Functional herbal food ingredients used in type 2 diabetes mellitus

Pathirage Kamal Perera, Yunman Li, Pathirage Kamal Perera, Yunman Li

Abstract

From many reports it is clear that diabetes will be one of the major diseases in the coming years. As a result there is a rapidly increasing interest in searching new medicines, or even better searching prophylactic methods. Based on a large number of chemical and pharmacological research work, numerous bioactive compounds have been found in functional herbal food ingredients for diabetes. The present paper reviews functional herbal food ingredients with regards to their anti-diabetic active principles and pharmacological test results, which are commonly used in Asian culinary system and medical system and have demonstrated clinical or/and experimental anti-diabetic effectiveness. Our idea of reviewing this article is to give more attention to these functional food ingredients as targets medicinal foods in order to prevent or slow down the development of type 2 diabetes mellitus.

Keywords: Anti-diabetic; functional herbal food; type 2 diabetes mellitus.

Conflict of interest statement

Conflict of Interest: None declared

Figures

Figure 1
Figure 1
Chemical components in Allium sativum L. which involve in anti-hyperglycemic activity. (a) Allicin; (b) S-allyl cysteine sulfoxide
Figure 2
Figure 2
Chemical components in Allium cepa L. which involve in antihyperglycemia. (a) Allyl propyldisulfide; (b) S-methyl cysteine sulfoxide
Figure 3
Figure 3
Chemical components in Trigonella foenum-graecum L. which involve in anti-hyperglycemia. (a) Trigonelline
Figure 4
Figure 4
Chemical components in Psidium guajava L., which involve in anti-hyperglycemia. (a) Strictinin; (b) Pedunculagin
Figure 5
Figure 5
Chemical components in Nelumbo nucifera Gaertn. which involve in anti-hyperglycemia. (a) Liensinine; (b) Daurisoline
Figure 6
Figure 6
Chemical components in Stevia rebaudina (Bert.) Hemsl., which involve in anti-hyperglycemia, Stevioside
Figure 7
Figure 7
Chemical components in Prunella vulgaris L., which involve in anti-hyperglycemia. (a) Rosmarinic acid; (b) Quercetin
Figure 8
Figure 8
Chemical components in Ganoderma lucidum (Leyss. Ex Franch.), which involve in anti- hyperglycemia, Ganoderic acid
Figure 9
Figure 9
Chemical components in Punica granatum L., which involve in anti-hyperglycemia, Ursolic acid
Figure 10
Figure 10
Chemical component in Dioscorea opposita Thunb., which involve in anti hyperglycemia. (a) Dioscin; (b) Diosgenin
Figure 11
Figure 11
Chemical components in Momordica charantia L., which involve in anti-hyperglycemia. (a) Charantin; (b) Vicine
Figure 12
Figure 12
Chemical components in Murraya koenigii L., which involve in anti-hyperglycemia. (a) Mahanine; (b) Koenimbine
Figure 13
Figure 13
Chemical components in Artocarpus heterophyllus Lam., which involve in anti-hyperglycemia. (a) Cycloartenone; (b); β-sitosterol
Figure 14
Figure 14
Chemical component in Mangifera indica Lam., which involve in anti-hyperglycemia, Mangiferin
Figure 15
Figure 15
Chemical components in Aegle marmelos L., which involve in anti-hyperglycemia. (a) Lupeol; (b) Marmin
Figure 16
Figure 16
Chemical components in Curcuma longa L., which involve in anti-hyperglycemia, Curcumin

References

    1. IDF. The Diabetes Atlas. 2006. Available from:
    1. de Groot M, Anderson R, Freedland KE, Clouse RE, Lustman PJ. Association of depression and diabetes complications: A meta-analysis. Psychosom Med. 2001;63:619–30.
    1. Jacobson AM. Impact of improved glycemic control on quality of life in patients with diabetes. Endocr Pract. 2004;10:502–8.
    1. Tahrani AA, Piya MK, Kennedy A, Barnett AH. Glycaemic control in type 2 diabetes: Targets and new therapies. Pharmacol Ther. 2010;125:328–61.
    1. Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med. 2006;355:2427–43.
    1. Del PS, Bianchi C, Marchetti P. Beta-cell function and anti-diabetic pharmacotherapy. Diabetes Metab Res Rev. 2007;23:518–27.
    1. Groop LC, Tuomi T. Non-insulin dependent diabetes mellitus a collision between the thrifty gene and an affluent society. Ann Med. 1997;2:937–53.
    1. Facchini FS, Hua N, Abbasi F, Reaven GM. Insulin resistance as a predictor of age related diseases. J Clin Endocrinol Metab. 2001;86:3574–8.
    1. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet. 2005;365:1333–46.
    1. Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, et al. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract. 2002;55:65–85.
    1. Gill GV, Redmond S, Garratt F, Paisey R. Diabetes and alternative medicine: Cause for concern. Diabetic Med. 1994;11:210–3.
    1. Christopoulou-Aletra H, Papavramidou N. ‘Diabetes’ as described by Byzantine writers from the fourth to the ninth century AD: The GraecoRoman influence. Diabetologia. 2008;51:892–6.
    1. Ahmed AM. History of diabetes mellitus. Saudi Med J. 2002;23:373–8.
    1. Maggie BC. Traditional Chinese medicine in the treatment of diabetes. Diabetes Spectrum. 2001;14:154–9.
    1. Liu JP, Zhang M, Wang WY, Grimsgaard S. Chinese herbal medicines for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2004;3:CD003642.
    1. Jun Y, Hanjie Z, Jianping Y. Traditional Chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets. 2008;8:99–111.
    1. Gu Y, Zhang Y, Shi X, Li X, Hong J, Chen J, et al. Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics. Talanta. 2010;81:766–72.
    1. Rezabek KM. Medical nutrition therapy in type 2 diabetes. Nurs Clin North Am. 2001;36:203–16.
    1. Cheung BM. The Cardiovascular Continuum in Asia-A New Paradigm for the Metabolic Syndrome. J Cardiovasc Pharmacol. 2005;46:125–9.
    1. Vuksan V, Sievenpipera LJ. Herbal remedies in the management of diabetes: Lessons learned from the study of ginseng. Nutr Metab Cardiovasc Dis. 2005;15:149–60.
    1. Cheng JT. Review: Drug therapy in Chinese traditional medicine. J Clin Pharmacol. 2000;40:445–50.
    1. Swinbanks D, O’Brien J. Japan explores the boundary between food and medicine. Nature. 1993;364:180.
    1. Toma MM, Pokrotnieks J. Probiotics as functional food: Microbiological and medical aspects Acta Universitatis Latviensis. 2006;710:117–29.
    1. López-Varela S, Gonzαlez-Gross M, Marcos A. Functional foods and the immune system: A review. Eur J Clin Nutr. 2002;56:S29.
    1. Roberfroid MB. What is beneficial for health? The concept of functional food. Food Chem Toxicol. 1999;37:1034–41.
    1. Duke JA, Ayensu ES. Medicinal Plants of China. Algonac: Reference Publications Inc; 1985.
    1. Jamison JR. In: Clinical Guide to Nutrition and Dietary Supplements in Disease Management. London: Churchill Livingstone; 2003. Garlic (Allium sativum)
    1. Kasuga S, Ushijima M, Morihara N, Itakura Y, Nakata Y. Effect of aged garlic extract (AGE) on hyperglycemia induced by immobilization stress in mice. Nippon Yakurigaku Zasshi. 1999;114:191–7.
    1. Liu CT, Hse H, Lii CK, Chen PS, Sheen LY. Effects of garlic oil and diallyl trisulfide on glycemic control in diabetic rats. Eur J Pharmacol. 2005;516:165–73.
    1. Mathew PT, Augusti KT. Studies on the effect of allicin (diallyl disulphide-oxide) on alloxan diabetes I. Hypoglycaemic action and enhancement of serum insulin effect and glycogen synthesis. Indian J Biochem Biophys. 1973;10:209–12.
    1. Augusti KT, Sheela CG. Antiperoxide effect of S-allyl cysteine sulfoxide, a insulin secretagogue, in diabetic rats. Experientia. 1996;52:115–20.
    1. Jain RC, Vyas CR. Hypoglycemic action of onion and garlic. Am J Clin Nutr. 1975;28:684–5.
    1. Gruenwald J, Brendler T, Jaenicke C. PDR for Herbal Medicines. 2nd ed. Montvale, NJ: Medical Economics Company; 2000.
    1. Rshaad B, Azaizeh H, Said O. Tradition and perspectives of Arab herbal medicine: A review. Evid Based Complement Alternat Med. 2005;2:475–9.
    1. Baldé NM, Youla A, Baldé MD, Kaké A, Diallo MM, Baldé MA, et al. Herbal medicine and treatment of diabetes in Africa: An example from Guinea. Diabetes Metab. 2006;32:171–5.
    1. Babu PS, Srinivasan K. Influence of dietary capsaicin and onion on the metabolic abnormalities associated with streptozotocin induced diabetes mellitus. Mol Cell Biochem. 1997;175:49–57.
    1. Babu PS, Srinivasan K. Renal lesions in streptozotocin-induced diabetic rats maintained on onion and capsaicin containing diets. J Nutr Biochem. 1999;10:477–83.
    1. Augusti KT, Roy VC, Semple M. Effect of allyl propyl disulfide isolated from onion (Allium cepa) on glucose tolerance of alloxan diabetic rabbits. Experientia. 1974;30:1119–20.
    1. Sheela CG, Kumud K, Augusti KT. Antidiabetic effects of onion and garlic sulfoxide amino acids in rats. Planta Med. 1995;61:356–7.
    1. Kumari K, Mathew BC, Augusti KT. Antidiabetic and hypolipidemic effects of S-methyl cysteine sulfoxide isolated from Allium cepa Linn. Indian J Biochem Biophys. 1995;32:49–54.
    1. Khosla P, Gupta DD, Nagpal RK. Effect of Trigonella foenum graecum (Fenugreek) on blood glucose in normal and diabetic rats. Indian J Physiol Pharmacol. 1995;2:173–4.
    1. Puri D, Prabhu KM, Murthy PS. Hypocholesterolemic effect of the hypoglycemic principle of fenugreek (Trigonella foenum graecum) seeds. Indian J Clin Biochem. 1995;9:13–6.
    1. Puri D, Prabhu KM, Murthy PS. Mechanism of action of a hypoglycemic principle isolated from fenugreek seeds. Indian J Physiol Pharmacol. 2002;4:457–62.
    1. Gupta A, Gupta R, Lal B. Effect of Trigonella foenum-graecum (fenugreek) seeds on glycaemic control and insulin resistance in type 2 diabetes mellitus: A double blind placebo controlled study. J Assoc Physicians India. 2001;49:1057–61.
    1. Vats V, Grover JK, Rathi SS. Evaluation of anti-hyperglycemic and hypoglycemic effect of Trigonella foenum-graecum Linn, Ocimum sanctum Linn and Pterocarpus marsupium Linn in normal and allox- anized diabetic rats. J Ethnopharmacol. 2002;79:95–100.
    1. Petit PR, Sauvaire YD, Hillaire-Buys DM, Leconte OM, Baissac YG, Ponsin GR, et al. Steroid saponins from fenugreek seeds extraction, purification, and pharmacological investigation on feeding behavior and plasma cholesterol. Steroids. 1995;60:674–80.
    1. Ali L, Kalam A, Khan A, Hassan Z, Mosihuzzaman M, Nahar N, et al. Characterization of the hypoglycemic effects of Trigonella foenum-graecum seed. Planta Medica. 1995;61:358–60.
    1. Sauvaire Y, Petit P, Broca C, Manteghetti M, Baissac Y, Alvarez JF, et al. 4-Hydroxyisoleucine: A novel amino acid potentiator of insulin secretion. Diabetes. 1998;47:206–10.
    1. Raghuram TC, Sharma RD, Sivakumar B, Sahay K. Effect of fenugreek seeds on intravenous glucose disposition in non-insulin dependent diabetic patients. Phytotherapy Res. 1994;8:83–6.
    1. Jimenez-Escrig A, Rincon M, Pulido R, Saura-Calixo F. Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J Agric Food Chem. 2001;49:5489–93.
    1. Mishra K, Seshadri TR. Chemical components of the fruits of Psidium guajava. Phytochemistry. 1967;7:641–5.
    1. Adsule RN, Kadam SS. Production, composition storage, and processing. New York: M. Dekker; 1995. In: Handbook of fruit science and technology.
    1. Rai PK, Singh SK, Kesari AN, Watal G. Glycaemic evaluation of Psidium guajava in rats. Indian J Med Res. 2007;126:224–7.
    1. Rai PK, Rai NK, Rai AK, Watal G. Role of LIBS in elemental analysis of P.guajava responsible for glycemic potential. Instrum Sci Tech. 2007;35:507–22.
    1. Maryuma Y, Matsuda H, Matsuda R, Kubo M, Hatano T, Okuda T. Study on Psidium guajava L. (I). Antidiabetic effect and effective components of the leaf of Psidium guajava L. (Part I) Shoyakugaku Zasshi. 1985;39:261–9.
    1. Mukherjee PK, Saha K, Das J, Pal M, Saha BP. Studies on the anti-inflammatory activity of rhizomes of Nelumbo nucifera. Planta Med. 1997;63:367–9.
    1. Mukherjee PK, Saha K, Saha BP. Effect of Nelumbo nucifera rhizome extract on blood sugar level in rats. J Ethnopharmacol. 1997;58:207–13.
    1. Gao X, Dang Y. Traditional Chinese Medical Beauty Care. Peking: China Science and Technology Press; 2000.
    1. Liu C, Tseng A. Chinese Herbal Medicine. Boca.Raton: CRC Press, LLC; 2005.
    1. Zhou T, Luo D, Li X, Luo Y. Hypoglycemic and hypolipidemic effects of flavonoids from lotus (Nelumbo nucifera Gaertn) leaf in diabetic mice. Journal of Medicinal Plants Research. 2009;3:290–3.
    1. Jinmin S, Zhi Y. TLC-scanning determination of liensinine in lotus plumule. Chin J Hosp Pharm. 1993;1:8–10.
    1. Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metab Clin Exp. 2004;53:73–6.
    1. White JR, Jr, Kramer J, Campbell RK, Bernstein R. Oral use of a topical preparation containing an extract of Stevia rebaudiana and the chrysanthemum flower in the management of hyperglycemia. Diabetes Care. 1994;17:940.
    1. Jeppesen PB, Gregersen S, Alstrup KK, Hermansen K. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: Studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine. 2002;9:9–14.
    1. Liu BL, Zhu DN, Wang G. The anti-hyperglycemic effect of ethanol extract of Prunella vulgaris L. to mice. J. China Pharm Univ. 1995;26:44–6.
    1. Xu SL, Hou XJ, Wu AP. Pharmacological studies on blood sugar-lowering activity of the active principle of common selfheal. Chin Tradit Herb Drugs. 1989;20:358–60.
    1. Kajima H, Ogura H. Triterpenoids from Prunella vugaris. Phytochemistry. 1986;3:729–33.
    1. Kajima H, Tominga H, Sato S. Pentacyclic tritepenoids from Prunella vulgaris. Phytochemistry. 1987;4:1107–11.
    1. Kajima H, Tominga H, Sato S. Two novel hexcyclic triterpenoids from Prunella vulgaris. Phtochemistry. 1988;9:2921–5.
    1. Dmitruk SI, Dmitruk SE, Berezovskaya TP. Flavonoids of Prunella vulgaris. Khim Prir Soedin. 1987;3:449–50.
    1. Natherova L, Rezacova A. Pharmacognostic studies of 3 species of the genus Prunella L. Acta Fac Pharm Univ Comeniana. 1972;21:33–61.
    1. Tabba HD, Chang RS, Smiths K. Isolation, purification and characterization of Prunellin: An anti-HIV component from aqueous extracts of Prunella vurgaris. Antiviral Res. 1989;11:263–73.
    1. Chang S, Buswell JA. Mushroom nutriceuticals. World J Microbiol Biotechnol. 1996;12:473–6.
    1. Kimura M, Diwan PV, Yanagi S, Kon-no Y, Nojima H, Kimura I. Potentiating effects of β-eudesmol-related cyclohexylidene derivatives on succinylcholine-induced neuromuscular block in isolated phrenic nerve-diaphragm muscles of normal and alloxan-diabetic mice. Biol Pharm Bull. 1995;18:407–10.
    1. Zhang LH, Xiao PG. Effect of the extract of ganoderma lucidum spores to experimental diabetes mellitus. (272).Chin Tradit Herb Drugs. 1993;24:246–7.
    1. Hikino H, Mizuno T, Oshima Y, Konno C. Isolation and hypoglycemic activity of Morans A.A glycoprotein of Morus alba root barks. Planta Med. 1985;51:159–60.
    1. Hikino H, Konno C, Mirin Y, Hayashi T. Isolation and hypoglycemic activity of ganoderans A and B. Glycans of Ganoderma lucidum fruit bodies. Planta Med. 1985;51:339–40.
    1. Jurenka JS. Therapeutic applications of pomegranate (Punica granatum L.): A review. Altern Med Rev. 2008;13:128–44.
    1. Jafri MA, Aslam M, Javed K, Singh S. Effect of Punica granatum Linn.(flowers) on blood glucose level in normal and alloxan induced diabetic rats. J Ethnopharmacol. 2000;70:309–14.
    1. Das AK, Mandal SC, Banerjee SK, Sinha S, Saha BP, Pal M. Studies on the hypoglycaemic activity of Punica granatum seed in streptozotocin induced diabetic rats. Phytother Res. 2001;15:628–9.
    1. Hao ZQ, Hang BQ, Wang Y. The anti-hyperglycemic effect of water decoction of Dioscorea opposita Thunb. To experimental diabetic mice. J China Pharm Univ. 1991;22:158–60.
    1. Huiqi S, Mingjing L, Aixin S, Xiuhua L. RP -HPLC Determination of Diosgenin in Dioscorea opposite Thunb. and D. alata L. Chinese Journal of Pharmaceutical Analysis. 2004;05:1–4.
    1. Raman A, Lau C. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae) Phytomed. 1996;2:349–62.
    1. Miura T, Itoh C, Iwamoto N, Kato M, Kawai M, Park SR, et al. Hypoglycemic activity of the fruit of the Momordica charantia in type 2 diabetic mice. J Nutr Sci Vitaminol (Tokyo) 2001;47:340–4.
    1. Fan YL, Cui FD. Comparative studies on hypoglycemic activity of different sections of Momordica charantia L. J Shenyang Pharm Univ. 2001;18:50–3.
    1. Srivastava Y, Venkatakrishna-Bhatt H, Verma Y, Venkaiah K, Raval BH. Antidiabetic and adaptogenic properties of Momordica charantia extract: An experimental and clinical evaluation. Phytother Res. 1993;7:285–9.
    1. Ahmed I, Lakhani MS, Gillett M, John A, Raza H. Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract. 2001;51:155–61.
    1. Ooi CP, Yassin Z, Hamid TA. Momordica charantia for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010;2:CD007845.
    1. Wang F, Zhang PP, Yu XF. A clinical observation of type 2 diabetes treated by saponins from Momordica charantia L. Pract Clin J Integrated Tradit Chin West Med. 1991;4:721.
    1. Zhang PP, Wang F, Xue AQ. Experimental study on antihyperglycemic effect of “Kuguasu”. Jiangsu J Chin Tradit Med. 1992;13:30–1.
    1. Arulselvan P, Senthilkumar GP, Kumar D Sathish, Subramanian S. “Anti-diabetic effect of Murraya koenigii leaves on streptozotocin induced diabetic rats”. Pharmazie. 2006;61:874–7.
    1. Arulselvan P, Subramanian SP. “Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic beta-cells in experimental diabetes in rats”. Chem Biol Interact. 2007;165:155–64.
    1. Kesari AN, Gupta RK, Watal G. Hypoglycemic effects of Murraya koenigii on normal and alloxan-diabetic rabbits. J Ethnopharmacol. 2005;97:247–51.
    1. Nayak A, Manda S, Banerji A, Banerji J. Review on chemistry and pharmacology of Murraya koenigii Spreng (Rutaceae) J Chem Pharm Res. 2010;2:286–99.
    1. Tachibana Y, Kikuzaki H, Lajis NH, Nakatani N. J Agric Food Chem. 2001;49:5589–94.
    1. Narasimhan NS, Paradkar MV, Chitguppi VP, Kelkar SL. Indian J Chem. 1975;13:993–9.
    1. Reisch J, Goj O, Wickramasinghe A, Herath HM, Henkel G. Phytochem. 1992;31:2877–9.
    1. Prakash O, Kumar R, Mishra A, Gupta R. Artocarpus heterophyllus (Jackfruit): An overview. Phcog Rev. 2009;3:353–8.
    1. Jayaweera DM. Part 11. Sri Lanka, Colombo: National Science Council; 1982. Medicinal plants used in Ceylon 4-89.
    1. Fernando MR, Wickramasinghe SM, Thabrew MI, Ariyaratne PL, Karunanayake EH. J Ethnopharmacol. 1991;31:277–82.
    1. Chackrewarthy S, Thabrew MI, Weerasuriya M, Jayasekera S. Evaluation of the hypoglycemic and hypolipidemic effects of an ethylacetate fraction of Artocarpus heterophyllus (jak) leaves in streptozotocin-induced diabetic rats. Phcog Mag. 2010;6:186–90.
    1. Prakash O, Kumar R, Mishra A, Gupta R. Artocarpus heterophyllus (Jackfruit): An overview. Phcog Rev. 2009;3:353–8.
    1. Sathyavathi GV, Gupta AK, Tandon N. Medicinal plants of India. New Delhi, India: Indian Council of Medical Research; 1987.
    1. Umezawa H, Aoyagi H, Ogawa K. Diprotein A and B, inhibitors of Dipeptidyl amino peptidase IV, produced by Bacteria. J Antibiot. 1984;26:422–5.
    1. Muruganandan S, Gupta S, Kataria M, Lal J, Gupta PK. Mangiferin protects the streptozotocin-induced oxidative damage to cardiac and renal tissues in rats. Toxicol. 2002;176:165–73.
    1. Miura T, Ichiki H, Iwamoto N, Kato M, Kubo M, Sasaki H, et al. Antidiabetic activity of the rhizome of Anemarrhena asphodloides and active components, mangiferin and its glucoside. Biol Pharm Bull. 2001;24:1009–11.
    1. Miura T, Iwamoto N, Kato M, Ichiki H, Kubo M, Komatsu Y, et al. The suppressive effect of mangiferin with exercise on blood lipids in type 2 diabetes. Biol Pharm Bull. 2001;24:1091–2.
    1. Hooker JD. Vol. 1. Reeve, United Kingdom: Reeve and Co; 1975. The flora of British India; pp. 516–7.
    1. Islam R, Hossain M, Karim MR, Joarder OI. Regeneration of Aegle marmelos (L.) Corr., plantlets in vitro from callus cultures of embryonic tissues. Curr Sci. 1995;69:494–5.
    1. Ponnachan PT, Paulose CS, Panikar KR. Effect of the leaf extract of Aegle marmelos (L.) Corr. in diabetic rats. Indian J Exp Biol. 1993;31:345–7.
    1. Kamalakkannan N, Prince PS. The effect of Aegle marmelos fruit extract in streptozotocin diabetes: A histopathological study. J Herb Pharmacother. 2005;5:87–96.
    1. Seema PV, Sudha B, Padayatti SP, Abraham A, Raghu KG, Paulose CS. Kinetic studies of purified malate dehydrogenase in liver of streptozotozin – diabetic rats and the effect of leaf extract of Aegle marmelos (L.) Corr Indian J Exp Biol. 1996;34:600–2.
    1. Shnkar TN, Shanta NV, Ramesh HP, Murthy IA, Murthy VS. Toxicity Studies on Turmeric (Cuecuma longa): Acute Toxicity studies in rats, Guineapigsand Monkeys. Ind J Exp Biol. 1980;18:73–5.
    1. Eshrat MH, Hussain A. Hypoglycemic, hypolipidemic and antioxidant properties of combination of curcumin from Curcuma longa. Lnn, and partially purified product from Abroma augusta, Linn in streptozotocin induced diabetes. Indian J Clin Biochem. 2002;17:33–43.
    1. Tank R, Sharma N, Sharma I, Dixit VP. Anti-diabetic activity if C.longa in alloxan Induced diabetic rats. Indian drugs. 1989;27:587–9.
    1. Groop LC, Tuomi T. Non-insulin dependent diabetes mellitus a collision between the thrifty gene and an affluent society. Ann Med. 1997;2:937–53.
    1. Savoca M, Miller C. Food selection and eating patterns: Themes found among people with type 2 diabetes mellitus. J Nutr Educ Behav. 2001;33:224–233.

Source: PubMed

3
Abonnieren