Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values

Ed Maunder, Daniel J Plews, Andrew E Kilding, Ed Maunder, Daniel J Plews, Andrew E Kilding

Abstract

Using a short-duration step protocol and continuous indirect calorimetry, whole-body rates of fat and carbohydrate oxidation can be estimated across a range of exercise workloads, along with the individual maximal rate of fat oxidation (MFO) and the exercise intensity at which MFO occurs (Fatmax). These variables appear to have implications both in sport and health contexts. After discussion of the key determinants of MFO and Fatmax that must be considered during laboratory measurement, the present review sought to synthesize existing data in order to contextualize individually measured fat oxidation values. Data collected in homogenous cohorts on cycle ergometers after an overnight fast was synthesized to produce normative values in given subject populations. These normative values might be used to contextualize individual measurements and define research cohorts according their capacity for fat oxidation during exercise. Pertinent directions for future research were identified.

Keywords: cycling; exercise; fat oxidation; normative values; running.

Figures

Figure 1
Figure 1
Representative illustration of fat oxidation (g.min−1) against exercise intensity (W) during a graded, cycling Fatmax test, where MFO, maximal rate of fat oxidation (g.min−1) and Fatmax, the intensity at which MFO occurs (W).
Figure 2
Figure 2
Schematic illustration of the identified determinants of maximal fat oxidation during graded protocols (black) and key identified unknown factors (gray).

References

    1. Achten J., Gleeson M., Jeukendrup A. E. (2002). Determination of exercise intensity that elicits maximal fat oxidation. Med. Sci. Sports Exerc. 34, 92–97. 10.1097/00005768-200201000-00015
    1. Achten J., Jeukendrup A. E. (2003a). Maximal fat oxidation during exercise in trained men. Int. J. Sports Med. 24, 603–608. 10.1055/s-2003-43265
    1. Achten J., Jeukendrup A. E. (2003b). The effect of pre-exercise carbohydrate feedings on the intensity that elicits maximal fat oxidation. J. Sports Sci. 21, 1017–1024. 10.1080/02640410310001641403
    1. Achten J., Jeukendrup A. E. (2004). Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. Int. J. Sports Med. 25, 32–37. 10.1055/s-2003-45231
    1. Achten J., Venables M. C., Jeukendrup A. E. (2003). Fat oxidation rates are higher during running compared with cycling over a wide range of intensities. Metab. Clin. Exp. 52, 747–752. 10.1016/S0026-0495(03)00068-4
    1. Ahlborg B., Bergström J., Ekelund L., Hultman E. (1967). Muscle glycogen and muscle electrolytes during prolonged phyiscal exercise. Acta Physiol. Scand. 70, 129–142. 10.1111/j.1748-1716.1967.tb03608.x
    1. Alkahtani S. (2014). Comparing fat oxidation in an exercise test with moderate-intensity interval training. J. Sports Sci. Med. 13, 51–58.
    1. Alkahtani S. A., King N. A., Hills A. P., Byrne N. M. (2013). Effect of interval training intensity on fat oxidation, blood lactate and the rate of perceived exertion in obese men. Springerplus 2:532. 10.1186/2193-1801-2-532
    1. Altman D. G., Bland J. M. (2005). Standard Deviations and Standard Errors. Br. Med. J. 331:903. 10.1136/bmj.331.7521.903
    1. Ara I., Larsen S., Stallknecht B., Guerra B., Morales-Alamo D., Andersen J., et al. . (2011). Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. Int. J. Obes. 35, 99–108. 10.1038/ijo.2010.123
    1. Arkinstall M. J., Bruce C. R., Nikolopoulos V., Garnham A. P., Hawley J. A. (2001). Effect of carbohydrate ingestion on metabolism during running and cycling. J. Appl. Physiol. 91, 2125–2134. 10.1152/jappl.2001.91.5.2125
    1. Astorino T. A., Edmunds R. M., Clark A., Gallant R., King L., Ordille G. M., et al. . (2017). Change in maximal fat oxidation in response to different regimes of periodized High-Intensity Interval Training (HIIT). Eur. J. Appl. Physiol. 117 745–55. 10.1007/s00421-017-3535-y
    1. Astorino T. A., Schubert M. M. (2017). Changes in fat oxidation in response to various regimes of High Intensity Interval Training (HIIT). Eur. J. Appl. Physiol. 118, 51–63. 10.1007/s00421-017-3756-0
    1. Astorino T. A., Schubert M. M., Palumbo E., Stirling D., McMillan D. W. (2013). Effect of two doses of interval training on maximal fat oxidation in sedentary women. Med. Sci. Sports Exerc. 45, 1878–1886. 10.1249/MSS.0b013e3182936261
    1. Bagley L., Slevin M., Bradburn S., Liu D., Murgatroyd C., Morrissey G., et al. . (2016). Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO2max during exercise. BMJ Open Sport Exerc. Med. 2:e000056. 10.1136/bmjsem-2015-000056
    1. Bergman B. C., Brooks G. A. (1999). Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. J. Appl. Physiol. 86, 479–487. 10.1152/jappl.1999.86.2.479
    1. Bergström J., Hermansen L., Hultman E., Saltin B. (1967). Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 71, 140–150. 10.1111/j.1748-1716.1967.tb03720.x
    1. Bergström J., Hultman E. (1967). A Study of the Glycogen Metabolism during Exercise in Man. Scand. J. Clin. Lab. Invest. 19, 218–228. 10.3109/00365516709090629
    1. Besnier F., Lenclume V., Gérardin P., Fianu A., Martinez J., Naty N. (2015). Individualized exercise training at maximal fat oxidation combined with fruit and vegetable-rich diet in overweight or obese women: the lipoxmax-réunion randomized controlled trial. PLoS ONE 10:e0139246. 10.1371/journal.pone.0139246
    1. Biava C., Grossman A., West M. (1966). Ultrastructural observations on renal glycogen in normal and pathologic human kidneys. Lab. Invest. 15, 330–56.
    1. Billat V. L., Mille-Hamard L., Petit B., Koralsztein J. P. (1999). The role of cadence on the VO2 slow component in cycling and running in triathletes. Int. J. Sports Med. 20, 429–437. 10.1055/s-1999-8825
    1. Bircher S., Knechtle B., Knecht H. (2005). Is the intensity of the highest fat oxidation at the lactate concentration of 2 Mmol L-1? a comparison of two different exercise protocols. Eur. J. Clin. Invest. 35, 491–498. 10.1111/j.1365-2362.2005.01538.x
    1. Bogdanis G. C., Vangelakoudi A., Maridaki M. (2008). Peak fat oxidation rate during walking in sedentary overweight men and women. J. Sports Sci. Med. 7, 525–31.
    1. Bordenave S., Flavier S., Fédou C., Brun J. F., Mercier J. (2007). Exercise calorimetry in sedentary patients: procedures based on short 3 min steps underestimate carbohydrate oxidation and overestimate lipid oxidation. Diabetes Metabol. 33, 379–384. 10.1016/j.diabet.2007.04.003
    1. Bordenave S., Metz L., Flavier S., Lambert K., Ghanassia E., Dupuy A., et al. . (2008). Training-induced improvement in lipid oxidation in type 2 diabetes mellitus is related to alterations in muscle mitochondrial activity: effect of endurance training in type 2 Diabetes. Diabetes Metabol. 34, 162–168. 10.1016/j.diabet.2007.11.006
    1. Borel B., Coquart J., Boitel G., Duhamel A., Matran R., Delsart P., et al. . (2015). Effects of endurance training at the crossover point in women with metabolic syndrome. Med. Sci. Sports Exerc. 47, 2380–2388. 10.1249/MSS.0000000000000674
    1. Brun J. F., Halbeher C., Fédou C., Mercier J. (2011). What are the limits of normality of the LIPOXmax? can it be predict without exercise calorimetry? Sci. Sports 26, 166–169. 10.1016/j.scispo.2010.11.001
    1. Burgomaster K. A., Cermak N. M., Phillips S. M., Benton C. R., Bonen A., Gibala M. J. (2007). Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292: R1970–R1976. 10.1152/ajpregu.00503.2006
    1. Burgomaster K. A., Heigenhauser G. J. F., Gibala M. J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J. Appl. Physiol. 1, 2041–2047. 10.1152/japplphysiol.01220.2005
    1. Burgomaster K. A., Howarth K. R., Phillips S. M., Rakobochuk M., MacDonald M. J., McGee S. L., et al. . (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 586, 151–160. 10.1113/jphysiol.2007.142109
    1. Burgomaster K. A., Hughes S. C., Heigenhauser G. J. F., Bradwell S. N., Gibala M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 98, 1985–1990. 10.1152/japplphysiol.01095.2004
    1. Burke L. M., Angus D. J., Cox G. R., Cummings N. K., Febbraio M. A., Gawthorn K., et al. . (2000). Effect of Fat Adaptation and Carbohydrate Restoration on Metabolism and Performance during Prolonged Cycling. J. Appl. Physiol. 89:2413–2421. 10.1152/jappl.2000.89.6.2413
    1. Campbell S. E., Angus D. J., Febbraio M. A. (2001). Glucose kinetics and exercise performance during phases of the menstrual cycle: effect of glucose ingestion. Am. J. Physiol. Endocrinol. Metabol. 281:E817–E825. 10.1152/ajpendo.2001.281.4.E817
    1. Carey D. G. (2009). Quantifying differences in the “fat burning” zone and the aerobic zone: implications for training. J. Strength Cond. Res. 23, 2090–2095. 10.1519/JSC.0b013e3181bac5c5
    1. Casadio J. R., Kilding A. E., Cotter J. D., Laursen P. B. (2017). From lab to real world: heat acclimation considerations for elite athletes. Sports Med. 47, 1467–1476. 10.1007/s40279-016-0668-9
    1. Chenevière X., Borrani F., Sangsue D., Gojanovic B., Malatesta D. (2011). Gender differences in whole-body fat oxidation kinetics during exercise. Appl. Physiol. Nut. Metabol. 36, 88–95. 10.1139/H10-086
    1. Chenevière X., Malatesta D., Gojanovic B., Borrani F. (2010). Differences in whole-body fat oxidation kinetics between cycling and running. Eur. J. Appl. Physiol. 109, 1037–1045. 10.1007/s00421-010-1443-5
    1. Cohen J. (1977). Statistical Power for the Behavioural Sciences. Oxford, UK: Routledge.
    1. Croci I., Borrani F., Byrne N., Wood R., Hickman I., Chenevière X., et al. . (2014a). Reproducibility of Fatmax and Fat Oxidation Rates during Exercise in Recreationally Trained Males. PLoS ONE 9:e97930. 10.1371/journal.pone.0097930
    1. Croci I., Hickman I. J., Wood R. E., Borrani F., Macdonald G. A., Byrne N. M. (2014b). Fat Oxidation over a range of exercise intensities: fitness versus fatness. Appl. Physiol. Nutr. Metab. 39, 1352–1359. 10.1139/apnm-2014-0144
    1. Dandanell S., Husted K., Amdisen S., Vigelsø A., Dela F., Larsen S., et al. . (2017a). Influence of maximal fat oxidation on long-term weight loss maintenance in humans. J. Appl. Physiol. 123, 267–274. 10.1152/japplphysiol.00270.2017
    1. Dandanell S., Præst C. B., Søndergård S. D., Skovberg C., Dela F., Larsen S., et al. . (2017b). Determination of the exercise intensity that elicits maximal fat oxidation in individuals with obesity. Appl. Physiol. Nutr. Metab. 42, 405–412. 10.1139/apnm-2016-0518
    1. D'Eon T. M., Sharoff C., Chipkin S. R., Grow D., Ruby B. C., Braun B. (2002). Regulation of exercise carbohydrate metabolism by estrogen and progesterone in women. Am. J. Phys. Endocrinol. Metab. 283, E1046–E1055. 10.1152/ajpendo.00271.2002
    1. D'Eon T. M., Souza S. C., Aronovitz M., Obin M. S., Fried S. K., Greenberg A. S. (2005). Estrogen regulation of adiposity and fuel partitioning: evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways. J. Biol. Chem. 280, 35983–35991. 10.1074/jbc.M507339200
    1. De Souza Silveira R., Carlsohn A., Langen G., Mayer F., Scharhag-Rosenberger F. (2016). Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry. J. Int. Soc. Sports Nutr. 13:4 10.1186/s12970-016-0115-1
    1. Devries M. C. (2016). Sex-based differences in endurance exercise muscle metabolism: impact on exercise and nutritional strategies to optimize health and performance in women. Exp. Physiol. 2, 243–249. 10.1113/EP085369
    1. Egan B., Dowling P., O'Connor P. L., Henry M., Meleady P., Zierath J. R., et al. . (2011). 2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training. Proteomics 11, 1413–1428. 10.1002/pmic.201000597
    1. Egan B., Zierath J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 17, 162–84. 10.1016/j.cmet.2012.12.012
    1. Febbraio M. A., Carey M. F., Snow R. J., Stathis C. G., Hargreaves M. (1996). Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 271, R1251–R1255. 10.1152/ajpregu.1996.271.5.R1251
    1. Febbraio M. A., Lambert D. L., Starkie R. L., Proietto J., Hargreaves M. (1998). Effect of epinephrine on muscle glycogenolysis during exercise in trained men. J. Appl. Physiol. 84, 465–470. 10.1152/jappl.1998.84.2.465
    1. Febbraio M. A., Snow R. J., Hargreaves M., Stathis C. G., Martin I. K., Carey M. F. (1994a). Muscle metabolism during exercise and heat stress in trained men: effect of acclimation. J. Appl. Physiol. 76, 589–597. 10.1152/jappl.1994.76.2.589
    1. Febbraio M. A., Snow R. J., Stathis C. G., Hargreaves M., Carey M. F. (1994b). Effect of heat stress on muscle energy metabolism during exercise. J. Appl. Physiol. 77, 2827–2831. 10.1152/jappl.1994.77.6.2827
    1. Fletcher G., Eves F. F., Glover E. I., Robinson S. L., Vernooij C. A., Thompson J. L., et al. . (2017). Dietary intake is independently associated with the maximal capacity for fat oxidation during exercise. Am. J. Clini. Nutr. 105, 864–872. 10.3945/ajcn.116.133520
    1. Frandsen J., Vest S., Larsen S., Dela F., Helge J. W. (2017). Maximal fat oxidation is related to performance in an ironman triathlon. Int. J. Sports Med. 38, 975–982. 10.1055/s-0043-117178
    1. Fritz I. B., Yue K. T. N. (1963). Long-chain carnitine acyl-transferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. J. Lipid Res. 4, 279–88.
    1. Gagnon D. D., Rintamäki H., Gagnon S. S., Cheung S. S., Herzig K. H., Porvari K., et al. . (2013). Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running. Front. Physiol. 4:99. 10.3389/fphys.2013.00099
    1. Galloway S. D. R., Maughan R. J. (1997). Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med. Sci. Sports Exerc. 29, 1240–1249. 10.1097/00005768-199709000-00018
    1. Gibala M. J., Little J. P., van Essen M., Wilkin G. P., Burgomaster K. A., Safdar A., et al. . (2006). Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 575, 901–911. 10.1113/jphysiol.2006.112094
    1. Gmada N., Marzouki H., Haboubi M., Tabka Z., Shephard R. J., Bouhlel E. (2012). Crossover and maximal fat-oxidation points in sedentary healthy subjects: methodological issues. Diabetes Metab. 38, 40–45. 10.1016/j.diabet.2011.07.004
    1. González-Haro C. (2011). Maximal fat oxidation rate and cross-over point with respect to lactate thresholds do not have good agreement. Int. J. Sports Med. 32, 379–385. 10.1055/s-0031-1271763
    1. Gonzalez-Haro C., Galilea P. A., Gonzalez-de-Suso J. M., Drobnic F., Escanero J. F., Chander M. (2007). Maximal lipidic power in high competitive level triathletes and cyclists. Br. J. Sports Med. 41, 23–28. 10.1136/bjsm.2006.029603
    1. González J. G. P., Guadalupe-Grau A., González F. G. R., Peralta R. T., Morales-Alamo D., Rodríguez-García L., et al. . (2017). Androgen receptor gene polymorphisms and maximal fat oxidation in healthy men: a longitudinal study. Nutr. Hosp. 34, 1089–98. 10.20960/nh.885
    1. Gonzalez J. T., Fuchs C. J., Betts J. A., van Loon L. J. C. (2016). Liver glycogen metabolism during and after prolonged endurance-type exercise. Am. J. Physiol. Endocrinol. Metab. 311, E543–E553. 10.1152/ajpendo.00232.2016
    1. Granata C., Oliveira R. S. F., Little J. P., Renner K., Bishop D. J. (2016a). Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. FASEB J. 30, 3413–3423. 10.1096/fj.201500100R
    1. Granata C., Oliveira R. S. F., Little J. P., Renner K., Bishop D. J. (2016b). Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. FASEB J. 30, 959–970. 10.1096/fj.15-276907
    1. Guadalupe-Grau A., Plenge U., Helbo S., Kristensen M., Andersen P. R., Fago A., et al. . (2014). Effects of an 8-Weeks erythropoietin treatment on mitochondrial and whole body fat oxidation capacity during exercise in healthy males. J. Sports Sci. 33, 570–578. 10.1080/02640414.2014.951872
    1. Harber M. P., Kaminsky L. A., Arena R., Blair S. N., Franklin B. A., Myers J., et al. . (2017). Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009. Prog. Cardiovasc. Dis. 60, 11–20. 10.1016/j.pcad.2017.03.001
    1. Hargreaves M., Angus D., Howlett K., Conus N. M., Febbraio M. A. (1996a). Effect of heat stress on glucose kinetics during exercise. J. Appl. Physiol. 81, 1594–1597. 10.1152/jappl.1996.81.4.1594
    1. Hargreaves M., Dillo P., Angus D., Febbraio M. (1996b). Effect of fluid ingestion on muscle metabolism during prolonged exercise. J. Appl. Physiol. 80, 363–366. 10.1152/jappl.1996.80.1.363
    1. Hargreaves M., McConell G., Proietto J. (1995). Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J. Appl. Physiol. 78, 288–292. 10.1152/jappl.1995.78.1.288
    1. Haufe S., Engeli S., Budziarek P., Utz W., Schulz-Menger J., Hermsdorf M., et al. . (2010). Determinants of exercise-induced fat oxidation in obese women and men. Horm. Metab. Res. 42, 215–221. 10.1055/s-0029-1242745
    1. Hermansen L., Hultman E., Saltin B. (1967). Muscle glycogen during prolonged severe exercise. Acta Physiol. Scand. 71, 129–139. 10.1111/j.1748-1716.1967.tb03719.x
    1. Holloszy J. O. (2011). Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Comp. Physiol. 1, 921–940. 10.1002/cphy.c100052
    1. Hoppeler H., Howald H., Conley K., Lindstedt S. L., Claassen H., Vock P., et al. . (1985). Endurance training in humans: aerobic capacity and structure of skeletal muscle. J. Appl. Physiol. 59, 320–327. 10.1152/jappl.1985.59.2.320
    1. Horowitz J. F., Mora-Rodriguez R., Byerley L. O., Coyle E. F. (1997). Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am. J. Physiol. Endocrinol. Metab. 273, E768–E775. 10.1152/ajpendo.1997.273.4.E768
    1. Howald H., Hoppeler H., Claassen H., Mathieu O., Straub R. (1985). Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflug. Archiv. Eur. J. Physiol. 403, 369–376. 10.1007/BF00589248
    1. Hulston C. J., Venables M. C., Mann C. H., Martin C., Philp A., Baar K., et al. . (2010). Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med. Sci. Sports Exerc. 42, 2046–2055. 10.1249/MSS.0b013e3181dd5070
    1. Hultman E. (1967). Physiological role of muscle glycogen in man, with special reference to exercise. Circ. Res. 20(3 Suppl. 1), I99–114.
    1. Hultman E., Bergström J. (1967). Muscle glycogen synthesis in relation to diet studied in normal subjects. Acta Med. Scand. 182, 109–117. 10.1111/j.0954-6820.1967.tb11504.x
    1. Ipavec-Levasseur S., Croci I., Choquette S., Byrne N. M., Cowin G., O'Moore-Sullivan T. M., et al. . (2015). Effect of 1-H moderate-intensity aerobic exercise on intramyocellular lipids in obese men before and after a lifestyle intervention. Appl. Physiol. Nutr. Metab. 40, 1262–1268. 10.1139/apnm-2015-0258
    1. Isacco L., Thivel D., Pereira B., Duclos M., Boisseau N. (2015). Maximal fat oxidation, but not aerobic capacity, is affected by oral contraceptive use in young healthy women. Eur. J. Appl. Physiol. 115, 937–945. 10.1007/s00421-014-3075-7
    1. Jensen J., Rustad P. I., Kolnes A. J., Lai Y. C. (2011). The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front. Physiol. 2:112. 10.3389/fphys.2011.00112
    1. Jeukendrup A. E., Wallis G. A. (2005). Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int. J. Sports Med. 26(1 Suppl. 1), S28–37. 10.1055/s-2004-830512
    1. Knechtle B., Müller C., Willmann F., Kotteck K., Eser P., Knecht H. (2004). Fat oxidation in men and women endurance athletes in running and cycling. Int. J. Sports Med. 25, 38–44. 10.1055/s-2003-45232
    1. Lambert K. C., Aguer M., Kitzmann C., Fédou C., Raynaud De Mauverger E., et al. (2017). Whole-body lipid oxidation during exercise is correlated to insulin sensitivity and mitochondrial function in middle-aged obese men. Austin Diabetes Res. 2, 1–7.
    1. Lanzi S., Codecasa F., Cornacchia M., Maestrini S., Capodaglio P., Brunani A., et al. . (2015). Short-term HIIT and fatmax training increase aerobic and metabolic fitness in men with class II, and III Obesity. Obesity 23, 1987–1994. 10.1002/oby.21206
    1. Lanzi S., Codecasa F., Cornacchia M., Maestrini S., Salvadori A., Brunani A., et al. . (2014). Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults. PLoS ONE 9:e88707. 10.1371/journal.pone.0088707
    1. Layden D. D., Patterson M. J., Nimmo M. A. (2002). Effects of reduced ambient temperature on fat utilization during submaximal exercise. Med. Sci. Sports Exerc. 34, 774–779. 10.1097/00005768-200205000-00008
    1. Lima-Silva A. E., Bertuzzi R. C. M., Pires F. O., Gagliardi J. F. L., Barros R. V., Hammond J., et al. . (2010). Relationship between training status and maximal fat oxidation rate. J. Sports Sci. Med. 9, 31–35.
    1. Marchand I., Tarnopolsky M. A., Adamo K. B., Bourgeois J. M., Chorneyko K., Graham T. E. (2007). Quantitative assessment of human muscle glycogen granules size and number in subcellular locations during recovery from prolonged exercise. J. Physiol. 580, 617–628. 10.1113/jphysiol.2006.122457
    1. Marzouki H., Farhani Z., Gmada N., Tabka Z., Shephard R. J., Bouhlel E. (2014). Relative and absolute reliability of the crossover and maximum fat oxidation points during treadmill running. Sci. Sports 29, e107–e114. 10.1016/j.scispo.2014.07.013
    1. McBride H. M., Neuspiel M., Wasiak S. (2006). Mitochondria: more than just a powerhouse. Curr. Biol. 16, 551–560. 10.1016/j.cub.2006.06.054
    1. McCaig R. H., Gooderson C. Y. (1986). Ergonomic and physiological aspects of military operations in a cold wet climate. Ergonomics 29, 849–857. 10.1080/00140138608967197
    1. McLaughlin J. E., Howley E. T., Bassett D. R., Jr., Thompson D. L., Fitzhugh E. C. (2010). Test of the classic model for predicting endurance running performance. Med. Sci. Sports Exerc. 42, 991–997. 10.1249/MSS.0b013e3181c0669d
    1. Meyer C., Dostou J. M., Welle S. L., Gerich J. E. (2002). Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 282, E419–E427. 10.1152/ajpendo.00032.2001
    1. Meyer T., Folz C., Rosenberger F., Kindermann W. (2009). The reliability of fatmax. Scandinav. J. Med. Sci. Sports 19, 213–221. 10.1111/j.1600-0838.2008.00775.x
    1. Mogensen M., Vind B. F., Højlund K., Beck-Nielsen H., Sahlin K. (2009). Maximal lipid oxidation in patients with Type 2 diabetes is normal and shows an adequate increase in response to aerobic training. Diabetes, Obes. Metab. 11, 874–883. 10.1111/j.1463-1326.2009.01063.x
    1. Mohebbi H., Nourshahi M., Ghasemikaram M., Safarimosavi S. (2015). Effects of exercise at individual anaerobic threshold and maximal fat oxidation intensities on plasma levels of nesfatin-1 and metabolic health biomarkers. J. Physiol. Biochem. 71, 79–88. 10.1007/s13105-015-0383-2
    1. Montero D., Cathomen A., Jacobs R. A., Flück D., de Leur J., Keiser S., et al. . (2015). Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. J. Physiol. 593, 4677–4688. 10.1113/JP270250
    1. Mora-Rodríguez R., Sanchez-Roncero A., Fernández-Elías V. E., Guadalupe-Grau A., Ortega J. F., Dela F., et al. . (2016). Aerobic exercise training increases muscle water content in obese middle-age men. Med. Sci. Sports Exerc. 48, 822–828. 10.1249/MSS.0000000000000848
    1. Nielsen J., Cheng A. J., Ørtenblad N., Westerblad H. (2014). Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres. J. Physiol. 592, 2003–2012. 10.1113/jphysiol.2014.271528
    1. Nielsen J., Holmberg H. C., Schrøder H. D., Saltin B., Ørtenblad N. (2011). Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J. Physiol. 589, 2871–2885. 10.1113/jphysiol.2010.204487
    1. Nielsen J., Schrøder H. D., Rix C. G., Ørtenblad N. (2009). Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres. J. Physiol. 587, 3679–3690. 10.1113/jphysiol.2009.174862
    1. Nilsson L. H. (1973). Liver glycogen content in man in the postabsorptive state. Scand. J. Clin. Lab. Invest. 32, 317–323. 10.3109/00365517309084354
    1. Nilsson L. H., Fürst P., Hultman E. (1973). Carbohydrate metabolism of the liver in normal man under varying dietary conditions. Scand. J. Clin. Lab. Invest. 32, 331–337. 10.3109/00365517309084356
    1. Nordby P., Rosenkilde M., Ploug T., Westh K., Feigh M., Nielsen N., et al. . (2015). Independent effects of endurance training and weight loss on peak fat oxidation in moderately overweight men: a randomized controlled trial. J. Appl. Physiol. 118, 803–810. 10.1152/japplphysiol.00715.2014
    1. Nordby P., Saltin B., Helge J. W. (2006). Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity? Scandinav. J. Med. Sci. Sports 16, 209–214. 10.1111/j.1600-0838.2005.00480.x
    1. Ørtenblad N., Nielsen J., Saltin B., Holmberg H. C. (2011). Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J. Physiol. 589, 711–725. 10.1113/jphysiol.2010.195982
    1. Ørtenblad N., Westerblad H., Nielsen J. (2013). Muscle glycogen stores and fatigue. J. Physiol. 591, 4405–4413. 10.1113/jphysiol.2013.251629
    1. Oosthuyse T., Bosch A. N. (2010). The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Med. 40, 207–227. 10.2165/11317090-000000000-00000
    1. Ørtenblad N., Nielsen J. (2015). Muscle glycogen and cell function - location, location, location. Scandinav. J. Med. Sci. Sports 25(Suppl. 4), 34–40. 10.1111/sms.12599
    1. Orr R. M., Johnston V., Coyle J., Pope R. (2015). Reported load carriage injuries of the australian army soldier. J. Occupat. Rehab. 25 (2). Springer US: 316–22.
    1. Oz G., Henry P. G., Seaquist E. R., Gruetter R. (2003). Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem. Int. 43, 323–329. 10.1016/S0197-0186(03)00019-6
    1. Parkin J. M., Carey M. F., Zhao S., Febbraio M. A. (1999). Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J. Appl. Physiol. 86, 902–908. 10.1152/jappl.1999.86.3.902
    1. Pérez-Martin A., Dumortier M., Raynaud E., Brun J. F., Fédou C., Bringer J., et al. . (2001). Balance of substrate oxidation during submaximal exercise in lean and obese people. Diabetes Metab. 27, 466–74.
    1. Perry C. G. R., Heigenhauser G. J. F., Bonen A., Spriet L. L. (2008). High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl. Physiol. Nutr. Metab. 33, 1112–1123. 10.1139/H08-097
    1. Phinney S. D., Bistrian B. R., Evans W. J., Gervino E., Blackburn G. L. (1983). The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metab. Clin. Exp. 32, 769–776. 10.1016/0026-0495(83)90106-3
    1. Purdom T., Kravitz L., Dokladny K., Mermier C. (2018). Understanding the factors that effect maximal fat oxidation. J. Int. Soc. Sports Nutr. 15:3. 10.1186/s12970-018-0207-1
    1. Racinais S., Alonso J. M., Coutts A. J., Flouris A. D., Girard O., González-Alonso J., et al. . (2015). Consensus recommendations on training and competing in the heat. Br. J. Sports Med. 49, 1164–1173. 10.1136/bjsports-2015-094915
    1. Randell R. K., Rollo I., Roberts T. J., Dalrymple K. J., Jeukendrup A. E., Carter J. M. (2017). Maximal fat oxidation rates in an athletic population. Med. Sci. Sports Exerc. 49, 133–140. 10.1249/MSS.0000000000001084
    1. Rigden D. J., Jellyman A. E., Frayn K. N., Coppack S. W. (1990). Human adipose tissue glycogen levels and responses to carbohydrate feeding. Eur. J. Clin. Nutr. 44, 689–92.
    1. Robinson S. L., Hattersley J., Frost G. S., Chambers E. S., Wallis G. A. (2015). Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. J. Appl. Physiol. 118, 1415–1422. 10.1152/japplphysiol.00058.2015
    1. Romijn J. A., Coyle E. F., Sidossis L. S., Zhang X. J., Wolfe R. R. (1995). Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J. Appl. Physiol. 79, 1939–1945. 10.1152/jappl.1995.79.6.1939
    1. Romijn J. A., Gastaldelli A., Horowitz J. F., Endert E., Wolfe R. R. (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. Endocrinol. Metab. 265, 380–391. 10.1152/ajpendo.1993.265.3.E380
    1. Rosenkilde M. P., Nordby L. B., Nielsen B. M., Stallknecht Helge J. W. (2010). Fat oxidation at rest predicts peak fat oxidation during exercise and metabolic phenotype in overweight men. Int. J. Obes. 34, 871–77. 10.1038/ijo.2010.11
    1. Rosenkilde M., Reichkendler M. H., Auerbach P., Bonne T. C., Sjödin A., Ploug T., et al. . (2015). Changes in peak fat oxidation in response to different doses of endurance training. Scandinav. J. Med. Sci. Sports 25, 41–52. 10.1111/sms.12151
    1. Ross R., Blair S. N., Arena R., Church T. S., Després J. P., Franklin B. A., et al. . (2016). Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the american heart association. Circulation 134. e653–e699. 10.1161/CIR.0000000000000461
    1. Sahlin K., Harris R. C., Nylind B., Hultman E. (1976). Lactate Content and pH in muscle samples obtained after dynamic exercise. Pflugers Archiv. Eur. J. Physiol. 367, 143–149. 10.1007/BF00585150
    1. Sahlin K. M., Mogensen M., Bagger M., Fernstro Pedersen P. K. (2007). The potential for mitochondrial fat oxidation in human skeletal muscle influences whole body fat oxidation during low-intensity exercise. Am. J. Physiol. 292, E223–E230. 10.1152/ajpendo.00266.2006
    1. Scalzo R. L., Peltonen G. L., Binns S. E., Shankaran M., Giordano G. R., Hartley D. A., et al. . (2014). Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J. 28, 2705–2714. 10.1096/fj.13-246595
    1. Schubert M. M., Clarke H. E., Seay R. F., Spain K. K. (2017). Impact of 4 weeks of interval training on resting metabolic rate, fitness, and health-related outcomes. Appl. Physiol. Nutr. Metab. 42, 1073–1081. 10.1139/apnm-2017-0268
    1. Schwindling S., Kindermann W., Meyer T. (2014). Limited benefit of fatmax-test to derive training prescriptions. Int. J. Sports Med. 35, 280–285. 10.1055/s-0033-1349106
    1. Sidossis L. S., Gastaldelli A., Klein S., Wolfe R. R. (1997). Regulation of Plasma Fatty Acid Oxidation during Low- and High-Intensity Exercise. Am. J. Physiol. 272, E1065–E1070. 10.1152/ajpendo.1997.272.6.E1065
    1. Snyder A. C., O'Hagan K. P., Clifford P. S., Hoffmann M. D., Foster C. (1993). Exercise responses to in-line skating: comparisons to running and cycling. Int. J. Sports Med. 14, 38–42. 10.1055/s-2007-1021143
    1. Soenen S., Plasqui G., Smeets A. J., Westerterp-Plantenga M. S. (2010). Protein intake induced an increase in exercise stimulated fat oxidation during stable body weight. Physiol. Behav. 101, 770–774. 10.1016/j.physbeh.2010.08.019.
    1. Spina R. J., Chi M. M., Hopkins M. G., Nemeth P. M., Lowry O. H., Holloszy J. O. (1996). Mitochondrial enzymes increase in muscle in response to 7-10 days of cycle exercise. J. Appl. Physiol. 80, 2250–2254. 10.1152/jappl.1996.80.6.2250
    1. Spriet L. L. (2014). New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 44(Suppl. 1), 87–96. 10.1007/s40279-014-0154-1
    1. Starkie R. L., Hargreaves M., Lambert D. L., Proietto J., Febbraio M. A. (1999). Effects of temperature on muscle metabolism during submaximal exercise in humans. Exp. Physiol. 84, 775–784. 10.1111/j.1469-445X.1999.01815.x
    1. Starritt E. C., Howlett R. A., Heigenhauser G. J. F., Spriet L. L. (2000). Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. Am. J. Physiol. 278, E462–E468. 10.1152/ajpendo.2000.278.3.E462
    1. Stisen A. B., Stougaard O., Langfort J., Helge J. W., Sahlin K., Madsen K. (2006). Maximal fat oxidation rates in endurance trained and untrained women. Eur. J. Appl. Physiol. 98, 497–506. 10.1007/s00421-006-0290-x
    1. Talanian J. L., Galloway S. D. R., Heigenhauser G. J. F., Bonen A., Spriet L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J. Appl. Physiol. 102, 1439–1447. 10.1152/japplphysiol.01098.2006
    1. Talanian J. L., Holloway G. P., Snook L. A., Heigenhauser G. J. F., Bonen A., Spriet L. L. (2010). Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Am. J. Physiol. 299, E180–E188. 10.1152/ajpendo.00073.2010
    1. Tan S., Wang J., Cao L., Guo Z., Wang Y. (2016). Positive effect of exercise training at maximal fat oxidation intensity on body composition and lipid metabolism in overweight middle-aged women. Clin. Physiol. Funct. Imaging 36, 225–230. 10.1111/cpf.12217
    1. Tolfrey K., Jeukendrup A. E., Batterham A. M. (2010). Group- and individual-level coincidence of the “Fatmax” and lactate accumulation in adolescents. Eur. J. Appl. Physiol. 109, 1145–1153. 10.1007/s00421-010-1453-3
    1. Tsujimoto T., Sasai H., Miyashita M., Eto M., So R., Ohkubo H., et al. . (2012). Effect of weight loss on maximal fat oxidation rate in obese men. Obesity Research and Clinical Practice 6 (2). Asia Oceania Assoc. for the Study of Obesity: e111–19.
    1. van Loon L. J. C., Greenhaff P. L., Constantin-Teodosiu D., Saris W. H. M., Wagenmakers A. J. M. (2001). The effects of increasing exercise intensity on muscle fuel utilisation in humans. J. Physiol. 536, 295–304. 10.1111/j.1469-7793.2001.00295.x
    1. van Loon L. J. C., Jeukendrup A. E., Saris W. H., Wagenmakers A. J. (1999). Effect of training status on fuel selection during submaximal exercise with glucose ingestion. J. Appl. Physiol. 87, 1413–1420. 10.1152/jappl.1999.87.4.1413
    1. Venables M. C., Achten J., Jeukendrup A. E. (2005). Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J. Appl. Physiol. 98, 160–167. 10.1152/japplphysiol.00662.2003
    1. Venables M. C., Jeukendrup A. E. (2008). Endurance training and obesity: effect on substrate metabolism and insulin sensitivity. Med. Sci. Sports Exerc. 40, 495–502. 10.1249/MSS.0b013e31815f256f
    1. Volek J. S., Freidenreich D. J., Saenz C., Kunces L. J., Creighton B. C., Bartley J. M., et al. . (2016). Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism 65, 100–110. 10.1016/j.metabol.2015.10.028
    1. Wang C. H., Wang C. C., Wei Y. H. (2010). Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes. Ann. N. Y. Acad. Sci. U.S.A. 1201, 157–165. 10.1111/j.1749-6632.2010.05625.x
    1. Wasserman D. H. (2009). Four Grams of Glucose. Am. J. Physiol. 296, E11–E21. 10.1152/ajpendo.90563.2008
    1. Webster C. C., Noakes T. D., Chacko S. K., Swart J., Kohn T. A., Smith J. A. H. (2016). Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet. J. Physiol. 594, 4389–4405. 10.1113/JP271934
    1. Wu Y. T., Wu S. B., Wei Y. H. (2014). Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases. Curr. Pharm. Des. 20, 5510–5526. 10.2174/1381612820666140306103401
    1. Yeo W. K., Paton C. D., Garnham A. P., Burke L. M., Carey A. L., Hawley J. A. (2008). Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J. Appl. Physiol. 105, 1462–1470. 10.1152/japplphysiol.90882.2008
    1. Zurlo F., Lillioja S. A., Esposito-Del Puente A., Nyomba B. L., Raz I., Saad M. F., et al. . (1990). Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-H RQ. Am. J. Physiol. 259, E650–E657. 10.1152/ajpendo.1990.259.5.E650

Source: PubMed

3
Abonnieren