Recent advances in infrared laser lithotripsy [Invited]

Nathaniel M Fried, Nathaniel M Fried

Abstract

The flashlamp-pumped, solid-state, pulsed, mid-infrared, holmium:YAG laser (λ = 2120 nm) has been the clinical gold standard laser for lithotripsy for over the past two decades. However, while the holmium laser is the dominant laser technology in ureteroscopy because it efficiently ablates all urinary stone types, this mature laser technology has several fundamental limitations. Alternative, mid-IR laser technologies, including a thulium fiber laser (λ = 1908 and 1940 nm), a thulium:YAG laser (λ = 2010 nm), and an erbium:YAG laser (λ = 2940 nm) have also been explored for lithotripsy. The capabilities and limitations of these mid-IR lasers are reviewed in the context of the quest for an ideal laser lithotripsy system capable of providing both rapid and safe ablation of urinary stones.

Conflict of interest statement

Nathaniel Fried is a consultant with IPG Medical Corporation (Marlborough, MA). He does not hold any financial stake in the company.

Figures

Fig. 1
Fig. 1
Photographs and scanning electron micrographs (SEM) of uric acid (UA) and calcium oxalate monohydrate (COM) stones before and after laser ablation with Thulium fiber laser in air and water mediums. Direct absorption of IR laser energy by stone in air results in a change from native state to more amorphous state with fusion of stone material, while absorption of IR energy by water contained in pores along stone surface may result in thermal expansion and production of cracks (shown by arrows), contributing to ablation.
Fig. 2
Fig. 2
Multiple approaches to pulsed laser lithotripsy have been utilized, including (a) short pulse (250-350 µs) for fragmentation, (b) long pulse (up to 1200 µs) to reduce stone retropulsion, (c) double-pulse delivery (2 x 350 µs), (d) delivery of pulse trains for a factor of 2 times increase in ablation rates, and (e) “Moses Tech” involving delivery of a low energy, short duration pulse to create a vapor bubble immediately followed by a higher energy, longer duration pulse for more efficient stone ablation, with reduced stone retropulsion as well.
Fig. 3
Fig. 3
Spatial beam profiles of (a) Holmium:YAG laser and (b) Thulium fiber laser. The multimodal Holmium laser beam prevents focusing down to small spots for coupling into fibers less than 200 µm. The TFL beam has been coupled into fibers as small as 50 µm core.
Fig. 4
Fig. 4
Comparison of temporal beam profiles of short-pulse, flashlamp-pumped, solid-state, Holmium:YAG laser (red) and the diode-pumped, Thulium fiber laser (blue). The greater amount of energy contained in the initial spike of the Holmium temporal beam profile contributes to the initial vapor bubble expansion and collapse and consequently greater stone retropulsion observed with the Holmium laser than with the Thulium fiber laser.
Fig. 5
Fig. 5
(a) Next generation (circa 2016) of compact, air-cooled, tabletop 500 W peak power, 1940 nm Thulium fiber laser sitting on top of (b) first generation, water-cooled 100 W peak power, 1908 nm Thulium fiber laser (circa 2004).

References

    1. Pearle M. S., Calhoun E. A., Curhan G. C., “Urologic diseases in America project: Urolithiasis,” J. Urol. 173(3), 848–857 (2005).
    1. Scales C. D., Jr, Lai J. C., Dick A. W., Hanley J. M., van Meijgaard J., Setodji C. M., Saigal C. S., Urologic Diseases in America Project , “Comparative effectiveness of shock wave lithotripsy and ureteroscopy for treating patients with kidney stones,” JAMA Surg. 149(7), 648–653 (2014).10.1001/jamasurg.2014.336
    1. Bagley D., Erhard M., “Use of the holmium laser in the upper urinary tract,” Tech. Urol. 1(1), 25–30 (1995).
    1. Aldoukhi A. H., Roberts W. W., Hall T. L., Ghani K. R., “Holmium laser lithotripsy in the new stone age: dust or bust?” Front Surg 29(4), 57 (2017).10.3389/fsurg.2017.00057
    1. Kronenberg P., Somani B., “Advances in lasers for the treatment of stones–a systematic review,” Curr. Urol. Rep. 19(6), 1– 11 (2018).
    1. Fried N. M., Irby P. B., “Advances in laser technology and fiber optic delivery systems for use in lithotripsy,” Nat. Rev. Urol. (June), 8 (Epub) (2018)
    1. Chan K. F., Pfefer T. J., Teichman J. M. H., Welch A. J., “A perspective on laser lithotripsy: the fragmentation processes,” J. Endourol. 15(3), 257–273 (2001).10.1089/089277901750161737
    1. Chan K. F., Vassar G. J., Pfefer T. J., Teichman J. M., Glickman R. D., Weintraub S. T., Welch A. J., “Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,” Lasers Surg. Med. 25(1), 22–37 (1999).10.1002/(SICI)1096-9101(1999)25:1<22::AID-LSM4>;2-6
    1. Roggan A., Bindig U., Wäsche W., Zgoda F., “Action mechanisms of laser radiation in biological tissues,” Applied Laser Medicine 3, 87 (2003)
    1. Chan K. F., Hammer D. X., Choi B., Teichman J. M., McGuff H. S., Pratisto H., Jansen E. D., Welch A. J., “Free electron laser lithotripsy: threshold radiant exposures,” J. Endourol. 14(2), 161–167 (2000).10.1089/end.2000.14.161
    1. Blackmon R. L., Irby P. B., Fried N. M., “Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects,” J. Biomed. Opt. 16(7), 071403 (2011).10.1117/1.3564884
    1. R. L. Blackmon, “Thulium fiber laser lithotripsy,” Ph.D. Thesis. University of North Carolina at Charlotte (2013).
    1. Wilson D. M., “Clinical and laboratory approaches for evaluation of nephrolithiasis,” J. Urol. 141(3), 770–774 (1989).10.1016/S0022-5347(17)41006-8
    1. M. E. Mayo, “Interaction of laser radiation with urinary calculi,” Ph.D. Thesis, Department of Applied Science, Security and Resilience, United Kingdom, Cranfield University (2009).
    1. Motley G., Dalrymple N., Keesling C., Fischer J., Harmon W., “Hounsfield unit density in the determination of urinary stone composition,” Urology 58(2), 170–173 (2001).10.1016/S0090-4295(01)01115-3
    1. Jansen E. D., Asshauer T., Frenz M., Motamedi M., Delacrétaz G., Welch A. J., “Effect of pulse duration on bubble formation and laser-induced pressure waves during holmium laser ablation,” Lasers Surg. Med. 18(3), 278–293 (1996).10.1002/(SICI)1096-9101(1996)18:3<278::AID-LSM10>;2-2
    1. Majaron B., Plestenjak P., Lukac M., “Thermo-mechanical laser ablation of soft biological tissue: modeling the micro-explosions,” Appl. Phys. B 69(1), 71–80 (1999).10.1007/s003400050772
    1. Schofield P. F., Knight K. S., van der Houwen J. A. M., Valsami-Jones E., “The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate,” Phys. Chem. Miner. 31(9), 606–624 (2004).10.1007/s00269-004-0419-6
    1. Zamyatina V., Enikeev D., Dymov A., Sorokin N., Minaev V., Yaroslavsky I., Kovalenko A., Vinarov A., Altshuler G., Gapontsev V., “Super pulse thulium fiber laser for lithotripsy,” Lasers Surg. Med. 48, 10 (2016).
    1. Fried D., Zuerlein M., Featherstone J. D. B., Seka W., Duhn C., McCormack S. M., “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127–129, 852–856 (1998).10.1016/S0169-4332(97)00755-1
    1. Hardy L. A., Irby P. B., Fried N. M., “Scanning electron microscopy of real and artificial kidney stones before and after Thulium fiber laser ablation in air and water,” Proc. SPIE 10468(104680G), 1–11 (2018).
    1. Hale G. M., Querry M. R., Rusk A. N., Williams D., “Influence of temperature on the spectrum of water,” JOSA 62(9), 1103–1108 (1972).10.1364/JOSA.62.001103
    1. Hale G. M., Querry M. R., “Optical constants of water in the 200 nm to 200 mm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).10.1364/AO.12.000555
    1. Jansen E. D., van Leeuwen T. G., Motamedi M., Borst C., Welch A. J., “Temperature dependence of the absorption coefficient of water for midinfrared laser radiation,” Lasers Surg. Med. 14(3), 258–268 (1994).10.1002/lsm.1900140308
    1. Lange B. I., Brendel T., Hüttmann G., “Temperature dependence of light absorption in water at holmium and thulium laser wavelengths,” Appl. Opt. 41(27), 5797–5803 (2002).10.1364/AO.41.005797
    1. Cummins J. P., Walsh J. T., Jr, “Erbium laser ablation: the effect of dynamic optical properties,” Appl. Phys. Lett. 62(16), 1988–1990 (1993).10.1063/1.109512
    1. Dauw C. A., Simeon L., Alruwaily A. F., Sanguedolce F., Hollingsworth J. M., Roberts W. W., Faerber G. J., Wolf J. S., Jr, Ghani K. R., “Contemporary practice patterns of flexible ureteroscopy for treating renal stones: results of a worldwide survey,” J. Endourol. 29(11), 1221–1230 (2015).10.1089/end.2015.0260
    1. Fahmy A., Youssif M., Rhashad H., Orabi S., Mokless I., “Extractable fragment versus dusting during ureteroscopic laser lithotripsy in children: prospective randomized study,” J. Pediatr. Urol. 12(4), 254e1 (2016).10.1016/j.jpurol.2016.04.037
    1. Santiago J. E., Hollander A. B., Soni S. D., Link R. E., Mayer W. A., “To dust or not to dust: a systematic review of ureteroscopic laser lithotripsy techniques,” Curr. Urol. Rep. 18(4), 32 (2017).10.1007/s11934-017-0677-8
    1. Li R., Ruckle D., Keheila M., Maldonado J., Lightfoot M., Alsyouf M., Yeo A., Abourbih S. R., Olgin G., Arenas J. L., Baldwin D. D., “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).10.1089/end.2016.0547
    1. Humphreys M. R., Shah O. D., Monga M., Chang Y. H., Krambeck A. E., Sur R. L., Miller N. L., Knudsen B. E., Eisner B. H., Matlaga B. R., Chew B. H., “Dusting versus basketing during – which technique is more efficacious? A prospective multicenter trial from the EDGE research consortium,” J. Urol. 199(5), 1272–1276 (2018).10.1016/j.juro.2017.11.126
    1. Matlaga B. R., Chew B., Eisner B., Humphreys M., Knudsen B., Krambeck A., Lange D., Lipkin M., Miller N. L., Monga M., Pais V., Sur R. L., Shah O., “Ureteroscopic laser lithotripsy: a review of dusting vs fragmentation with extraction,” J. Endourol. 32(1), 1–6 (2018).10.1089/end.2017.0641
    1. Tracey J., Gagin G., Morhardt D., Hollingsworth J., Ghani K. R., “Ureteroscopic high-frequency dusting utilizing a 120-W holmium laser,” J. Endourol. Epub (2018)
    1. Chawla S. N., Chang M. F., Chang A., Lenoir J., Bagley D. H., “Effectiveness of high-frequency holmium:YAG laser stone fragmentation: the “popcorn effect”,” J. Endourol. 22(4), 645–650 (2008).10.1089/end.2007.9843
    1. Hecht S. L., Wolf J. S., Jr., “Techniques for holmium laser lithotripsy of intrarenal calculi,” Urology 81(2), 442–445 (2013).10.1016/j.urology.2012.11.021
    1. Klaver P., de Boorder T., Rem A. I., Lock T. M. T. W., Noordmans H. J., “In vitro comparison of renal stone laser treatment using fragmentation and popcorn technique,” Lasers Surg. Med. 49(7), 698–704 (2017).10.1002/lsm.22671
    1. Emiliani E., Talso M., Cho S. Y., Baghdadi M., Mahmoud S., Pinheiro H., Traxer O., “Optimal settings for the noncontact Holmium:YAG stone fragmentation popcorn technique,” J. Urol. 198(3), 702–706 (2017).10.1016/j.juro.2017.02.3371
    1. Wollin D. A., Tom W. R., Jiang R., Simmons W. N., Preminger G. M., Lipkin M. E., “An in vitro evaluation of laser settings and location in the efficiency of the popcorn effect,” Urolithiasis epub (2018).
    1. Molina W. R., Silva I. N., Donalisio da Silva R., Gustafson D., Sehrt D., Kim F. J., “Influence of saline on temperature profile of laser lithotripsy activation,” J. Endourol. 29(2), 235–239 (2015).10.1089/end.2014.0305
    1. Butticè S., Sener T. E., Proietti S., Dragos L., Tefik T., Doizi S., Traxer O., “Temperature changes inside the kidney: what happens during Holmium:Yttrium-Aluminium-Garnet laser usage?” J. Endourol. 30(5), 574–579 (2016).10.1089/end.2015.0747
    1. Aldoukhi A. H., Ghani K. R., Hall T. L., Roberts W. W., “Thermal response to high-power holmium laser lithotripsy,” J. Endourol. 31(12), 1308–1312 (2017).10.1089/end.2017.0679
    1. Wollin D. A., Carlos E. C., Tom W. R., Simmons W. N., Preminger G. M., Lipkin M. E., “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).10.1089/end.2017.0658
    1. Aldoukhi A. H., Hall T. L., Ghani K. R., Maxwell A. D., MacConaghy B., Roberts W. W., “Calyceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model,” J. Endourol. In press.
    1. Hein S., Petzold R., Schoenthaler M., Wetterauer U., Miernik A., “Thermal effects of Holmium:YAG laser lithotripsy: real-time evaluation in an in vitro model,” World J. Urol. ePub (2018)
    1. Finley D. S., Petersen J., Abdelshehid C., Ahlering M., Chou D., Borin J., Eichel L., McDougall E., Clayman R. V., “Effect of holmium:YAG laser pulse width on lithotripsy retropulsion in vitro,” J. Endourol. 19(8), 1041–1044 (2005).10.1089/end.2005.19.1041
    1. Kang H. W., Lee H., Teichman J. M., Oh J., Kim J., Welch A. J., “Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy,” Lasers Surg. Med. 38(8), 762–772 (2006).10.1002/lsm.20376
    1. Kalra P., Le N. B., Bagley D., “Effect of pulse width on object movement in vitro using holmium:YAG laser,” J. Endourol. 21(2), 228–231 (2007).10.1089/end.2005.1130
    1. Bader M. J., Pongratz T., Khoder W., Stief C. G., Herrmann T., Nagele U., Sroka R., “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).10.1007/s00345-014-1429-8
    1. Sroka R., Pongratz T., Scheib G., Khoder W., Stief C. G., Herrmann T., Nagele U., Bader M. J., “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).10.1007/s00345-015-1504-9
    1. Wollin D. A., Ackerman A., Yang C., Chen T., Simmons W. N., Preminger G. M., Lipkin M. E., “Variable pulse duration from a new Holmium:YAG laser: the effect on stone comminution, fiber tip degradation, and retropulsion dusting model,” Urology 103, 47–51 (2017).10.1016/j.urology.2017.01.007
    1. Bell J. R., Penniston K. L., Nakada S. Y., “In vitro comparison of stone fragmentation when using various settings with modern variable pulse holmium lasers,” J. Endourol. 31(10), 1067–1072 (2017).10.1089/end.2017.0351
    1. Bell J. R., Penniston K. L., Nakada S. Y., “In vitro comparison of holmium lasers: evidence for shorter fragmentation time and decreased retropulsion using a modern variable-pulse laser,” Urology 107, 37–42 (2017).10.1016/j.urology.2017.06.018
    1. Blackmon R. L., Irby P. B., Fried N. M., “Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation,” J. Biomed. Opt. 17(2), 028002 (2012).10.1117/1.JBO.17.2.028002
    1. Kronenberg P., Traxer O., “MP22–13 “Burst laser lithotripsy - a novel lithotripsy mode,” J. Urol. 195(4), e258 (2016).10.1016/j.juro.2016.02.701
    1. Trost D., “Laser pulse format for penetrating an absorbing fluid,” U.S. Patent #5,321,715 1994.
    1. Elhilali M. M., Badaan S., Ibrahim A., Andonian S., “Use of the Moses technology to improve holmium laser lithotripsy outcomes: a preclinical study,” J. Endourol. 31(6), 598–604 (2017).10.1089/end.2017.0050
    1. Stern K. L., Monga M., “The Moses holmium system - time is money,” Can. J. Urol. 25(3), 9313–9316 (2018).
    1. Vogel A., Schmidt P., Flucke B., “Minimization of thermomechanical side effects in IR ablation by use of multiply q-switched laser pulses,” Med. Laser Appl. 17(1), 15–20 (2002).10.1078/1615-1615-00040
    1. Joseph D. P., Allen P., Negus D., Hobart J., “A new and improved vitreoretinal erbium:YAG laser scalpel: long-term morphologic characteristics of retinal-choroidal injury,” Ophthalmic Surg. Lasers Imaging 35(4), 304–315 (2004).
    1. Hendow S. T., Romero R., Shakir S. A., Guerreiro P. T., “Percussion drilling of metals using bursts of nanosecond pulses,” Opt. Express 19(11), 10221–10231 (2011).10.1364/OE.19.010221
    1. Teichman J. M., Chan K. F., Cecconi P. P., Corbin N. S., Kamerer A. D., Glickman R. D., Welch A. J., “Erbium: YAG versus holmium:YAG lithotripsy,” J. Urol. 165(3), 876–879 (2001).10.1016/S0022-5347(05)66548-2
    1. Fried N. M., “Potential applications of the erbium:YAG laser in endourology,” J. Endourol. 15(9), 889–894 (2001).10.1089/089277901753284080
    1. Chan K. F., Lee H., Teichman J. M., Kamerer A., McGuff H. S., Vargas G., Welch A. J., “Erbium: YAG laser lithotripsy mechanism,” J. Urol. 168(2), 436–441 (2002).10.1016/S0022-5347(05)64653-8
    1. Lee H., Kang H. W., Teichman J. M., Oh J., Welch A. J., “Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,” Lasers Surg. Med. 38(1), 39–51 (2006).10.1002/lsm.20258
    1. Iwai K., Shi Y. W., Nito K., Matsuura Y., Kasai T., Miyagi M., Saito S., Arai Y., Ioritani N., Okagami Y., Nemec M., Sulc J., Jelinkova H., Zavoral M., Kohler O., Drlik P., “Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap,” Appl. Opt. 42(13), 2431–2435 (2003).10.1364/AO.42.002431
    1. Yang Y., Chaney C. A., Fried N. M., “Erbium:YAG laser lithotripsy using hybrid germanium/silica optical fibers,” J. Endourol. 18(9), 830–835 (2004).10.1089/end.2004.18.830
    1. Raif J., Vardi M., Nahlieli O., Gannot I., “An Er:YAG laser endoscopic fiber delivery system for lithotripsy of salivary stones,” Lasers Surg. Med. 38(6), 580–587 (2006).10.1002/lsm.20344
    1. Qiu J., Teichman J., Wang T., Elmaanaoui B., Gamez D., Milner T. E., “Comparison of fluoride and sapphire optical fibers for Er: YAG laser lithotripsy,” J. Biophotonics 3(5-6), 277–283 (2010).10.1002/jbio.200900104
    1. Zhang J. J., Rajabhandharaks D., Xuan J. R., Wang H., Chia R. W. J., Hasenberg T., Kang H. W., “Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy,” J. Biomed. Opt. 20(12), 128001 (2015).10.1117/1.JBO.20.12.128001
    1. Kamal W., Kallidonis P., Koukiou G., Amanatides L., Panagopoulos V., Ntasiotis P., Liatsikos E., “Stone retropulsion with Ho:YAG and Tm:YAG lasers: a clinical practice – oriented study,” J. Endourol. 30(11), 1145–1149 (2016).10.1089/end.2016.0212
    1. Pierce M. C., Jackson S. D., Dickinson M. R., King T. A., “Laser-tissue interaction with a high-power 2-microm fiber laser: preliminary studies with soft tissue,” Lasers Surg. Med. 25(5), 407–413 (1999).10.1002/(SICI)1096-9101(1999)25:5<407::AID-LSM7>;2-9
    1. Sumiyoshi T., Sekita H., Arai T., Sato S., Ishihara M., Kikuchi M., “High-power continuous-wave 3- and 2-µm cascade Ho3+:ZBLAN fiber laser and its medical applications,” IEEE J. Sel. Top. Quantum Electron. 5(4), 936–943 (1999).10.1109/2944.796314
    1. Pierce M. C., Jackson S. D., Dickinson M. R., King T. A., Sloan P., “Laser-tissue interaction with a continuous wave 3-mcm fibre laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).10.1002/1096-9101(2000)26:5<491::AID-LSM9>;2-E
    1. Jackson S. D., Lauto A., “Diode-pumped fiber lasers: a new clinical tool?” Lasers Surg. Med. 30(3), 184–190 (2002).10.1002/lsm.10023
    1. El-Sherif A. F., King T. A., “Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers,” Lasers Med. Sci. 18(3), 139–147 (2003).10.1007/s10103-003-0267-5
    1. Pal D., Ghosh A., Sen R., Pal A., “Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations,” Appl. Opt. 55(23), 6151–6155 (2016).10.1364/AO.55.006151
    1. Keller M. D., Stafford J. A., Schmidt B. P., Wells J. D., “In vitro testing of dual-mode thulium microsurgical laser,” Proc. SPIE 8207, 820711 (2012).10.1117/12.909516
    1. Pal D., Paul A., Shekhar N. K., Chowdhury S. D., Sen R., Chatterjee K., Pal A., “COM stone dusting and soft tissue ablation with Q-switched thulium fiber laser,” IEEE J. Sel. Top. Quantum Electron. Epub (2018).
    1. Qiu J., Teichman J. M., Wang T., Neev J., Glickman R. D., Chan K. F., Milner T. E., “Femtosecond laser lithotripsy: feasibility and ablation mechanism,” J. Biomed. Opt. 15(2), 028001 (2010).10.1117/1.3368998
    1. Fried N. M., “High-power laser vaporization of the canine prostate using a 110 W Thulium fiber laser at 1.91 microm,” Lasers Surg. Med. 36(1), 52–56 (2005).10.1002/lsm.20126
    1. Fried N. M., Murray K. E., “High-power thulium fiber laser ablation of urinary tissues at 1.94 microm,” J. Endourol. 19(1), 25–31 (2005).10.1089/end.2005.19.25
    1. Fried N. M., “Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 microm,” Lasers Surg. Med. 37(1), 53–58 (2005).10.1002/lsm.20196
    1. Schomacker K. T., Domankevitz Y., Flotte T. J., Deutsch T. F., “Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage,” Lasers Surg. Med. 11(2), 141–151 (1991).10.1002/lsm.1900110208
    1. Hardy L. A., Kennedy J. D., Wilson C. R., Irby P. B., Fried N. M., “Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones,” J. Biophotonics 10(10), 1240–1249 (2017).10.1002/jbio.201600010
    1. Wilson C. R., Hardy L. A., Irby P. B., Fried N. M., “Collateral damage to the ureter and Nitinol stone baskets during thulium fiber laser lithotripsy,” Lasers Surg. Med. 47(5), 403–410 (2015).10.1002/lsm.22348
    1. Cordes J., Lange B., Jocham D., Kausch I., “Destruction of stone extraction basket during an in vitro lithotripsy--a comparison of four lithotripters,” J. Endourol. 25(8), 1359–1362 (2011).10.1089/end.2011.0019
    1. Cordes J., Nguyen F., Lange B., Brinkmann R., Jocham D., “Damage of stone baskets by endourologic lithotripters: a laboratory study of 5 lithotripters and 4 basket types,” Adv. Urol. 2013, 632790 (2013).10.1155/2013/632790
    1. Bader M. J., Gratzke C., Hecht V., Schlenker B., Seitz M., Reich O., Stief C. G., Sroka R., “Impact of collateral damage to endourologic tools during laser lithotripsy--in vitro comparison of three different clinical laser systems,” J. Endourol. 25(4), 667–672 (2011).10.1089/end.2010.0169
    1. Freiha G. S., Glickman R. D., Teichman J. M., “Holmium:YAG laser-induced damage to guidewires: experimental study,” J. Endourol. 11(5), 331–336 (1997).10.1089/end.1997.11.331
    1. Honeck P., Wendt-Nordahl G., Häcker A., Alken P., Knoll T., “Risk of collateral damage to endourologic tools by holmium:YAG laser energy,” J. Endourol. 20(7), 495–497 (2006).10.1089/end.2006.20.495
    1. Griffin S., “Fiber optics for destroying kidney stones,” Biophoton. Int. 11, 44–47 (2004).
    1. Nazif O. A., Teichman J. M. H., Glickman R. D., Welch A. J., “Review of laser fibers: a practical guide for urologists,” J. Endourol. 18(9), 818–829 (2004).10.1089/end.2004.18.818
    1. Marks A. J., Mues A. C., Knudsen B. E., Teichman J. M. H., “Holmium:YAG lithotripsy proximal fiber failures from laser and fiber mismatch,” Urology 71(6), 1049–1051 (2008).10.1016/j.urology.2007.10.060
    1. Knudsen B. E., Pedro R., Hinck B., Monga M., “Durability of reusable holmium:YAG laser fibers: a multicenter study,” J. Urol. 185(1), 160–163 (2011).10.1016/j.juro.2010.08.020
    1. Wilson C. R., Hardy L. A., Irby P. B., Fried N. M., “Microscopic analysis of laser-induced proximal fiber tip damage during Holmium:YAG and Thulium fiber laser lithotripsy,” Opt. Eng. 55(4), 046102 (2016).10.1117/1.OE.55.4.046102
    1. Scott N. J., Cilip C. M., Fried N. M., “N. M, “Thulium fiber laser ablation of urinary stones through small-core optical fibers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 435–440 (2009).10.1109/JSTQE.2008.2012133
    1. Blackmon R. L., Irby P. B., Fried N. M., “Thulium fiber laser lithotripsy using tapered fibers,” Lasers Surg. Med. 42(1), 45–50 (2010).10.1002/lsm.20883
    1. Blackmon R. L., Hutchens T. C., Hardy L. A., Wilson C. R., Irby P. B., Fried N. M., “Thulium fiber laser ablation of kidney stones using a 50-µm-core silica optical fiber,” Opt. Eng. 54(1), 011004 (2014).10.1117/1.OE.54.1.011004
    1. Wilson C. R., Hutchens T. C., Hardy L. A., Irby P. B., Fried N. M., “A miniaturized, 1.9-French integrated optical fiber and stone basket for use in Thulium fiber laser lithotripsy,” J. Endourol. 29(10), 1110–1114 (2015).10.1089/end.2015.0124
    1. Wilson C., Kennedy J. D., Irby P., Fried N., “Miniature ureteroscope distal tip designs for potential use in thulium fiber laser lithotripsy,” J. Biomed. Opt. 23(7), 1–9 (2018).10.1117/1.JBO.23.3.030901
    1. Leiner D., Digital Endoscope Design (SPIE Press, 2016), p. 12.
    1. Marguet C. G., Sung J. C., Springhart W. P., L’Esperance J. O., Zhou S., Zhong P., Albala D. M., Preminger G. M., “In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser,” J. Urol. 173(5), 1797–1800 (2005).10.1097/01.ju.0000154341.08206.69
    1. White M. D., Moran M. E., Calvano C. J., Borhan-Manesh A., Mehlhaff B. A., “Evaluation of retropulsion caused by holmium:YAG laser with various power settings and fibers,” J. Endourol. 12(2), 183–186 (1998).10.1089/end.1998.12.183
    1. Lee H., Ryan R. T., Teichman J. M., Kim J., Choi B., Arakeri N. V., Welch A. J., “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).10.1097/01.ju.0000046367.49923.c6
    1. Lee H., Ryan R. T., Kim J., Choi B., Arakeri N. V., Teichman J. M. H., Welch A. J., “Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy,” J. Biomech. Eng. 126(4), 506–515 (2004).10.1115/1.1786297
    1. Sea J., Jonat L. M., Chew B. H., Qiu J., Wang B., Hoopman J., Milner T., Teichman J. M., “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).10.1016/j.juro.2011.10.147
    1. Struve B., Huber G., “Properties and medical applications of near-IR solid-state lasers,” J. Phys. IV 1(C7), 3–6 (1991).10.1051/jp4:1991701
    1. Hardy L. A., Wilson C. R., Irby P. B., Fried N. M., “Rapid Thulium fiber laser lithotripsy at pulse rates up to 500 Hz using a stone basket,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0902604 (2014).10.1109/JSTQE.2014.2305715
    1. Glybochko P., Altshuler G., Vinarov A., Rapoport L., Enikeev M., Grigoriev N., Enikeev D., Sorokin N., Dymov A., Sukhanov R., Taratkin M., Zamyatina V., “Comparison between the possibilities of holmium and thulium laser in lithotripsy in vitro,” Eur. Urol. 16(3), 391 (2017).
    1. Glybochko P., Altshuler G., Yaroslaksy I., Vinarov A., Enikeev D., Sorokin N., Dymov A., Sukhanov R., Vinnichenko V. V., “Comparative in vitro study of Ho:YAG and Tm fiber laser lithotripters in dusting mode of operation,” J. Urol. 197 (4S), e815 (2017).10.1016/j.juro.2017.02.1899
    1. Dymov A., Glybochko P., Alyaev Y., Vinarov A., Altshuler G., Zamyatina V., Sorokin N., Enikeev D., Lekarev V., Proskura A., Koshkarev A., “Thulium lithotripsy: from experiment to clinical practice,” J. Urol. 197(4S), 11 (2017)
    1. Hardy L. A., Gonzalez D. A., Irby P. B., Fried N. M., “Fragmentation and dusting of large kidney stones using a compact, air-cooled, high peak power, 1940-nm, Thulium fiber laser,” Proc. SPIE 10468(104680O), 1–5 (2018).
    1. Gross A., Becker B., Taratkin M., Enikeev D., Rapoport L., Netsch C., “Wavelength and pulse shape effects on stone fragmentation of laser lithotripters,” J. Urol. 199(4S), e293–e294 (2018).10.1016/j.juro.2018.02.763
    1. Yaroslavsky I., Vinnichenko V., McNeill T., Novoselteva A., Perchuk I., Vybornov A., Altshuler G., Gapontsev V., “Optimization of a novel Tm fiber laser lithotripter in terms of stone ablation efficiency and retropulsion reduction,” Proc. SPIE 10468(104680H), 1–9 (2018).
    1. Martov A. G., Ergakov D. V., Guseinov M. A., Andronov A. S., Dutov S. V., Vinnichenko V. A., Kovalenko A. A., “[Initial experience in clinical application of thulium laser con7act lithotripsy for transurethral treatment of urolithiasis],” Urologiia Mar 2018(1), 112–120 (2018).10.18565/urology.2018.1.112-120
    1. Ergakov D., Martov A. G., Guseynov M., “The comparative clinical study of Ho:YAG and superpulse Tm fiber laser lithotripters,” J. Urol. 17(2), e1391 (2018).
    1. Traxer O., Rapoport L., Tsarichenko D., Dymov A., Enikeev D., Sorokin N., Ali S., Akopyan G., Korolev D., Proskura A., Lekarev V., Klimov R., “First clinical study on superpulse thulium fiber laser lithotripsy,” J. Urol. 199 (4S), e321–e322 (2018).10.1016/j.juro.2018.02.827
    1. Dornier website ().

Source: PubMed

3
Abonnieren