. Int. J. Radiat. Oncol. Biol. Phys. 2000;47:793–798. doi: 10.1016/S0360-3016(00)00455-7.
    1. Elsässer T., Weyrather W.K., Friedrich T., Durante M., Iancu G., Krämer M., Kragl G., Brons S., Winter M., Weber K.-J., et al. Quantification of the relative biological effectiveness for ion beam radiotherapy: Direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 2010;78:1177–1183. doi: 10.1016/j.ijrobp.2010.05.014.
    1. Techinical Report Sereies No. 461. IAEA; Vienna, Austria: 2008. IAEA Relative Biological Effectiveness in Ion Beam Therapy; p. 153.
    1. ICRU Report 93—Prescribing, Recording and Reporting Light Ion Beam Therapy. J. ICRU. 2016;16 doi: 10.1093/jicru/ndy025.
    1. Grün R., Friedrich T., Krämer M., Zink K., Durante M., Engenhart-Cabillic R., Scholz M. Assessment of potential advantages of relevant ions for particle therapy: A model based study. Med. Phys. 2015;42:1037–1047. doi: 10.1118/1.4905374.
    1. ICRU Report 78-Prescribing, Recording, and Reporting Proton-Beam Therapy: Contents. J. ICRU. 2007;7 doi: 10.1093/jicru/ndm021.
    1. Mutter R.W., Jethwa K.R., Wan Chan Tseung H.S., Wick S.M., Kahila M.M.H., Viehman J.K., Shumway D.A., Corbin K.S., Park S.S., Remmes N.B., et al. Incorporation of Biologic Response Variance Modeling Into the Clinic: Limiting Risk of Brachial Plexopathy and Other Late Effects of Breast Cancer Proton Beam Therapy. Pract. Radiat. Oncol. 2020;10:e71–e81. doi: 10.1016/j.prro.2019.08.011.
    1. Stewart R.D., Carlson D.J., Butkus M.P., Hawkins R., Friedrich T., Scholz M. A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE) Med. Phys. 2018;45:e925–e952. doi: 10.1002/mp.13207.
    1. Kanai T., Matsufuji N., Miyamoto T., Mizoe J., Kamada T., Tsuji H., Kato H., Baba M., Tsujii H. Examination of GyE system for HIMAC carbon therapy. Int. J. Radiat. Oncol. Biol. Phys. 2006;64:650–656. doi: 10.1016/j.ijrobp.2005.09.043.
    1. Hawkins R.B. A microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE with LET. Radiat. Res. 2003;160:61–69. doi: 10.1667/RR3010.
    1. Scholz M., Kellerer A.M., Kraft-Weyrather W., Kraft G. Computation of cell survival in heavy ion beams for therapy: The model and its approximation. Radiat. Environ. Biophys. 1997;36:59–66. doi: 10.1007/s004110050055.
    1. Grün R., Friedrich T., Elsässer T., Krämer M., Zink K., Karger C.P., Durante M., Engenhart-Cabillic R., Scholz M. Impact of enhancements in the local effect model (LEM) on the predicted RBE-weighted target dose distribution in carbon ion therapy. Phys. Med. Biol. 2012;57:7261–7274. doi: 10.1088/0031-9155/57/22/7261.
    1. Gillmann C., Jäkel O., Karger C.P. RBE-weighted doses in target volumes of chordoma and chondrosarcoma patients treated with carbon ion radiotherapy: Comparison of local effect models I and IV. Radiother. Oncol. 2019;141:234–238. doi: 10.1016/j.radonc.2019.08.006.
    1. Fossati P., Molinelli S., Matsufuji N., Ciocca M., Mirandola A., Mairani A., Mizoe J., Hasegawa A., Imai R., Kamada T., et al. Dose prescription in carbon ion radiotherapy: A planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Phys. Med. Biol. 2012;57:7543–7554. doi: 10.1088/0031-9155/57/22/7543.
    1. Steinsträter O., Grün R., Scholz U., Friedrich T., Durante M., Scholz M. Mapping of RBE-weighted doses between HIMAC- and LEM-based treatment planning systems for carbon ion therapy. Int. J. Radiat. Oncol. Biol. Phys. 2012;84:854–860. doi: 10.1016/j.ijrobp.2012.01.038.
    1. Mein S., Klein C., Kopp B., Magro G., Harrabi S., Karger C.P., Haberer T., Debus J., Abdollahi A., Dokic I., et al. Assessment of RBE-Weighted Dose Models for Carbon Ion Therapy Toward Modernization of Clinical Practice at HIT: In Vitro, in Vivo, and in Patients. Int. J. Radiat. Oncol. 2020 doi: 10.1016/j.ijrobp.2020.05.041.
    1. Loeffler J.S., Durante M. Charged particle therapy--optimization, challenges and future directions. Nat. Rev. Clin. Oncol. 2013;10:411–424. doi: 10.1038/nrclinonc.2013.79.
    1. Fowler J.F. 21 Years of biologically effective dose. Br. J. Radiol. 2010;83:554–568. doi: 10.1259/bjr/31372149.
    1. Salama J.K., Kirkpatrick J.P., Yin F.-F. Stereotactic body radiotherapy treatment of extracranial metastases. Nat. Rev. Clin. Oncol. 2012;9:654–665. doi: 10.1038/nrclinonc.2012.166.
    1. Tubin S., Yan W., Mourad W.F., Fossati P., Khan M.K. The future of radiation-induced abscopal response: Beyond conventional radiotherapy approaches. Future Oncol. 2020;16:1137–1151. doi: 10.2217/fon-2020-0063.
    1. Tubin S., Popper H.H., Brcic L. Novel stereotactic body radiation therapy (SBRT)-based partial tumor irradiation targeting hypoxic segment of bulky tumors (SBRT-PATHY): Improvement of the radiotherapy outcome by exploiting the bystander and abscopal effects. Radiat. Oncol. 2019;14:21. doi: 10.1186/s13014-019-1227-y.
    1. Emami B. Tolerance of Normal Tissue to Therapeutic Radiation. Rep. Radiother. Oncol. 2013;1:123–127.
    1. Friedrich T., Scholz U., Durante M., Scholz M. RBE of ion beams in hypofractionated radiotherapy (SBRT) Phys. Med. 2014;30:588–591. doi: 10.1016/j.ejmp.2014.04.009.
    1. Chapman J.D. Can the two mechanisms of tumor cell killing by radiation be exploited for therapeutic gain? J. Radiat. Res. 2014;55:2–9. doi: 10.1093/jrr/rrt111.
    1. Jeong J., Taasti V.T., Jackson A., Deasy J.O. The Relative Biological Effectiveness of Carbon Ion Radiation Therapy for Early Stage Lung Cancer. Radiother. Oncol. 2020 doi: 10.1016/j.radonc.2020.09.027.
    1. Saager M., Glowa C., Peschke P., Brons S., Gr?n R., Scholz M., Huber P.E., Debus J., Karger C.P. The relative biological effectiveness of carbon ion irradiations of the rat spinal cord increases linearly with LET up to 99 keV/micron. Acta Oncol. (Madr.) 2016;55:1512–1515. doi: 10.1080/0284186X.2016.1250947.
    1. Saager M., Glowa C., Peschke P., Brons S., Scholz M., Huber P.E., Debus J., Karger C.P. Carbon Ion Irradiation of the Rat Spinal Cord: Dependence of the Relative Biological Effectiveness on Linear Energy Transfer. Int. J. Radiat. Oncol. Biol. Phys. 2014;90:63–70. doi: 10.1016/j.ijrobp.2014.05.008.
    1. Saager M., Glowa C., Peschke P., Brons S., Grün R., Scholz M., Debus J., Karger C.P. Fractionated carbon ion irradiations of the rat spinal cord: Comparison of the relative biological effectiveness with predictions of the local effect model. Radiat. Oncol. 2020;15:6. doi: 10.1186/s13014-019-1439-1.
    1. Karger C.P., Peschke P., Sanchez-Brandelik R., Scholz M., Debus J. Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: Experimental results and clinical implications. Int. J. Radiat. Oncol. 2006;66:1488–1497. doi: 10.1016/j.ijrobp.2006.08.045.
    1. Saager M., Glowa C., Peschke P., Brons S., Grün R., Scholz M., Huber P.E., Debus J., Karger C.P. Split dose carbon ion irradiation of the rat spinal cord: Dependence of the relative biological effectiveness on dose and linear energy transfer. Radiother. Oncol. 2015;117:358–363. doi: 10.1016/j.radonc.2015.07.006.
    1. Saager M., Peschke P., Welzel T., Huang L., Brons S., Grün R., Scholz M., Debus J., Karger C.P. Late normal tissue response in the rat spinal cord after carbon ion irradiation. Radiat. Oncol. 2018;13:5. doi: 10.1186/s13014-017-0950-5.
    1. Ando K., Koike S., Uzawa A., Takai N., Fukawa T., Furusawa Y., Aoki M., Miyato Y. Biological Gain of Carbon-ion Radiotherapy for the Early Response of Tumor Growth Delay and against Early Response of Skin Reaction in Mice. J. Radiat. Res. 2005;46:51–57. doi: 10.1269/jrr.46.51.
    1. Sørensen B.S., Horsman M.R., Alsner J., Overgaard J., Durante M., Scholz M., Friedrich T., Bassler N. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model. Acta Oncol. (Madr.) 2015;54:1623–1630. doi: 10.3109/0284186X.2015.1069890.
    1. Glowa C., Karger C.P., Brons S., Zhao D., Mason R.P., Huber P.E., Debus J., Peschke P. Carbon ion radiotherapy decreases the impact of tumor heterogeneity on radiation response in experimental prostate tumors. Cancer Lett. 2016;378:97–103. doi: 10.1016/j.canlet.2016.05.013.
    1. Glowa C., Peschke P., Brons S., Debus J., Karger C.P. Intrinsic and extrinsic tumor characteristics are of minor relevance for the efficacy of split-dose carbon ion irradiation in three experimental prostate tumors. Radiother. Oncol. 2019;133:120–124. doi: 10.1016/j.radonc.2018.12.017.
    1. Glowa C., Peschke P., Brons S., Neels O.C., Kopka K., Debus J., Karger C.P. Carbon ion radiotherapy: Impact of tumor differentiation on local control in experimental prostate carcinomas. Radiat. Oncol. 2017;12:174. doi: 10.1186/s13014-017-0914-9.
    1. Bert C., Engenhart-Cabillic R., Durante M. Particle therapy for noncancer diseases. Med. Phys. 2012;39:1716–1727. doi: 10.1118/1.3691903.
    1. van der Ree M.H., Blanck O., Limpens J., Lee C.H., Balgobind B.V., Dieleman E.M.T., Wilde A.A.M., Zei P.C., de Groot J.R., Slotman B.J., et al. Cardiac radioablation—A systematic review. Heart Rhythm. 2020;17:1381–1392. doi: 10.1016/j.hrthm.2020.03.013.
    1. Cuculich P.S., Schill M.R., Kashani R., Mutic S., Lang A., Cooper D., Faddis M., Gleva M., Noheria A., Smith T.W., et al. Noninvasive Cardiac Radiation for Ablation of Ventricular Tachycardia. N. Engl. J. Med. 2017;377:2325–2336. doi: 10.1056/NEJMoa1613773.
    1. Lehmann H.I., Graeff C., Simoniello P., Constantinescu A., Takami M., Lugenbiel P., Richter D., Eichhorn A., Prall M., Kaderka R., et al. Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams. Sci. Rep. 2016;6:38895. doi: 10.1038/srep38895.
    1. Rapp F., Simoniello P., Wiedemann J., Bahrami K., Grünebaum V., Ktitareva S., Durante M., Lugenbiel P., Thomas D., Lehmann H.I., et al. Biological Cardiac Tissue Effects of High-Energy Heavy Ions – Investigation for Myocardial Ablation. Sci. Rep. 2019;9:5000. doi: 10.1038/s41598-019-41314-x.
    1. Uzawa A., Ando K., Kase Y., Hirayama R., Matsumoto Y., Matsufuji N., Koike S., Kobashi G. Designing a ridge filter based on a mouse foot skin reaction to spread out Bragg-peaks for carbon-ion radiotherapy. Radiother. Oncol. 2015;115:279–283. doi: 10.1016/j.radonc.2015.04.007.
    1. Ando S., Koike K., Nojima Y.-J., Chen C.K. Mouse skin reactions following fractionated irradiation with carbon ions. Int. J. Radiat. Biol. 1998;74:129–138. doi: 10.1080/095530098141799.
    1. Kagawa K., Murakami M., Hishikawa Y., Abe M., Akagi T., Yanou T., Kagiya G., Furusawa Y., Ando K., Nojima K., et al. Preclinical biological assessment of proton and carbon ion beams at Hyogo Ion Beam Medical Center. Int. J. Radiat. Oncol. 2002;54:928–938. doi: 10.1016/S0360-3016(02)02949-8.
    1. Raju M.R., Carpenter S.G. A heavy particle comparative study. Part IV: Acute and late reactions. Br. J. Radiol. 1978;51:720–727. doi: 10.1259/0007-1285-51-609-720.
    1. Zhou C., Jones B., Moustafa M., Yang B., Brons S., Cao L., Dai Y., Schwager C., Chen M., Jaekel O., et al. Determining RBE for development of lung fibrosis induced by fractionated irradiation with carbon ions utilizing fibrosis index and high-LET BED model. Clin. Transl. Radiat. Oncol. 2019;14:25–32. doi: 10.1016/j.ctro.2018.10.005.
    1. Zhou C., Jones B., Moustafa M., Schwager C., Bauer J., Yang B., Cao L., Jia M., Mairani A., Chen M., et al. Quantitative assessment of radiation dose and fractionation effects on normal tissue by utilizing a novel lung fibrosis index model. Radiat. Oncol. 2017;12:172. doi: 10.1186/s13014-017-0912-y.
    1. Brownstein J.M., Wisdom A.J., Castle K.D., Mowery Y.M., Guida P., Lee C., Durante M., Kirsch D.G. Characterizing the Potency and Impact of Carbon Ion Therapy in a Primary Mouse Model of Soft Tissue Sarcoma. Mol. Cancer Ther. 2018;17:858–868. doi: 10.1158/1535-7163.MCT-17-0965.
    1. Koike S., Ando K., Oohira C., Fukawa T., Lee R., Takai N., Monobe M., Furusawa Y., Aoki M., Yamada S., et al. Relative Biological Effectiveness of 290 MeV/u Carbon Ions for the Growth Delay of a Radioresistant Murine Fibrosarcoma. J. Radiat. Res. 2002;43:247–255. doi: 10.1269/jrr.43.247.
    1. Yoshida Y., Ando K., Ando K., Murata K., Yoshimoto Y., Musha A., Kubo N., Kawamura H., Koike S., Uzawa A., et al. Evaluation of therapeutic gain for fractionated carbon-ion radiotherapy using the tumor growth delay and crypt survival assays. Radiother. Oncol. 2015;117:351–357. doi: 10.1016/j.radonc.2015.09.027.
    1. Takahashi A., Yano T., Matsumoto H., Wang X., Ohnishi K., Tamamoto T., Tsuji K., Yukawa O., Ohnishi T. Effects of accelerated carbon-ions on growth inhibition of transplantable human esophageal cancer in nude mice. Cancer Lett. 1998;122:181–186. doi: 10.1016/S0304-3835(97)00386-8.
    1. Peschke P., Karger C.P., Scholz M., Debus J., Huber P.E. Relative Biological Effectiveness of Carbon Ions for Local Tumor Control of a Radioresistant Prostate Carcinoma in the Rat. Int. J. Radiat. Oncol. 2011;79:239–246. doi: 10.1016/j.ijrobp.2010.07.1976.
    1. Schmid T.E., Multhoff G. Preclinical Mouse Models for the Evaluation of Novel Techniques in Particle Therapy. In: Guckenberger M., Combs S.E., Zips D., editors. Advances in Radiation Therapy. Karger; Basel, Switzerland: 2018. pp. 122–129.
    1. Hagiwara Y., Bhattacharyya T., Matsufuji N., Isozaki Y., Takiyama H., Nemoto K., Tsuji H., Yamada S. Influence of dose-averaged linear energy transfer on tumour control after carbon-ion radiation therapy for pancreatic cancer. Clin. Transl. Radiat. Oncol. 2020;21:19–24. doi: 10.1016/j.ctro.2019.11.002.
    1. Bassler N., Toftegaard J., Lühr A., Sørensen B.S., Scifoni E., Krämer M., Jäkel O., Mortensen L.S., Overgaard J., Petersen J.B. LET-painting increases tumour control probability in hypoxic tumours. Acta Oncol. 2014;53:25–32. doi: 10.3109/0284186X.2013.832835.
    1. Bassler N., Jäkel O., Søndergaard C.S., Petersen J.B. Dose- and LET-painting with particle therapy. Acta Oncol. 2010;49:1170–1176. doi: 10.3109/0284186X.2010.510640.
    1. Kopp B., Mein S., Dokic I., Harrabi S., Böhlen T.T., Haberer T., Debus J., Abdollahi A., Mairani A. Development and Validation of Single Field Multi-Ion Particle Therapy Treatments. Int. J. Radiat. Oncol. Biol. Phys. 2020;106:194–205. doi: 10.1016/j.ijrobp.2019.10.008.
    1. Sokol O., Krämer M., Hild S., Durante M., Scifoni E. Kill painting of hypoxic tumors with multiple ion beams. Phys. Med. Biol. 2019;64:045008. doi: 10.1088/1361-6560/aafe40.
    1. Pignalosa D., Durante M. Overcoming resistance of cancer stem cells. Lancet Oncol. 2012;13:e187–e188. doi: 10.1016/S1470-2045(12)70196-1.
    1. Bertout J.A., Patel S.A., Simon M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer. 2008;8:967–975. doi: 10.1038/nrc2540.
    1. Bristow R.G., Hill R.P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer. 2008;8:180–192. doi: 10.1038/nrc2344.
    1. Bayer C., Vaupel P. Acute versus chronic hypoxia in tumors. Strahlenther. und Onkol. 2012;188:616–627. doi: 10.1007/s00066-012-0085-4.
    1. Saxena; Jolly Acute vs. Chronic vs. Cyclic Hypoxia: Their Differential Dynamics, Molecular Mechanisms, and Effects on Tumor Progression. Biomolecules. 2019;9:339. doi: 10.3390/biom9080339.
    1. Dewhirst M.W., Cao Y., Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer. 2008;8:425–437. doi: 10.1038/nrc2397.
    1. Barker H.E., Paget J.T.E., Khan A.A., Harrington K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer. 2015;15:409–425. doi: 10.1038/nrc3958.
    1. Brown J.M., Wilson W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 2004;4:437–447. doi: 10.1038/nrc1367.
    1. Huang J., Li J.J. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. Adv. Exp. Med. Biol. 2020;1263:175–202. doi: 10.1007/978-3-030-44518-8_10.
    1. Pajonk F., Vlashi E., McBride W.H. Radiation resistance of cancer stem cells: The 4 R’s of radiobiology revisited. Stem Cells. 2010;28:639–648. doi: 10.1002/stem.318.
    1. Ashton T.M., Fokas E., Kunz-Schughart L.A., Folkes L.K., Anbalagan S., Huether M., Kelly C.J., Pirovano G., Buffa F.M., Hammond E.M., et al. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nat. Commun. 2016;7:12308. doi: 10.1038/ncomms12308.
    1. McGowan D.R., Skwarski M., Bradley K.M., Campo L., Fenwick J.D., Gleeson F.V., Green M., Horne A., Maughan T.S., McCole M.G., et al. Buparlisib with thoracic radiotherapy and its effect on tumour hypoxia: A phase I study in patients with advanced non-small cell lung carcinoma. Eur. J. Cancer. 2019;113:87–95. doi: 10.1016/j.ejca.2019.03.015.
    1. Ashton T.M., McKenna W.G., Kunz-Schughart L.A., Higgins G.S. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clin. Cancer Res. 2018;24:2482–2490. doi: 10.1158/1078-0432.CCR-17-3070.
    1. Narayanan D., Ma S., Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers. 2020;12:1706. doi: 10.3390/cancers12071706.
    1. Horsman M.R., Overgaard J. The impact of hypoxia and its modification of the outcome of radiotherapy. J. Radiat. Res. 2016;57:i90–i98. doi: 10.1093/jrr/rrw007.
    1. Strigari L., Benassi M., Sarnelli A., Polico R., D’Andrea M. A modified hypoxia-based TCP model to investigate the clinical outcome of stereotactic hypofractionated regimes for early stage non-small-cell lung cancer (NSCLC) Med. Phys. 2012;39:4502–4514. doi: 10.1118/1.4730292.
    1. Carlson D.J., Stewart R.D., Semenenko V.A. Effects of oxygen on intrinsic radiation sensitivity: A test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters. Med. Phys. 2006;33:3105–3115. doi: 10.1118/1.2229427.
    1. Toma-Dasu I., Sandström H., Barsoum P., Dasu A. To fractionate or not to fractionate? That is the question for the radiosurgery of hypoxic tumors. J. Neurosurg. 2014;121:110–115. doi: 10.3171/2014.8.GKS141461.
    1. Wouters B.G., Brown J.M. Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy. Radiat. Res. 1997;147:541–550. doi: 10.2307/3579620.
    1. Furusawa Y., Fukutsu K., Aoki M., Itsukaichi H., Eguchi-Kasai K., Ohara H., Yatagai F., Kanai T., Ando K. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Radiat. Res. 2000;154:485–496. doi: 10.1667/0033-7587(2000)154[0485:IOAAHC];2.
    1. Wenzl T., Wilkens J.J. Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications. Radiat. Oncol. 2011;6:171. doi: 10.1186/1748-717X-6-171.
    1. McKeown S.R. Defining normoxia, physoxia and hypoxia in tumours—Implications for treatment response. Br. J. Radiol. 2014;87:1–12. doi: 10.1259/bjr.20130676.
    1. Castro J.R., Saunders W.M., Tobias C.A., Chen G.T.Y., Curtis S., Lyman J.T., Michael Collier J., Pitluck S., Woodruff K.A., Blakely E.A., et al. Treatment of cancer with heavy charged particles. Int. J. Radiat. Oncol. Biol. Phys. 1982;8:2191–2198. doi: 10.1016/0360-3016(82)90569-7.
    1. Nakano T., Suzuki Y., Ohno T., Kato S., Suzuki M., Morita S., Sato S., Oka K., Tsujii H. Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Clin. Cancer Res. 2006;12:2185–2190. doi: 10.1158/1078-0432.CCR-05-1907.
    1. Huart C., Chen J., Le Calvé B., Michiels C., Wéra A.-C. Could Protons and Carbon Ions Be the Silver Bullets Against Pancreatic Cancer? Int. J. Mol. Sci. 2020;21:4767. doi: 10.3390/ijms21134767.
    1. Koong A.C., Mehta V.K., Le Q.T., Fisher G.A., Terris D.J., Brown J.M., Bastidas A.J., Vierra M. Pancreatic tumors show high levels of hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 2000;48:919–922. doi: 10.1016/S0360-3016(00)00803-8.
    1. Tinganelli W., Durante M., Hirayama R., Krämer M., Maier A., Kraft-Weyrather W., Furusawa Y., Friedrich T., Scifoni E. Kill-painting of hypoxic tumours in charged particle therapy. Sci. Rep. 2015;5:17016. doi: 10.1038/srep17016.
    1. Scifoni E., Tinganelli W., Weyrather W.K., Durante M., Maier A., Krämer M. Including oxygen enhancement ratio in ion beam treatment planning: Model implementation and experimental verification. Phys. Med. Biol. 2013;58:3871–3895. doi: 10.1088/0031-9155/58/11/3871.
    1. Dokic I., Mairani A., Niklas M., Zimmermann F., Chaudhri N., Krunic D., Tessonnier T., Ferrari A., Parodi K., Jäkel O., et al. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget. 2016;7:56676–56689. doi: 10.18632/oncotarget.10996.
    1. Kurz C., Mairani A., Parodi K. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center. Phys. Med. Biol. 2012;57:5017–5034. doi: 10.1088/0031-9155/57/15/5017.
    1. Inaniwa T., Kanematsu N., Noda K., Kamada T. Treatment planning of intensity modulated composite particle therapy with dose and linear energy transfer optimization. Phys. Med. Biol. 2017;62:5180–5197. doi: 10.1088/1361-6560/aa68d7.
    1. Toma-Dasu I., Uhrdin J., Antonovic L., Dasu A., Nuyts S., Dirix P., Haustermans K., Brahme A. Dose prescription and treatment planning based on FMISO-PET hypoxia. Acta Oncol. (Madr.) 2012;51:222–230. doi: 10.3109/0284186X.2011.599815.
    1. Mortensen L.S., Buus S., Nordsmark M., Bentzen L., Munk O.L., Keiding S., Overgaard J. Identifying hypoxia in human tumors: A correlation study between 18F-FMISO PET and the Eppendorf oxygen-sensitive electrode. Acta Oncol. 2010;49:934–940. doi: 10.3109/0284186X.2010.516274.
    1. Dubois L.J., Lieuwes N.G., Janssen M.H.M., Peeters W.J.M., Windhorst A.D., Walsh J.C., Kolb H.C., Ollers M.C., Bussink J., van Dongen G.A.M.S., et al. Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc. Natl. Acad. Sci. USA. 2011;108:14620–14625. doi: 10.1073/pnas.1102526108.
    1. Tinganelli W., Ma N.-Y., Von Neubeck C., Maier A., Schicker C., Kraft-Weyrather W., Durante M. Influence of acute hypoxia and radiation quality on cell survival. J. Radiat. Res. 2013;54:i23–i30. doi: 10.1093/jrr/rrt065.
    1. Ma N.-Y., Tinganelli W., Maier A., Durante M., Kraft-Weyrather W. Influence of chronic hypoxia and radiation quality on cell survival. J. Radiat. Res. 2013;54:i13–i22. doi: 10.1093/jrr/rrs135.
    1. Hirayama R., Uzawa A., Takase N., Matsumoto Y., Noguchi M., Koda K., Ozaki M., Yamashita K., Li H., Kase Y., et al. Evaluation of SCCVII tumor cell survival in clamped and non-clamped solid tumors exposed to carbon-ion beams in comparison to X-rays. Mutat. Res. Toxicol. Environ. Mutagen. 2013;756:146–151. doi: 10.1016/j.mrgentox.2013.05.008.
    1. Fukawa T., Takematsu K., Oka K., Koike S., Ando K., Kobayashi H., Tanishita K. Differences in pO2 Peaks of a Murine Fibrosarcoma between Carbon-ion and X-ray Irradiation. J. Radiat. Res. 2004;45:303–308. doi: 10.1269/jrr.45.303.
    1. Ando K., Koike S., Ohira C., Chen Y.J., Nojima K., Ando S., Ohbuchi T., Kobayashi N., Shimizu W., Urano M. Accelerated reoxygenation of a murine fibrosarcoma after carbon-ion radiation. Int. J. Radiat. Biol. 1999;75:505–512. doi: 10.1080/095530099140438.
    1. Bendinger A.L., Seyler L., Saager M., Debus C., Peschke P., Komljenovic D., Debus J., Peter J., Floca R.O., Karger C.P., et al. Impact of Single Dose Photons and Carbon Ions on Perfusion and Vascular Permeability: A Dynamic Contrast-Enhanced MRI Pilot Study in the Anaplastic Rat Prostate Tumor R3327-AT1. Radiat. Res. 2019;193:34. doi: 10.1667/RR15459.1.
    1. Semenza G.L. Pharmacologic Targeting of Hypoxia-Inducible Factors. Annu. Rev. Pharmacol. Toxicol. 2019;59:379–403. doi: 10.1146/annurev-pharmtox-010818-021637.
    1. Pugh C.W., Ratcliffe P.J. New horizons in hypoxia signaling pathways. Exp. Cell Res. 2017;356:116–121. doi: 10.1016/j.yexcr.2017.03.008.
    1. Subtil F.S.B., Wilhelm J., Bill V., Westholt N., Rudolph S., Fischer J., Scheel S., Seay U., Fournier C., Taucher-Scholz G., et al. Carbon ion radiotherapy of human lung cancer attenuates HIF-1 signaling and acts with considerably enhanced therapeutic efficiency. FASEB J. 2014;28:1412–1421. doi: 10.1096/fj.13-242230.
    1. Valable S., Gérault A.N., Lambert G., Leblond M.M., Anfray C., Toutain J., Bordji K., Petit E., Bernaudin M., Pérès E.A. Impact of Hypoxia on Carbon Ion Therapy in Glioblastoma Cells: Modulation by LET and Hypoxia-Dependent Genes. Cancers. 2020;12:2019. doi: 10.3390/cancers12082019.
    1. Wozny A.-S., Lauret A., Battiston-Montagne P., Guy J.-B., Beuve M., Cunha M., Saintigny Y., Blond E., Magne N., Lalle P., et al. Differential pattern of HIF-1α expression in HNSCC cancer stem cells after carbon ion or photon irradiation: One molecular explanation of the oxygen effect. Br. J. Cancer. 2017;116:1340–1349. doi: 10.1038/bjc.2017.100.
    1. Wozny A.-S., Vares G., Alphonse G., Lauret A., Monini C., Magné N., Cuerq C., Fujimori A., Monboisse J.-C., Beuve M., et al. ROS Production and Distribution: A New Paradigm to Explain the Differential Effects of X-ray and Carbon Ion Irradiation on Cancer Stem Cell Migration and Invasion. Cancers. 2019;11:468. doi: 10.3390/cancers11040468.
    1. Baumann M., Krause M., Overgaard J., Debus J., Bentzen S.M., Daartz J., Richter C., Zips D., Bortfeld T. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer. 2016;16:234–249. doi: 10.1038/nrc.2016.18.
    1. Kerns S.L., Chuang K.-H., Hall W., Werner Z., Chen Y., Ostrer H., West C., Rosenstein B. Radiation biology and oncology in the genomic era. Br. J. Radiol. 2018;91:20170949. doi: 10.1259/bjr.20170949.
    1. Rosenstein B.S. Radiogenomics: Identification of Genomic Predictors for Radiation Toxicity. Semin. Radiat. Oncol. 2017;27:300–309. doi: 10.1016/j.semradonc.2017.04.005.
    1. West C., Rosenstein B.S. Establishment of a Radiogenomics Consortium. Int. J. Radiat. Oncol. 2010;76:1295–1296. doi: 10.1016/j.ijrobp.2009.12.017.
    1. Barnett G.C., West C.M.L., Dunning A.M., Elliott R.M., Coles C.E., Pharoah P.D.P., Burnet N.G. Normal tissue reactions to radiotherapy: Towards tailoring treatment dose by genotype. Nat. Rev. Cancer. 2009;9:134–142. doi: 10.1038/nrc2587.
    1. Bergom C., West C.M., Higginson D.S., Abazeed M.E., Arun B., Bentzen S.M., Bernstein J.L., Evans J.D., Gerber N.K., Kerns S.L., et al. The Implications of Genetic Testing on Radiation Therapy Decisions: A Guide for Radiation Oncologists. Int. J. Radiat. Oncol. 2019;105:698–712. doi: 10.1016/j.ijrobp.2019.07.026.
    1. Swift M., Morrell D., Massey R.B., Chase C.L. Incidence of Cancer in 161 Families Affected by Ataxia–Telangiectasia. N. Engl. J. Med. 1991;325:1831–1836. doi: 10.1056/NEJM199112263252602.
    1. Barnett G.C., Coles C.E., Elliott R.M., Baynes C., Luccarini C., Conroy D., Wilkinson J.S., Tyrer J., Misra V., Platte R., et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: A prospective analysis study. Lancet Oncol. 2012;13:65–77. doi: 10.1016/S1470-2045(11)70302-3.
    1. Fachal L., Gómez-Caamaño A., Barnett G.C., Peleteiro P., Carballo A.M., Calvo-Crespo P., Kerns S.L., Sánchez-García M., Lobato-Busto R., Dorling L., et al. A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1. Nat. Genet. 2014;46:891–894. doi: 10.1038/ng.3020.
    1. Barnett G.C., Thompson D., Fachal L., Kerns S., Talbot C., Elliott R.M., Dorling L., Coles C.E., Dearnaley D.P., Rosenstein B.S., et al. A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiother. Oncol. 2014;111:178–185. doi: 10.1016/j.radonc.2014.02.012.
    1. Andreassen C.N., Rosenstein B.S., Kerns S.L., Ostrer H., De Ruysscher D., Cesaretti J.A., Barnett G.C., Dunning A.M., Dorling L., West C.M.L., et al. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother. Oncol. 2016;121:431–439. doi: 10.1016/j.radonc.2016.06.017.
    1. Kerns S.L., Fachal L., Dorling L., Barnett G.C., Baran A., Peterson D.R., Hollenberg M., Hao K., Di Narzo A., Ahsen M.E., et al. Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy. JNCI J. Natl. Cancer Inst. 2020;112:179–190. doi: 10.1093/jnci/djz075.
    1. Schumacher F.R., Al Olama A.A., Berndt S.I., Benlloch S., Ahmed M., Saunders E.J., Dadaev T., Leongamornlert D., Anokian E., Cieza-Borrella C., et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 2018;50:928–936. doi: 10.1038/s41588-018-0142-8.
    1. Morton L.M., Ricks-Santi L., West C.M.L., Rosenstein B.S. Radiogenomic predictors of adverse effects following charged particle therapy. Int. J. Part. Ther. 2019;5:103–113. doi: 10.14338/IJPT-18-00009.1.
    1. West C. Translational radiobiology: Radiogenomics; Proceedings of the PTCOG-58; Manchester, UK. 10–15 June 2019.
    1. Story M.D., Durante M. Radiogenomics. Med. Phys. 2018;45 doi: 10.1002/mp.13064.
    1. Akino Y., Teshima T., Kihara A., Kodera-Suzumoto Y., Inaoka M., Higashiyama S., Furusawa Y., Matsuura N. Carbon-Ion Beam Irradiation Effectively Suppresses Migration and Invasion of Human Non?Small-Cell Lung Cancer Cells. Int. J. Radiat. Oncol. 2009;75:475–481. doi: 10.1016/j.ijrobp.2008.12.090.
    1. Kamlah F., Hänze J., Arenz A., Seay U., Hasan D., Juricko J., Bischoff B., Gottschald O.R., Fournier C., Taucher-Scholz G., et al. Comparison of the effects of carbon ion and photon irradiation on the angiogenic response in human lung adenocarcinoma cells. Int. J. Radiat. Oncol. Biol. Phys. 2011;80:1541–1549. doi: 10.1016/j.ijrobp.2011.03.033.
    1. Takahashi Y., Teshima T., Kawaguchi N., Hamada Y., Mori S., Madachi A., Ikeda S., Mizuno H., Ogata T., Nojima K., et al. Heavy Ion Irradiation Inhibits in Vitro Angiogenesis Even at Sublethal Dose Heavy Ion Irradiation Inhibits in Vitro Angiogenesis Even at Sublethal Dose. Cancer Res. 2003;63:4253–4257.
    1. Suetens A., Moreels M., Quintens R., Chiriotti S., Tabury K., Michaux A., Grégoire V., Baatout S. Carbon ion irradiation of the human prostate cancer cell line PC3: A whole genome microarray study. Int. J. Oncol. 2014;44:1056–1072. doi: 10.3892/ijo.2014.2287.
    1. Moncharmont C., Levy A., Guy J.-B., Falk A.T., Guilbert M., Trone J.-C., Alphonse G., Gilormini M., Ardail D., Toillon R.-A., et al. Radiation-enhanced cell migration/invasion process: A review. Crit. Rev. Oncol. Hematol. 2014;92:133–142. doi: 10.1016/j.critrevonc.2014.05.006.
    1. Widder J., Van Der Schaaf A., Lambin P., Marijnen C.A.M., Pignol J.P., Rasch C.R., Slotman B.J., Verheij M., Langendijk J.A. The Quest for Evidence for Proton Therapy: Model-Based Approach and Precision Medicine. Int. J. Radiat. Oncol. Biol. Phys. 2016;95:30–36. doi: 10.1016/j.ijrobp.2015.10.004.
    1. Nowrouzi A., Sertorio M.G., Akbarpour M., Knoll M., Krunic D., Kuhar M., Schwager C., Brons S., Debus J., Wells S.I., et al. Personalized assessment of normal tissue radiosensitivity via transcriptome response to photon, proton and carbon irradiation in patient-derived human intestinal organoids. Cancers. 2020;12:469. doi: 10.3390/cancers12020469.
    1. Luft S., Arrizabalaga O., Kulish I., Nasonova E., Durante M., Ritter S., Schroeder I.S. Ionizing Radiation Alters Human Embryonic Stem Cell Properties and Differentiation Capacity by Diminishing the Expression of Activin Receptors. Stem Cells Dev. 2017;26:341–352. doi: 10.1089/scd.2016.0277.
    1. Visvader J.E., Lindeman G.J. Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat. Rev. Cancer. 2008;8:755–768. doi: 10.1038/nrc2499.
    1. Clevers H. The cancer stem cell: Premises, promises and challenges. Nat. Med. 2011;17:313–319. doi: 10.1038/nm.2304.
    1. Clara J.A., Monge C., Yang Y., Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update. Nat. Rev. Clin. Oncol. 2020;17:204–232. doi: 10.1038/s41571-019-0293-2.
    1. Baumann M., Krause M., Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8:545–554. doi: 10.1038/nrc2419.
    1. Rich J.N. Cancer stem cells in radiation resistance. Cancer Res. 2007;67:8980–8984. doi: 10.1158/0008-5472.CAN-07-0895.
    1. Bao S., Wu Q., McLendon R.E., Hao Y., Shi Q., Hjelmeland A.B., Dewhirst M.W., Bigner D.D., Rich J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–760. doi: 10.1038/nature05236.
    1. Diehn M., Cho R.W., Lobo N.A., Kalisky T., Dorie M.J., Kulp A.N., Qian D., Lam J.S., Ailles L.E., Wong M., et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–783. doi: 10.1038/nature07733.
    1. Najafi M., Farhood B., Mortezaee K., Kharazinejad E., Majidpoor J., Ahadi R. Hypoxia in solid tumors: A key promoter of cancer stem cell (CSC) resistance. J. Cancer Res. Clin. Oncol. 2020;146:19–31. doi: 10.1007/s00432-019-03080-1.
    1. Cui X., Oonishi K., Tsujii H., Yasuda T., Matsumoto Y., Furusawa Y., Akashi M., Kamada T., Okayasu R. Effects of carbon ion beam on putative colon cancer stem cells and its comparison with X-rays. Cancer Res. 2011;71:3676–3687. doi: 10.1158/0008-5472.CAN-10-2926.
    1. Oonishi K., Cui X., Hirakawa H., Fujimori A., Kamijo T., Yamada S., Yokosuka O., Kamada T. Different effects of carbon ion beams and X-rays on clonogenic survival and DNA repair in human pancreatic cancer stem-like cells. Radiother. Oncol. 2012;105:258–265. doi: 10.1016/j.radonc.2012.08.009.
    1. Sai S., Wakai T., Vares G., Yamada S., Kamijo T., Kamada T., Shirai T. Combination of carbon ion beam and gemcitabine causes irreparable DNA damage and death of radioresistant pancreatic cancer stem-like cells in vitro and in vivo. Oncotarget. 2015;6:5517–5535. doi: 10.18632/oncotarget.3584.
    1. Sai S., Vares G., Kim E.H., Karasawa K., Wang B., Nenoi M., Horimoto Y., Hayashi M. Carbon ion beam combined with cisplatin effectively disrupts triple negative breast cancer stem-like cells in vitro. Mol. Cancer. 2015;14:166. doi: 10.1186/s12943-015-0429-7.
    1. Chiblak S., Tang Z., Campos B., Gal Z., Unterberg A., Debus J., Herold-Mende C., Abdollahi A. Radiosensitivity of Patient-Derived Glioma Stem Cell 3-Dimensional Cultures to Photon, Proton, and Carbon Irradiation. Int. J. Radiat. Oncol. 2016;95:112–119. doi: 10.1016/j.ijrobp.2015.06.015.
    1. Takahashi M., Hirakawa H., Yajima H., Izumi-Nakajima N., Okayasu R., Fujimori A. Carbon ion beam is more effective to induce cell death in sphere-type A172 human glioblastoma cells compared with X-rays. Int. J. Radiat. Biol. 2014;90:1125–1132. doi: 10.3109/09553002.2014.927933.
    1. Chiblak S., Tang Z., Lemke D., Knoll M., Dokic I., Warta R., Moustafa M., Mier W., Brons S., Rapp C., et al. Carbon irradiation overcomes glioma radioresistance by eradicating stem cells and forming an antiangiogenic and immunopermissive niche. JCI Insight. 2019;4 doi: 10.1172/jci.insight.123837.
    1. Bertrand G., Maalouf M., Boivin A., Battiston-Montagne P., Beuve M., Levy A., Jalade P., Fournier C., Ardail D., Magné N., et al. Targeting Head and Neck Cancer Stem Cells to Overcome Resistance to Photon and Carbon Ion Radiation. Stem Cell Rev. Rep. 2014;10:114–126. doi: 10.1007/s12015-013-9467-y.
    1. Baek S.-J., Ishii H., Tamari K., Hayashi K., Nishida N., Konno M., Kawamoto K., Koseki J., Fukusumi T., Hasegawa S., et al. Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review) Oncol. Rep. 2015;34:2233–2237. doi: 10.3892/or.2015.4236.
    1. Meyfour A., Pahlavan S., Mirzaei M., Krijgsveld J., Baharvand H., Salekdeh G.H. The quest of cell surface markers for stem cell therapy. Cell. Mol. Life Sci. 2020 doi: 10.1007/s00018-020-03602-y.
    1. Gregoire V., Baumann M. Combined Radiotherapy and Chemotherapy. In: Joiner M.C., van der Kogel A.J., editors. Basic Clinical Radiobiology. 5th ed. CRC Press/Taylor & Francis Group; Boca Raton, FL, USA: 2018. pp. 246–258.
    1. Pignon J., Bourhis J., Domenge C., Designé L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: Three meta-analyses of updated individual data. Lancet. 2000;355:949–955. doi: 10.1016/S0140-6736(00)90011-4.
    1. Jones B., Dale R.G. The potential for mathematical modelling in the assessment of the radiation dose equivalent of cytotoxic chemotherapy given concomitantly with radiotherapy. Br. J. Radiol. 2005;78:939–943. doi: 10.1259/bjr/40226390.
    1. Durante M., Tommasino F., Yamada S. Modeling Combined Chemotherapy and Particle Therapy for Locally Advanced Pancreatic Cancer. Front. Oncol. 2015;5 doi: 10.3389/fonc.2015.00145.
    1. Schlaich F., Brons S., Haberer T., Debus J., Combs S.E., Weber K.-J. Comparison of the effects of photon versus carbon ion irradiation when combined with chemotherapy in vitro. Radiat. Oncol. 2013;8:260. doi: 10.1186/1748-717X-8-260.
    1. Harrabi S.B., Adeberg S., Winter M., Haberer T., Debus J., Weber K.-J. S-phase–specific radiosensitization by gemcitabine for therapeutic carbon ion exposure in vitro. J. Radiat. Res. 2016;57:110–114. doi: 10.1093/jrr/rrv097.
    1. El Shafie R.A., Habermehl D., Rieken S., Mairani A., Orschiedt L., Brons S., Haberer T., Weber K.-J., Debus J., Combs S.E. In vitro evaluation of photon and raster-scanned carbon ion radiotherapy in combination with gemcitabine in pancreatic cancer cell lines. J. Radiat. Res. 2013;54:i113–i119. doi: 10.1093/jrr/rrt052.
    1. Harrabi S., Combs S.E., Brons S., Haberer T., Debus J., Weber K.-J. Temozolomide in combination with carbon ion or photon irradiation in glioblastoma multiforme cell lines – does scheduling matter? Int. J. Radiat. Biol. 2013;89:692–697. doi: 10.3109/09553002.2013.791406.
    1. Combs S.E., Zipp L., Rieken S., Habermehl D., Brons S., Winter M., Haberer T., Debus J., Weber K.-J. In vitro evaluation of photon and carbon ion radiotherapy in combination with chemotherapy in glioblastoma cells. Radiat. Oncol. 2012;7:9. doi: 10.1186/1748-717X-7-9.
    1. Dehne S., Fritz C., Rieken S., Baris D., Brons S., Haberer T., Debus J., Weber K.-J., Schmid T.E., Combs S.E., et al. Combination of Photon and Carbon Ion Irradiation with Targeted Therapy Substances Temsirolimus and Gemcitabine in Hepatocellular Carcinoma Cell Lines. Front. Oncol. 2017;7 doi: 10.3389/fonc.2017.00035.
    1. Falzone L., Salomone S., Libra M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front. Pharmacol. 2018;9 doi: 10.3389/fphar.2018.01300.
    1. Chae Y.K., Pan A.P., Davis A.A., Patel S.P., Carneiro B.A., Kurzrock R., Giles F.J. Path toward Precision Oncology: Review of Targeted Therapy Studies and Tools to Aid in Defining “Actionability” of a Molecular Lesion and Patient Management Support. Mol. Cancer Ther. 2017;16:2645–2655. doi: 10.1158/1535-7163.MCT-17-0597.
    1. Gatzka M. Targeted Tumor Therapy Remixed—An Update on the Use of Small-Molecule Drugs in Combination Therapies. Cancers. 2018;10:155. doi: 10.3390/cancers10060155.
    1. Konings K., Vandevoorde C., Baselet B., Baatout S., Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front. Oncol. 2020;10 doi: 10.3389/fonc.2020.00128.
    1. Moncharmont C., Guy J.-B., Wozny A.-S., Gilormini M., Battiston-Montagne P., Ardail D., Beuve M., Alphonse G., Simoëns X., Rancoule C., et al. Carbon ion irradiation withstands cancer stem cells’ migration/invasion process in Head and Neck Squamous Cell Carcinoma (HNSCC) Oncotarget. 2016;7:47738–47749. doi: 10.18632/oncotarget.10281.
    1. Vares G., Ahire V., Sunada S., Ho Kim E., Sai S., Chevalier F., Romeo P.-H., Yamamoto T., Nakajima T., Saintigny Y. A multimodal treatment of carbon ions irradiation, miRNA-34 and mTOR inhibitor specifically control high-grade chondrosarcoma cancer stem cells. Radiother. Oncol. 2020;150:253–261. doi: 10.1016/j.radonc.2020.07.034.
    1. Hirai T., Shirai H., Fujimori H., Okayasu R., Sasai K., Masutani M. Radiosensitization effect of poly(ADP-ribose) polymerase inhibition in cells exposed to low and high liner energy transfer radiation. Cancer Sci. 2012;103:1045–1050. doi: 10.1111/j.1349-7006.2012.02268.x.
    1. Ghorai A., Bhattacharyya N.P., Sarma A., Ghosh U. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study. Scientifica (Cairo) 2014;2014:1–10. doi: 10.1155/2014/438030.
    1. Lesueur P., Chevalier F., El-Habr E.A., Junier M.-P., Chneiweiss H., Castera L., Müller E., Stefan D., Saintigny Y. Radiosensitization Effect of Talazoparib, a Parp Inhibitor, on Glioblastoma Stem Cells Exposed to Low and High Linear Energy Transfer Radiation. Sci. Rep. 2018;8:3664. doi: 10.1038/s41598-018-22022-4.
    1. Liu X., Li P., Hirayama R., Niu Y., Liu X., Chen W., Jin X., Zhang P., Ye F., Zhao T., et al. Genistein sensitizes glioblastoma cells to carbon ions via inhibiting DNA-PKcs phosphorylation and subsequently repressing NHEJ and delaying HR repair pathways. Radiother. Oncol. 2018;129:84–94. doi: 10.1016/j.radonc.2018.04.005.
    1. Yang L., Liu Y., Sun C., Yang X., Yang Z., Ran J., Zhang Q., Zhang H., Wang X., Wang X. Inhibition of DNA-PKcs enhances radiosensitivity and increases the levels of ATM and ATR in NSCLC cells exposed to carbon ion irradiation. Oncol. Lett. 2015;10:2856–2864. doi: 10.3892/ol.2015.3730.
    1. Zhou X., Zhang X., Xie Y., Tanaka K., Wang B., Zhang H. DNA-PKcs Inhibition Sensitizes Cancer Cells to Carbon-Ion Irradiation via Telomere Capping Disruption. PLoS ONE. 2013;8:e72641. doi: 10.1371/journal.pone.0072641.
    1. Lee Y., Sunada S., Hirakawa H., Fujimori A., Nickoloff J.A., Okayasu R. TAS-116, a Novel Hsp90 Inhibitor, Selectively Enhances Radiosensitivity of Human Cancer Cells to X-rays and Carbon Ion Radiation. Mol. Cancer Ther. 2017;16:16–24. doi: 10.1158/1535-7163.MCT-16-0573.
    1. Lee Y., Li H.K., Masaoka A., Sunada S., Hirakawa H., Fujimori A., Nickoloff J.A., Okayasu R. The purine scaffold Hsp90 inhibitor PU-H71 sensitizes cancer cells to heavy ion radiation by inhibiting DNA repair by homologous recombination and non-homologous end joining. Radiother. Oncol. 2016;121:162–168. doi: 10.1016/j.radonc.2016.08.029.
    1. Konings K., Vandevoorde C., Belmans N., Vermeesen R., Baselet B., Van Walleghem M., Janssen A., Isebaert S., Baatout S., Haustermans K., et al. The Combination of Particle Irradiation With the Hedgehog Inhibitor GANT61 Differently Modulates the Radiosensitivity and Migration of Cancer Cells Compared to X-Ray Irradiation. Front. Oncol. 2019;9 doi: 10.3389/fonc.2019.00391.
    1. Konings K., Belmans N., Vermeesen R., Baselet B., Lamers G., Janssen A., Isebaert S., Baatout S., Haustermans K., Moreels M. Targeting the Hedgehog pathway in combination with X-ray or carbon ion radiation decreases migration of MCF-7 breast cancer cells. Int. J. Oncol. 2019 doi: 10.3892/ijo.2019.4901.
    1. Jain S., Hirst D.G., O’Sullivan J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol. 2012;85:101–113. doi: 10.1259/bjr/59448833.
    1. Norouzi M. Gold Nanoparticles in Glioma Theranostics. Pharmacol. Res. 2020;156:104753. doi: 10.1016/j.phrs.2020.104753.
    1. Penninckx S., Heuskin A.-C., Michiels C., Lucas S. Gold Nanoparticles as a Potent Radiosensitizer: A Transdisciplinary Approach from Physics to Patient. Cancers. 2020;12:2021. doi: 10.3390/cancers12082021.
    1. Howard D., Sebastian S., Le Q.V.-C., Thierry B., Kempson I. Chemical Mechanisms of Nanoparticle Radiosensitization and Radioprotection: A Review of Structure-Function Relationships Influencing Reactive Oxygen Species. Int. J. Mol. Sci. 2020;21:579. doi: 10.3390/ijms21020579.
    1. Jeremic B., Aguerri A.R., Filipovic N. Radiosensitization by gold nanoparticles. Clin. Transl. Oncol. 2013;15:593–601. doi: 10.1007/s12094-013-1003-7.
    1. Schuemann J., Berbeco R., Chithrani D.B., Cho S.H., Kumar R., McMahon S.J., Sridhar S., Krishnan S. Roadmap to Clinical Use of Gold Nanoparticles for Radiation Sensitization. Int. J. Radiat. Oncol. 2016;94:189–205. doi: 10.1016/j.ijrobp.2015.09.032.
    1. Schuemann J., Bagley A., Berbeco R., Bromma K., Butterworth K.T., Byrne H., Chithrani D.B., Cho S.H., Cook J.R., Favaudon V., et al. Roadmap for metal nanoparticles in radiation therapy: Current status, translational challenges, and future directions. Phys. Med. Biol. 2020 doi: 10.1088/1361-6560/ab9159.
    1. Peukert D., Kempson I., Douglass M., Bezak E. Metallic nanoparticle radiosensitisation of ion radiotherapy: A review. Phys. Med. 2018;47:121–128. doi: 10.1016/j.ejmp.2018.03.004.
    1. Lacombe S., Porcel E., Scifoni E. Particle therapy and nanomedicine: State of art and research perspectives. Cancer Nanotechnol. 2017;8:9. doi: 10.1186/s12645-017-0029-x.
    1. Fuss M.C., Boscolo D., Durante M., Scifoni E., Krämer M. Systematic quantification of nanoscopic dose enhancement of gold nanoparticles in ion beams. Phys. Med. Biol. 2020;65:075008. doi: 10.1088/1361-6560/ab7504.
    1. Rudek B., McNamara A., Ramos-Méndez J., Byrne H., Kuncic Z., Schuemann J. Radio-enhancement by gold nanoparticles and their impact on water radiolysis for x-ray, proton and carbon-ion beams. Phys. Med. Biol. 2019;64:175005. doi: 10.1088/1361-6560/ab314c.
    1. Kirkwood J.M., Butterfield L.H., Tarhini A.A., Zarour H., Kalinski P., Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012;62:309–335. doi: 10.3322/caac.20132.
    1. Robert C., Schachter J., Long G.V., Arance A., Grob J.J., Mortier L., Daud A., Carlino M.S., McNeil C., Lotem M., et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2015;372:2521–2532. doi: 10.1056/NEJMoa1503093.
    1. Postow M.A., Sidlow R., Hellmann M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018;378:158–168. doi: 10.1056/NEJMra1703481.
    1. Whiteside T.L., Demaria S., Rodriguez-Ruiz M.E., Zarour H.M., Melero I. Emerging Opportunities and Challenges in Cancer Immunotherapy. Clin. Cancer Res. 2016;22:1845–1855. doi: 10.1158/1078-0432.CCR-16-0049.
    1. Formenti S.C., Demaria S. Systemic effects of local radiotherapy. Lancet Oncol. 2009;10:718–726. doi: 10.1016/S1470-2045(09)70082-8.
    1. Ngwa W., Irabor O.C., Schoenfeld J.D., Hesser J., Demaria S., Formenti S.C. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer. 2018;18:313–322. doi: 10.1038/nrc.2018.6.
    1. Demaria S., Golden E.B., Formenti S.C. Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncol. 2015;1:1325–1332. doi: 10.1001/jamaoncol.2015.2756.
    1. Formenti S.C., Demaria S. Combining radiotherapy and cancer immunotherapy: A paradigm shift. J. Natl. Cancer Inst. 2013;105:256–265. doi: 10.1093/jnci/djs629.
    1. Weichselbaum R.R., Liang H., Deng L., Fu Y.-X. Radiotherapy and immunotherapy: A beneficial liaison? Nat. Rev. Clin. Oncol. 2017;14:365–379. doi: 10.1038/nrclinonc.2016.211.
    1. Durante M., Reppingen N., Held K.D. Immunologically augmented cancer treatment using modern radiotherapy. Trends Mol. Med. 2013;19:565–582. doi: 10.1016/j.molmed.2013.05.007.
    1. Van Limbergen E.J., De Ruysscher D.K., Olivo Pimentel V., Marcus D., Berbee M., Hoeben A., Rekers N., Theys J., Yaromina A., Dubois L.J., et al. Combining radiotherapy with immunotherapy: The past, the present and the future. Br. J. Radiol. 2017;90:20170157. doi: 10.1259/bjr.20170157.
    1. Herrera F.G., Bourhis J., Coukos G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J. Clin. 2017;67:65–85. doi: 10.3322/caac.21358.
    1. Keam S., Gill S., Ebert M.A., Nowak A.K., Cook A.M. Enhancing the efficacy of immunotherapy using radiotherapy. Clin. Transl. Immunol. 2020;9 doi: 10.1002/cti2.1169.
    1. Zhao X., Shao C. Radiotherapy-Mediated Immunomodulation and Anti-Tumor Abscopal Effect Combining Immune Checkpoint Blockade. Cancers. 2020;12:2762. doi: 10.3390/cancers12102762.
    1. Lubas M.J., Kumar S.S. The Combined Use of SBRT and Immunotherapy—a Literature Review. Curr. Oncol. Rep. 2020;22:117. doi: 10.1007/s11912-020-00986-9.
    1. Victor C.T.-S., Rech A.J., Maity A., Rengan R., Pauken K.E., Stelekati E., Benci J.L., Xu B., Dada H., Odorizzi P.M., et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–377. doi: 10.1038/nature14292.
    1. Postow M.A., Callahan M.K., Barker C.A., Yamada Y., Yuan J., Kitano S., Mu Z., Rasalan T., Adamow M., Ritter E., et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 2012;366:925–931. doi: 10.1056/NEJMoa1112824.
    1. Hiniker S.M., Chen D.S., Knox S.J. Abscopal Effect in a Patient with Melanoma. N. Engl. J. Med. 2012;366:2035–2036. doi: 10.1056/NEJMc1203984.
    1. Golden E.B., Chhabra A., Chachoua A., Adams S., Donach M., Fenton-Kerimian M., Friedman K., Ponzo F., Babb J.S., Goldberg J., et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: A proof-of-principle trial. Lancet Oncol. 2015;16:795–803. doi: 10.1016/S1470-2045(15)00054-6.
    1. Ko E.C., Raben D., Formenti S.C. The Integration of Radiotherapy with Immunotherapy for the Treatment of Non–Small Cell Lung Cancer. Clin. Cancer Res. 2018;24:5792–5806. doi: 10.1158/1078-0432.CCR-17-3620.
    1. Antonia S.J., Villegas A., Daniel D., Vicente D., Murakami S., Hui R., Yokoi T., Chiappori A., Lee K.H., de Wit M., et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017;377:1919–1929. doi: 10.1056/NEJMoa1709937.
    1. Antonia S.J., Villegas A., Daniel D., Vicente D., Murakami S., Hui R., Kurata T., Chiappori A., Lee K.H., de Wit M., et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018;379:2342–2350. doi: 10.1056/NEJMoa1809697.
    1. Formenti S.C., Rudqvist N.-P., Golden E., Cooper B., Wennerberg E., Lhuillier C., Vanpouille-Box C., Friedman K., Ferrari de Andrade L., Wucherpfennig K.W., et al. Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat. Med. 2018;24:1845–1851. doi: 10.1038/s41591-018-0232-2.
    1. Formenti S.C. Optimizing Dose Per Fraction: A New Chapter in the Story of the Abscopal Effect? Int. J. Radiat. Oncol. Biol. Phys. 2017;99:677–679. doi: 10.1016/j.ijrobp.2017.07.028.
    1. Brooks E.D., Chang J.Y. Time to abandon single-site irradiation for inducing abscopal effects. Nat. Rev. Clin. Oncol. 2019;16:123–135. doi: 10.1038/s41571-018-0119-7.
    1. Durante M., Brenner D.J., Formenti S.C. Does heavy ion therapy work through the immune system? Int. J. Radiat. Oncol. Biol. Phys. 2016;96:934–936. doi: 10.1016/j.ijrobp.2016.08.037.
    1. Durante M., Formenti S. Harnessing radiation to improve immunotherapy: Better with particles? Br. J. Radiol. 2020;93:20190224. doi: 10.1259/bjr.20190224.
    1. Davuluri R., Jiang W., Fang P., Xu C., Komaki R., Gomez D.R., Welsh J., Cox J.D., Crane C.H., Hsu C.C., et al. Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy. Int. J. Radiat. Oncol. 2017;99:128–135. doi: 10.1016/j.ijrobp.2017.05.037.
    1. Venkatesulu B.P., Mallick S., Lin S.H., Krishnan S. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit. Rev. Oncol. Hematol. 2018;123:42–51. doi: 10.1016/j.critrevonc.2018.01.003.
    1. Chen D., Patel R.R., Verma V., Ramapriyan R., Barsoumian H.B., Cortez M.A., Welsh J.W. Interaction between lymphopenia, radiotherapy technique, dosimetry, and survival outcomes in lung cancer patients receiving combined immunotherapy and radiotherapy. Radiother. Oncol. 2020;150:114–120. doi: 10.1016/j.radonc.2020.05.051.
    1. Bakhoum S.F., Ngo B., Laughney A.M., Cavallo J.-A., Murphy C.J., Ly P., Shah P., Sriram R.K., Watkins T.B.K., Taunk N.K., et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553:467–472. doi: 10.1038/nature25432.
    1. Harding S.M., Benci J.L., Irianto J., Discher D.E., Minn A.J., Greenberg R.A. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–470. doi: 10.1038/nature23470.
    1. Galluzzi L., Vanpouille-Box C., Bakhoum S.F., Demaria S. SnapShot: CGAS-STING Signaling. Cell. 2018;173:276–276.e1. doi: 10.1016/j.cell.2018.03.015.
    1. Durante M., Formenti S.C. Radiation-Induced Chromosomal Aberrations and Immunotherapy: Micronuclei, Cytosolic DNA, and Interferon-Production Pathway. Front. Oncol. 2018;8 doi: 10.3389/fonc.2018.00192.
    1. Sato H., Niimi A., Yasuhara T., Permata T.B.M., Hagiwara Y., Isono M., Nuryadi E., Sekine R., Oike T., Kakoti S., et al. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 2017;8 doi: 10.1038/s41467-017-01883-9.
    1. Wang W., Chapman N.M., Zhang B., Li M., Fan M., Laribee R.N., Zaidi M.R., Pfeffer L.M., Chi H., Wu Z.-H. Upregulation of PD-L1 via HMGB1-Activated IRF3 and NF-κB Contributes to UV Radiation-Induced Immune Suppression. Cancer Res. 2019 doi: 10.1158/0008-5472.CAN-18-3134.
    1. Iijima M., Okonogi N., Nakajima N.I., Morokoshi Y., Kanda H., Yamada T., Kobayashi Y., Banno K., Wakatsuki M., Yamada S., et al. Significance of PD-L1 expression in carbon-ion radiotherapy for uterine cervical adeno/adenosquamous carcinoma. J. Gynecol. Oncol. 2020;31 doi: 10.3802/jgo.2020.31.e19.
    1. Shevtsov M., Sato H., Multhoff G., Shibata A. Novel Approaches to Improve the Efficacy of Immuno-Radiotherapy. Front. Oncol. 2019;9 doi: 10.3389/fonc.2019.00156.
    1. Ebner D.K., Tinganelli W., Helm A., Bisio A., Simoniello P., Natale F., Yamada S., Kamada T., Shimokawa T., Durante M. Generating and grading the abscopal effect: Proposal for comprehensive evaluation of combination immunoradiotherapy in mouse models. Transl. Cancer Res. 2017;6:S892–S899. doi: 10.21037/tcr.2017.06.01.
    1. Ando K., Fujita H., Hosoi A., Ma L., Wakatsuki M., Seino K., Kakimi K., Imai T., Shimokawa T., Nakano T. Intravenous dendritic cell administration enhances suppression of lung metastasis induced by carbon-ion irradiation. J. Radiat. Res. 2017;58:446–455. doi: 10.1093/jrr/rrx005.
    1. Ohkubo Y., Iwakawa M., Seino K.-I., Nakawatari M., Wada H., Kamijuku H., Nakamura E., Nakano T., Imai T. Combining Carbon Ion Radiotherapy and Local Injection of α-Galactosylceramide–Pulsed Dendritic Cells Inhibits Lung Metastases in an In Vivo Murine Model. Int. J. Radiat. Oncol. 2010;78:1524–1531. doi: 10.1016/j.ijrobp.2010.06.048.
    1. Shimokawa T., Ma L., Ando K., Sato K., Imai T. The Future of Combining Carbon-Ion Radiotherapy with Immunotherapy: Evidence and Progress in Mouse Models. Int. J. Part. Ther. 2016;3:61–70. doi: 10.14338/IJPT-15-00023.1.
    1. Takahashi Y., Yasui T., Minami K., Tamari K., Hayashi K., Otani K., Seo Y., Isohashi F., Koizumi M., Ogawa K. Carbon ion irradiation enhances the antitumor efficacy of dual immune checkpoint blockade therapy both for local and distant sites in murine osteosarcoma. Oncotarget. 2019;10:633–646. doi: 10.18632/oncotarget.26551.
    1. Helm A., Tinganelli W., Simoniello P., Kurosawa F., Fournier C., Shimokawa T., Durante M. Reduction of lung metastases in a mouse osteosarcoma model treated with carbon ions and immune checkpoint inhibitors. Int. J. Radiat. Oncol. 2020 doi: 10.1016/j.ijrobp.2020.09.041.
    1. Durante M., Cucinotta F.A. Heavy ion carcinogenesis and human space exploration. Nat. Rev. Cancer. 2008;8:465–472. doi: 10.1038/nrc2391.
    1. Chancellor J., Scott G., Sutton J. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit. Life. 2014;4:491–510. doi: 10.3390/life4030491.
    1. Newhauser W.D., Durante M. Assessing the risk of second malignancies after modern radiotherapy. Nat. Rev. Cancer. 2011;11:438–448. doi: 10.1038/nrc3069.
    1. Gondi V., Yock T.I., Mehta M.P. Proton therapy for paediatric CNS tumours—Improving treatment-related outcomes. Nat. Rev. Neurol. 2016;12:334–345. doi: 10.1038/nrneurol.2016.70.
    1. Rieber J.G., Kessel K.A., Witt O., Behnisch W., Kulozik A.E., Debus J., Combs S.E. Treatment tolerance of particle therapy in pediatric patients. Acta Oncol. 2015;54:1049–1055. doi: 10.3109/0284186X.2014.998273.
    1. Mohamad O., Tabuchi T., Nitta Y., Nomoto A., Sato A., Kasuya G., Makishima H., Choy H., Yamada S., Morishima T., et al. Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: A propensity score-weighted, retrospective, cohort study. Lancet Oncol. 2019;20:674–685. doi: 10.1016/S1470-2045(18)30931-8.
    1. maoka T., Nishimura M., Daino K., Takabatake M., Moriyama H., Nishimura Y., Morioka T., Shimada Y., Kakinuma S. Risk of second cancer after ion beam radiotherapy: Insights from animal carcinogenesis studies. Int. J. Radiat. Biol. 2019;95:1431–1440. doi: 10.1080/09553002.2018.1547848.
    1. Goodhead D.T. Neutrons are forever! Historical perspectives. Int. J. Radiat. Biol. 2019;95:957–984. doi: 10.1080/09553002.2019.1569782.
    1. Suman S., Kumar S., Moon B.-H., Strawn S.J., Thakor H., Fan Z., Shay J.W., Fornace A.J., Datta K. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC1638N/+ Mice. Int. J. Radiat. Oncol. 2016;95:131–138. doi: 10.1016/j.ijrobp.2015.10.057.
    1. Brenner D.J., Hall E.J. Secondary neutrons in clinical proton radiotherapy: A charged issue. Radiother. Oncol. 2008;86:165–170. doi: 10.1016/j.radonc.2007.12.003.
    1. Münter M.W., Wengenroth M., Fehrenbacher G., Schardt D., Nikoghosyan A., Durante M., Debus J. Heavy ion radiotherapy during pregnancy. Fertil. Steril. 2010;94:2329.e5–2329.e7. doi: 10.1016/j.fertnstert.2010.04.005.
    1. Stokkevåg C.H., Fukahori M., Nomiya T., Matsufuji N., Engeseth G.M., Hysing L.B., Ytre-Hauge K.S., Rørvik E., Szostak A., Muren L.P. Modelling of organ-specific radiation-induced secondary cancer risks following particle therapy. Radiother. Oncol. 2016;120:300–306. doi: 10.1016/j.radonc.2016.07.001.
    1. Eley J.G., Friedrich T., Homann K.L., Howell R.M., Scholz M., Durante M., Newhauser W.D. Comparative Risk Predictions of Second Cancers after Carbon-Ion Therapy Versus Proton Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2016;95:279–286. doi: 10.1016/j.ijrobp.2016.02.032.
    1. Favaudon V., Caplier L., Monceau V., Pouzoulet F., Sayarath M., Fouillade C., Poupon M.-F., Brito I., Hupe P., Bourhis J., et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014;6:245ra93. doi: 10.1126/scitranslmed.3008973.
    1. Bourhis J., Sozzi W.J., Jorge P.G., Gaide O., Bailat C., Duclos F., Patin D., Ozsahin M., Bochud F., Germond J.-F., et al. Treatment of a first patient with FLASH-radiotherapy. Radiother. Oncol. 2019;139:18–22. doi: 10.1016/j.radonc.2019.06.019.
    1. Harrington K.J. Ultrahigh Dose-rate Radiotherapy: Next Steps for FLASH-RT. Clin. Cancer Res. 2019;25:3–5. doi: 10.1158/1078-0432.CCR-18-1796.
    1. Schültke E., Balosso J., Breslin T., Cavaletti G., Djonov V., Esteve F., Grotzer M., Hildebrandt G., Valdman A., Laissue J. Microbeam radiation therapy—Grid therapy and beyond: A clinical perspective. Br. J. Radiol. 2017;90:20170073. doi: 10.1259/bjr.20170073.
    1. Dilmanian F.A., Zhong Z., Bacarian T., Benveniste H., Romanelli P., Wang R., Welwart J., Yuasa T., Rosen E.M., Anschel D.J. Interlaced x-ray microplanar beams: A radiosurgery approach with clinical potential. Proc. Natl. Acad. Sci. USA. 2006;103:9709–9714. doi: 10.1073/pnas.0603567103.
    1. Prezado Y., Jouvion G., Patriarca A., Nauraye C., Guardiola C., Juchaux M., Lamirault C., Labiod D., Jourdain L., Sebrie C., et al. Proton minibeam radiation therapy widens the therapeutic index for high-grade gliomas. Sci. Rep. 2018;8:16479. doi: 10.1038/s41598-018-34796-8.
    1. Durante M., Golubev A., Park W.-Y., Trautmann C. Applied nuclear physics at the new high-energy particle accelerator facilities. Phys. Rep. 2019;800:1–37. doi: 10.1016/j.physrep.2019.01.004.
    1. Dilmanian F.A., Rusek A., Fois G.R., Olschowka J., Desnoyers N.R., Park J.Y., Dioszegi I., Dane B., Wang R., Tomasi D., et al. Interleaved carbon minibeams: An experimental radiosurgery method with clinical potential. Int. J. Radiat. Oncol. Biol. Phys. 2012;84:514–519. doi: 10.1016/j.ijrobp.2011.12.025.
    1. Zakaria A.M., Colangelo N.W., Meesungnoen J., Azzam E.I., Plourde M.-É., Jay-Gerin J.-P. Ultra-High Dose-Rate, Pulsed (FLASH) Radiotherapy with Carbon Ions: Generation of Early, Transient, Highly Oxygenated Conditions in the Tumor Environment. Radiat. Res. 2020 doi: 10.1667/RADE-19-00015.1.

Source: PubMed

3
Abonnieren