Functional status mediates the association between peripheral neuropathy and health-related quality of life in individuals with diabetes

Tessa Riandini, Hwee Lin Wee, Eric Y H Khoo, Bee Choo Tai, Wilson Wang, Gerald C H Koh, E Shyong Tai, Subramaniam Tavintharan, Kurumbian Chandran, Siew Wai Hwang, Kavita Venkataraman, Tessa Riandini, Hwee Lin Wee, Eric Y H Khoo, Bee Choo Tai, Wilson Wang, Gerald C H Koh, E Shyong Tai, Subramaniam Tavintharan, Kurumbian Chandran, Siew Wai Hwang, Kavita Venkataraman

Abstract

Aims: To examine differences in health-related quality of life (HRQoL) between patients with and without diabetic peripheral neuropathy (DPN), and whether these differences can be explained by functional deficits.

Methods: This was a cross-sectional study of 160 patients with type 2 diabetes mellitus, 80 with DPN and 80 without. Assessments included HRQoL (health utility score derived from EQ-5D-5L), functional status measurements [muscle strength, timed up and go (TUG), five times sit-to-stand (FTSTS), functional reach, body sway velocity] and self-reported balance confidence [Activities-specific Balance Confidence (ABC) scale].

Results: Mean utility scores were 0.67 ± 0.14 and 0.77 ± 0.16 in patients with and without DPN, respectively (p < 0.001). Patients with DPN had lower great toe extensor strength (6.4 ± 1.8 vs 7.6 ± 2.8 lbs, p = 0.001), greater body sway velocity (2.40 ± 1.31 vs 1.90 ± 0.52 mm/s, p = 0.002), slower TUG (12.1 ± 4.6 vs 10.1 ± 2.3 s, p < 0.001) and FTSTS (15.8 ± 5.8 vs 13.9 ± 5.4 s, p = 0.03) scores, and lower ABC score (73.4 ± 21.3 vs 82.6 ± 16.9, p = 0.003), compared to those without DPN. On stepwise multiple regression, DPN status, FTSTS, body sway velocity, BMI, diabetes duration, pain, and gender explained 38% of HRQoL variance. Addition of ABC score into the model explained 45% of variance. Results from structural equation modelling showed that DPN had direct effects on HRQoL and indirect effects through FTSTS, body sway velocity, and ABC score, with χ 2 = 8.075 (p = 0.044), root mean square error of approximation = 0.103 (lower bound 0.015, upper bound 0.191), Comparative Fit Index = 0.966, Tucker-Lewis Index = 0.887, and Standardized Root Mean Square Residual = 0.053.

Conclusions: Patients with DPN have worse HRQoL compared to patients without DPN, partly mediated by functional status parameters. Effective interventions targeting functional status may be beneficial in improving HRQoL in these patients.

Keywords: Diabetic polyneuropathy; Functional status; Health-related quality of life; Muscle strength; Postural balance; Range of motion; Type 2 diabetes mellitus.

Conflict of interest statement

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was obtained from the National Healthcare Group Domain Specific Review Board and SingHealth Centralised Institutional Review Board.

Informed consent

Written informed consent was obtained from all participants prior to study initiation.

Figures

Fig. 1
Fig. 1
Functional status and HRQoL differences between DPN and non-DPN groups. Rright, Lleft. *p < 0.05
Fig. 2
Fig. 2
SEM analysis of HRQoL predictors. Path diagram showing inter-relationships between DPN status, functional status, and HRQoL. Boxes represent observed variables, single-headed arrows represent hypothesized causal relationships, and circles represent error terms/residuals. Reported values for each path: effect estimate (SE, p value); reported values for error terms (ε1 − ε4): raw variance (SE)

References

    1. Grandy S, Fox KM. EQ-5D visual analog scale and utility index values in individuals with diabetes and at risk for diabetes: findings from the study to help improve early evaluation and management of risk factors leading to diabetes (SHIELD) Health Q Life Outcomes. 2008;6(1):1. doi: 10.1186/1477-7525-6-1.
    1. Wexler D, Grant R, Wittenberg E, Bosch J, Cagliero E, Delahanty L, Blais M, Meigs J. Correlates of health-related quality of life in type 2 diabetes. Diabetologia. 2006;49(7):1489–1497. doi: 10.1007/s00125-006-0249-9.
    1. Dyck PJ, Kratz K, Karnes J, Litchy WJ, Klein R, Pach J, Wilson D, O’Brien P, Melton L. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort The Rochester Diabetic Neuropathy Study. Neurology. 1993;43(4):817-817. doi: 10.1212/WNL.43.4.817.
    1. Greene DA, Stevens MJ, Feldman EL. Diabetic neuropathy: scope of the syndrome. Am J Med. 1999;107(2):2–8. doi: 10.1016/S0002-9343(99)00007-8.
    1. Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–962. doi: 10.2337/diacare.28.4.956.
    1. Venkataraman K, Wee H, Leow M, Tai E, Lee J, Lim S, Tavintharan S, Wong T, Ma S, Heng D. Associations between complications and health-related quality of life in individuals with diabetes. Clin Endocrinol. 2013;78(6):865–873. doi: 10.1111/j.1365-2265.2012.04480.x.
    1. Happich M, John J, Stamenitis S, Clouth J, Polnau D. The quality of life and economic burden of neuropathy in diabetic patients in Germany in 2002—results from the Diabetic Microvascular Complications (DIMICO) study. Diabetes Res Clin Pract. 2008;81(2):223–230. doi: 10.1016/j.diabres.2008.03.019.
    1. Simoneau GG, Derr JA, Ulbrecht JS, Becker MB, Cavanagh PR. Diabetic sensory neuropathy effect on ankle joint movement perception. Arch Phys Med Rehabil. 1996;77(5):453–460. doi: 10.1016/S0003-9993(96)90033-7.
    1. Martinelli AR, Mantovani AM, Nozabieli AJL, Ferreira DMA, Barela JA, de Camargo MR, Fregonesi CEPT. Muscle strength and ankle mobility for the gait parameters in diabetic neuropathies. Foot. 2013;23(1):17–21. doi: 10.1016/j.foot.2012.11.001.
    1. Sanz-Corbalán I, Lázaro-Martínez J, García-Morales E, Aragón-Sánchez J, Carabantes-Alarcón D, García-Álvarez Y. Relationship of limited joint mobility and foot deformities with neurological examination in patients with diabetes. Exp Clin Endocrinol Diabetes. 2013;121(04):239–243. doi: 10.1055/s-0032-1329981.
    1. Allen MD, Choi IH, Kimpinski K, Doherty TJ, Rice CL. Motor unit loss and weakness in association with diabetic neuropathy in humans. Muscle Nerve. 2013;48(2):298–300. doi: 10.1002/mus.23792.
    1. Boucher P, Teasdale N, Courtemanche R, Bard C, Fleury M. Postural stability in diabetic polyneuropathy. Diabetes Care. 1995;18(5):638–645. doi: 10.2337/diacare.18.5.638.
    1. Manor B, Li L. Characteristics of functional gait among people with and without peripheral neuropathy. Gait Posture. 2009;30(2):253–256. doi: 10.1016/j.gaitpost.2009.04.011.
    1. Richardson JK, Hurvitz EA. Peripheral neuropathy: a true risk factor for falls. J Gerontol Ser A Biol Sci Med Sci. 1995;50(4):M211–M215. doi: 10.1093/gerona/50A.4.M211.
    1. Boulton AJ, Armstrong DG, Albert SF, Frykberg RG, Hellman R, Kirkman MS, Lavery LA, LeMaster JW, Mills JL, Mueller MJ. Comprehensive foot examination and risk assessment. Diabetes Care. 2008;31(8):1679–1685. doi: 10.2337/dc08-9021.
    1. Foundation ER. . Accessed 9 Nov 2016
    1. Tsuchiya A, Ikeda S, Ikegami N, Nishimura S, Sakai I, Fukuda T, Hamashima C, Hisashige A, Tamura M. Estimating an EQ-5D population value set: the case of Japan. Health Econ. 2002;11(4):341–353. doi: 10.1002/hec.673.
    1. Morimoto A, Onda Y, Nishimura R, Sano H, Utsunomiya K, Tajima N. Cause-specific mortality trends in a nationwide population-based cohort of childhood-onset type 1 diabetes in Japan during 35 years of follow-up: the DERI Mortality Study. Diabetologia. 2013;56(10):2171–2175. doi: 10.1007/s00125-013-3001-2.
    1. Sone H, Tanaka S, Tanaka S, Suzuki S, Seino H, Hanyu O, Sato A, Toyonaga T, Okita K, Ishibashi S, Kodama S, Akanuma Y, Yamada N. Leisure-time physical activity is a significant predictor of stroke and total mortality in Japanese patients with type 2 diabetes: analysis from the Japan Diabetes Complications Study (JDCS) Diabetologia. 2013;56(5):1021–1030. doi: 10.1007/s00125-012-2810-z.
    1. Maeda Y, Inoguchi T, Etoh E, Kodama Y, Sasaki S, Sonoda N, Nawata H, Shimabukuro M, Takayanagi R. Brachial-ankle pulse wave velocity predicts all-cause mortality and cardiovascular events in patients with diabetes: the Kyushu Prevention Study of Atherosclerosis. Diabetes Care. 2014;37(8):2383–2390. doi: 10.2337/dc13-1886.
    1. Powell LE, Myers AM. The activities-specific balance confidence (ABC) scale. J Gerontol Ser A Biol Sci Med Sci. 1995;50(1):M28–M34. doi: 10.1093/gerona/50A.1.M28.
    1. Redekop WK, Koopmanschap MA, Stolk RP, Rutten GEHM, Wolffenbuttel BHR, Niessen LW. Health-related quality of life and treatment satisfaction in Dutch patients with type 2 diabetes. Diabetes Care. 2002;25(3):458–463. doi: 10.2337/diacare.25.3.458.
    1. Gore M, Brandenburg NA, Dukes E, Hoffman DL, Tai K-S, Stacey B. Pain severity in diabetic peripheral neuropathy is associated with patient functioning, symptom levels of anxiety and depression, and sleep. J Pain Symptom Manag. 2005;30(4):374–385. doi: 10.1016/j.jpainsymman.2005.04.009.
    1. Cheung YB, Luo N, Ng R, Lee CF. Mapping the functional assessment of cancer therapy-breast (FACT-B) to the 5-level EuroQoL Group’s 5-dimension questionnaire (EQ-5D-5L) utility index in a multi-ethnic Asian population. Health Qual Life Outcomes. 2014;12(1):1. doi: 10.1186/s12955-014-0180-6.
    1. Eong KA, Chan E, Luo N, Wong S, Tan N, Lim T, Wagle A. Validity of EuroQOL-5D, time trade-off, and standard gamble for age-related macular degeneration in the Singapore population. Eye. 2012;26(3):379–388. doi: 10.1038/eye.2011.218.
    1. Yang F, Griva K, Lau T, Vathsala A, Lee E, Ng HJ, Mooppil N, Foo M, Newman SP, Chia KS, Luo N. Health-related quality of life of Asian patients with end-stage renal disease (ESRD) in Singapore. Qual Life Res Int J Qual Life Asp Treat Care Rehabil. 2015;24(9):2163–2171. doi: 10.1007/s11136-015-0964-0.
    1. Solli O, Stavem K, Kristiansen IS. Health-related quality of life in diabetes: the associations of complications with EQ-5D scores. Health Qual Life Outcomes. 2010;8(1):1. doi: 10.1186/1477-7525-8-18.
    1. O’Connor AB. Neuropathic pain. Pharmacoeconomics. 2009;27(2):95–112. doi: 10.2165/00019053-200927020-00002.
    1. Van den Bosch CG, Gilsing MG, Lee S-G, Richardson JK, Ashton-Miller JA. Peripheral neuropathy effect on ankle inversion and eversion detection thresholds. Arch Phys Med Rehabil. 1995;76(9):850–856. doi: 10.1016/S0003-9993(95)80551-6.
    1. Vaz MM, Costa GC, Reis JG, Junior WM, de Paula FJA, Abreu DC. Postural control and functional strength in patients with type 2 diabetes mellitus with and without peripheral neuropathy. Arch Phys Med Rehabil. 2013;94(12):2465–2470. doi: 10.1016/j.apmr.2013.06.007.
    1. Alfonso-Rosa RM, Del Pozo-Cruz B, Del Pozo-Cruz J, Del Pozo-Cruz JT, Sanudo B. The relationship between nutritional status, functional capacity, and health-related quality of life in older adults with type 2 diabetes: A Pilot Explanatory Study. J Nutr Health Aging. 2013;17(4):315–321. doi: 10.1007/s12603-013-0028-5.
    1. Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol Ser A Biol Sci Med Sci. 2002;57(8):M539–M543. doi: 10.1093/gerona/57.8.M539.
    1. Castelli L, De Luca F, Marchetti MR, Sellitto G, Fanelli F, Prosperini L. The dual task-cost of standing balance affects quality of life in mildly disabled MS people. Neurol Sci. 2016;37(5):673–679. doi: 10.1007/s10072-015-2456-y.
    1. Myers AM, Fletcher PC, Myers AH, Sherk W. Discriminative and evaluative properties of the activities-specific Balance Confidence (ABC) Scale. J Gerontol Ser A Biol Sci Med Sci. 1998;53A(4):M287–M294. doi: 10.1093/gerona/53A.4.M287.
    1. Myers AM, Powell LE, Maki BE, Holliday PJ, Brawley LR, Sherk W. Psychological indicators of balance confidence: relationship to actual and perceived abilities. J Gerontol Ser A Biol Sci Med Sci. 1996;51A(1):M37–M43. doi: 10.1093/gerona/51A.1.M37.
    1. Lajoie Y, Gallagher S. Predicting falls within the elderly community: comparison of postural sway, reaction time, the Berg balance scale and the activities-specific balance confidence (ABC) scale for comparing fallers and non-fallers. Arch Gerontol Geriatr. 2004;38(1):11–26. doi: 10.1016/S0167-4943(03)00082-7.
    1. Elissen AMJ, Hertroijs DFL, Schaper NC, Bosma H, Dagnelie PC, Henry RM, van der Kallen CJ, Koster A, Schram MT, Stehouwer CDA, Schouten J, Berendschot T, Ruwaard D. Differences in biopsychosocial profiles of diabetes patients by level of glycaemic control and health-related quality of life: the Maastricht Study. PLoS ONE. 2017;12(7):e0182053. doi: 10.1371/journal.pone.0182053.
    1. Gonzalez-Chica DA, Adams R, Dal Grande E, Avery J, Hay P, Stocks N. Lower educational level and unemployment increase the impact of cardiometabolic conditions on the quality of life: results of a population-based study in South Australia. Qual Life Res Int J Qual Life Asp Treat Care Rehabil. 2017;26(6):1521–1530. doi: 10.1007/s11136-017-1503-y.
    1. Streckmann F, Zopf EM, Lehmann HC, May K, Rizza J, Zimmer P, Gollhofer A, Bloch W, Baumann FT. Exercise intervention studies in patients with peripheral neuropathy: a systematic review. Sports Med (Auckl NZ) 2014;44(9):1289–1304. doi: 10.1007/s40279-014-0207-5.
    1. Rand D, Miller WC, Yiu J, Eng JJ. Interventions for addressing low balance confidence in older adults: a systematic review and meta-analysis. Age Ageing. 2011;40(3):297–306. doi: 10.1093/ageing/afr037.
    1. van der Heijden MM, van Dooren FE, Pop VJ, Pouwer F. Effects of exercise training on quality of life, symptoms of depression, symptoms of anxiety and emotional well-being in type 2 diabetes mellitus: a systematic review. Diabetologia. 2013;56(6):1210–1225. doi: 10.1007/s00125-013-2871-7.

Source: PubMed

3
Abonnieren