Clinical Courses and Outcomes of Patients with Chronic Obstructive Pulmonary Disease During the COVID-19 Epidemic in Hubei, China

Weihua Hu, Minglin Dong, Mengqing Xiong, Dong Zhao, Yang Zhao, Mengmei Wang, Tao Wang, Zhenlian Liu, Li Lu, Ke Hu, Weihua Hu, Minglin Dong, Mengqing Xiong, Dong Zhao, Yang Zhao, Mengmei Wang, Tao Wang, Zhenlian Liu, Li Lu, Ke Hu

Abstract

Purpose: In this study, we investigated the acute exacerbation and outcomes of COPD patients during the outbreak of COVID-19 and evaluated the prevalence and mortality of COPD patients with confirmed COVID-19.

Methods: A prospectively recruited cohort of 489 COPD patients was retrospectively followed-up for their conditions during the COVID-19 pandemic from December 2019 to March 2020 in Hubei, China. In addition, the features of 821 discharged patients with confirmed COVID-19 were retrospectively analyzed.

Results: Of the 489 followed-up enrolled COPD patients, 2 cases were diagnosed as confirmed COVID-19, and 97 cases had exacerbations, 32 cases of which were hospitalized, and 14 cases died. Compared with the 6-month follow-up results collected 1 year ago, in 307 cases of this cohort, the rates of exacerbations and hospitalization of the 489 COPD patients during the last 4 months decreased, while the mortality rate increased significantly (2.86% vs 0.65%, p=0.023). Of the 821 patients with COVID-19, 37 cases (4.5%) had pre-existing COPD. Of 180 confirmed deaths, 19 cases (10.6%) were combined with COPD. Compared to COVID-19 deaths without COPD, COVID-19 deaths with COPD had higher rates of coronary artery disease and/or cerebrovascular diseases. Old age, low BMI and low parameters of lung function were risk factors of all-cause mortality for COVID-19 patients with pre-existing COPD.

Conclusion: Our findings imply that acute exacerbations and hospitalizations of COPD patients were infrequent during the COVID-19 pandemic. However, COVID-19 patients with pre-existing COPD had a higher risk of all-cause mortality.

Trial registration: ClinicalTrials.gov NCT03182309.

Keywords: COPD; COVID-19; SARS-CoV-2; chronic obstructive pulmonary disease; exacerbation; mortality; novel coronavirus; novel coronavirus pneumonia.

Conflict of interest statement

Dong M and Xiong M contributed equally with Hu W. All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were declared.

© 2020 Hu et al.

Figures

Figure 1
Figure 1
Flow chart of the follow-up design and process.

References

    1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi:10.1016/S0140-6736(20)30211-7
    1. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061. doi:10.1001/jama.2020.1585.
    1. Yang Y, Lu QB, Liu MJ, et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. medRxiv. 2020. doi:10.1101/2020.02.10.20021675.
    1. Guan WJ, Ni ZY, Hu Y, et al. China medical treatment expert group for COVID–19. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:10.1056/NEJMoa2002032.
    1. Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet. 2018;391(10131):1706–1717. doi:10.1016/S0140-6736(18)30841-9
    1. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557–582. doi:10.1164/rccm.201701-0218PP
    1. Li MH, Fan LC, Mao B, et al. Short-term exposure to ambient fine particulate matter increases hospitalizations and mortality in COPD: a systematic review and meta-analysis. Chest. 2016;149(2):447–458. doi:10.1378/chest.15-0513
    1. Liu S, Zhou Y, Liu S, et al. Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: results from a cross-sectional study in China. Thorax. 2017;72(9):788–795. doi:10.1136/thoraxjnl-2016-208910
    1. Woodhead M, Blasi F, Ewig S, et al. Guidelines for the management of adult lower respiratory tract infections. Eur Respir J. 2005;26(6):1138–1180. doi:10.1183/09031936.05.00055705
    1. Jartti L, Langen H, Söderlund-Venermo M, et al. New respiratory viruses and the elderly. Open Respir Med J. 2011;5:61–69. doi:10.2174/1874306401105010061
    1. Rohde G, Borg I, Arinir U, et al. Evaluation of a real-time polymerase chain reaction for severe acute respiratory syndrome (SARS) associated coronavirus in patients with hospitalized exacerbation of COPD. Eur J Med Res. 2004;9(11):505–509.
    1. Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection. Ann Intern Med. 2014;160:389e397. doi:10.7326/M13-2486
    1. Kapoor M, Pringle K, Kumar A, et al. Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States. Clin Infect Dis. 2014;59:1511e1518. doi:10.1093/cid/ciu635
    1. Ringshausen FC, Tan AYM, Allander T, et al. Frequency and clinical relevance of human bocavirus infection in acute exacerbations of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2009;4:111–117. doi:10.2147/COPD.S4801
    1. National Health Commission of the People’s Republic of China. Diagnosis and treatment of novel coronavirus infected pneumonia (trial 7th edition) [EB/OL]; 2020. Available from: .
    1. Peiris JSM, Yuen KY, Osterhaus ADME, Stöhr K. The severe acute respiratory syndrome. N Engl J Med. 2003;349(25):2431–2441. doi:10.1056/NEJMra032498
    1. Lupia T, Scabini S, Mornese Pinna S, Di Perri G, De Rosa FG, Corcione S. 2019 novel coronavirus (2019-nCoV) outbreak:A new challenge. J Glob Antimicrob Resist. 2020;21:22–27. doi:10.1016/j.jgar.2020.02.021.
    1. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3
    1. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with Coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934. doi:10.1001/jamainternmed.2020.0994.
    1. Grasselli G, Zangrillo A, Zanella A, et al. COVID-19 lombardy ICU network. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574. doi:10.1001/jama.2020.5394.
    1. Ji Z, de Miguel-diez J, Castro-Riera CR, et al. Differences in the outcome of patients with COPD according to body mass index. J Clin Med. 2020;9(3):710. doi:10.3390/jcm9030710
    1. Mullerova H, Maselli DJ, Locantore N, et al. Hospitalized exacerbations of COPD: risk factors and outcomes in the ECLIPSE cohort. Chest. 2015;147(4):999–1007. doi:10.1378/chest.14-0655
    1. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY). 2020;12. doi:10.18632/aging.103000.
    1. Memtsoudis SG, Ivascu NS, Pryor KO, Goldstein PA. Obesity as a risk factor for poor outcome in COVID-19-induced lung injury: the potential role of undiagnosed obstructive sleep apnoea. Br J Anaesth. 2020;125(2):e262–e263. doi:10.1016/j.bja.2020.04.078
    1. Guo Y, Zhang T, Wang Z, et al. Body mass index and mortality in chronic obstructive pulmonary disease: a dose-response meta-analysis. Medicine. 2016;95(28):e4225. doi:10.1097/MD.0000000000004225
    1. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA. Severe acute respiratory syndrome-related coronavirus: the species and its viruses–a statement of the Coronavirus Study Group. bioRxiv. 2020. doi:10.1101/2020.02.07.937862.
    1. Wang M, Du L, Zhou DH, et al. Study on the epidemiology and measures for control on severe acute respiratory syndrome in Guangzhou city [Article in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2003;24(5):353–357.
    1. Seys LJM, Widagdo W, Verhamme FM, et al. DPP4, the middle east respiratory syndrome coronavirus receptor, is upregulated in lungs of smokers and chronic obstructive pulmonary disease patients. Clin Infect Dis. 2018;66(1):45–53. doi:10.1093/cid/cix741
    1. Meyerholz DK, Lambertz AM, McCrayJr PB. Dipeptidyl peptidase 4 distribution in the human respiratory tract: implications for the middle east respiratory syndrome. Am J Pathol. 2016;186(1):78–86. doi:10.1016/j.ajpath.2015.09.014
    1. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi:10.1038/s41586-020-2012-7
    1. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi:10.1038/nature02145
    1. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA. 2005;102:7988–7993. doi:10.1073/pnas.0409465102
    1. Brake SJ, Barnsley K, Lu W, McAlinden KD, Eapen MS, Sohal SS. Smoking upregulates angiotensin- converting enzyme-2 receptor: a potential adhesion site for novel Coronavirus SARS-CoV-2 (Covid-19). J Clin Med. 2020;9(3):pii: E841. doi:10.3390/jcm9030841.
    1. Leung JM, Yang CX, Tam A, et al. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19. Eur Respir J. 2020;55(5):pii: 2000688. doi:10.1183/13993003.00688-2020.
    1. Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalence, severity and mortality associated with COPD and smoking in patients with COVID-19: a rapid systematic review and meta-analysis. PLoS One. 2020;15(5):e0233147. doi:10.1371/journal.pone.0233147
    1. Guan WJ, Liang WH, Zhao Y, et al. China medical treatment expert group for Covid-19. Comorbidity and its impact on 1590 patients with Covid-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):pii: 2000547. doi:10.1183/13993003.00547-2020.

Source: PubMed

3
Abonnieren