Efficacy and safety of afatinib in Chinese patients with EGFR-mutated metastatic non-small-cell lung cancer (NSCLC) previously responsive to first-generation tyrosine-kinase inhibitors (TKI) and chemotherapy: comparison with historical cohort using erlotinib

Victor H F Lee, Dennis K C Leung, Tim-Shing Choy, Ka-On Lam, Pui-Mei Lam, To-Wai Leung, Dora L W Kwong, Victor H F Lee, Dennis K C Leung, Tim-Shing Choy, Ka-On Lam, Pui-Mei Lam, To-Wai Leung, Dora L W Kwong

Abstract

Background: Afaitnib has shown anti-tumor activity against metastatic EGFR-mutated NSCLC after prior failure to first generation EGFR-TKI and chemotherapy. We prospectively evaluated the efficacy and safety of afatinib in Chinese patients who previously failed first-generation TKI and chemotherapy under a compassionate use program (CUP) and compared to the erlotinib cohort.

Methods: Patients who suffered from metastatic EGFR-mutated NSCLC previously responsive to first-generation TKI and chemotherapy received afatinib until progression, loss of clinical benefits or intolerable toxicity. Treatment response, survival and safety were evaluated and compared to the erlotinib cohort.

Results: Twenty-five and 28 patients received afatinib and erlotinib respectively. More patients in the afatinib group had worse performance status (ECOG 2) than the erlotinib group (p = 0.008). After a median follow-up of 12.1 months, afatinib demonstrated comparable objective response rate (ORR) (20.0% vs. 7.1%, p = 0.17) but significantly higher disease control rate (DCR) (68.0% vs. 39.3%, p = 0.04) compared to erlotinib. Median progression-free survival (PFS) (4.1 months [95% CI, 2.7-5.5 months] vs. 3.3 months [95% CI, 2.2-4.3 months], p = 0.97) and overall survival (OS) were not different between the two groups (10.3 months [95% CI, 7.5-13.0 months] vs. 10.8 months [95% CI, 7.4-14.2 months], p = 0.51). Multivariate analyses revealed that age ≤ 70 years and time to progression (TTP) ≥ 18 months for the 1st TKI therapy were prognostic of PFS (p = 0.006 and p = 0.008 respectively). Afatinib caused less rash (60.0% vs. 67.9%, p = 0.04) but more diarrhea (60.0% vs. 10.7%, p = 0.002) compared to erlotinib.

Conclusion: Afatinib produced encouraging clinical efficacy as 2nd TKI therapy with manageable safety profiles in our Chinese patients after failure to another TKI and systemic chemotherapy. This study was registered at ClinicalTrials.gov (NCT02625168) on 3rd December 2015.

Figures

Fig. 1
Fig. 1
Kaplan-Meier plots illustrating survival outcomes in patients treated with afatinib or erlotinib as 2nd tyrosine-kinase inhibitor (TKI) therapy after previous failure to first-generation TKI and chemotherapy. a. Progression-free survival (PFS) in the afatinib and erlotinib group. b. Overall survival (OS) in the afatinib and erlotinib group. c. PFS comparing those whose time to progression to 1st TKI therapy was ≥18 months versus those whose time to progression to 1st TKI therapy was <18 months
Fig. 2
Fig. 2
Computed tomography images of one of our study patients with metastatic bronchoalveolar carcinoma which harbored exon 19 deletion treated with afatinib as 2nd TKI therapy after failure to gefitinib and chemotherapy. a. Baseline images showing diffuse ground glass opacities representing tumor infiltrates in lower lobes of both lungs. b. CT images at 3 months after afatinib showing significant reduction of tumor infiltrates. c. CT images at 6 months after afatinib showing further response and tumor shrinkage to afatinib

References

    1. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Eng J Med. 2009;361:947–57. doi: 10.1056/NEJMoa0810699.
    1. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8. doi: 10.1056/NEJMoa0909530.
    1. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small lung cancer harboring mutations of the epidermal growth factor receptor (WJTOG3405): An open label, randomized phase 3 trial. Lancet Oncol. 2010;11:121–8. doi: 10.1016/S1470-2045(09)70364-X.
    1. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small cell lung cancer (OPTIMAL, CTONG-0802): A multicenter, open-label, randomized, phase 3 study. Lancet Oncol. 2011;12:735–42. doi: 10.1016/S1470-2045(11)70184-X.
    1. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicenter, open-label, randomized phase 3 trial. Lancet Oncol. 2012;13:239–46. doi: 10.1016/S1470-2045(11)70393-X.
    1. Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P, Leong SS, Sriuranpong V, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small cell lung cancer in Asia (IPASS) J Clin Oncol. 2011;29:2866–74. doi: 10.1200/JCO.2010.33.4235.
    1. Han JY, Park K, Kim SW, Lee DH, Kim HY, Kim HT, et al. First-SIGNAL: First-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J Clin Oncol. 2012;30:1122–28. doi: 10.1200/JCO.2011.36.8456.
    1. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2:e73. doi: 10.1371/journal.pmed.0020073.
    1. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92. doi: 10.1056/NEJMoa044238.
    1. Oxnard GR, Arcila ME, Sima CS, Riely GJ, Chmielecki J, Kris MG, et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin Cancer Res. 2011;17:1616–22. doi: 10.1158/1078-0432.CCR-10-2692.
    1. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27:4702–11. doi: 10.1038/onc.2008.109.
    1. Yap TA, Vidal L, Adam J, Stephens P, Spicer J, Shaw H, et al. Phase I trial of the irreversible EGFR and HER2 kinase inhibitor BIBW 2992 in patients with advanced solid tumors. J Clin Oncol. 2010;28:3965–72. doi: 10.1200/JCO.2009.26.7278.
    1. Miller VA, Hirsh V, Cadranel J, Chen YM, Park K, Kim SW, et al. Afatinib versus placebo in patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung1): a phase 2b/3 randomised trial. Lancet Oncol. 2012;13:528–38. doi: 10.1016/S1470-2045(12)70087-6.
    1. Khan F, Ottensmeier C, Popat S, Dua D, Dorey N, Ellis S, et al. Afatinib use in non-small cell lung cancer previously sensitive to epidermal growth factor receptor inhibitors: The United Kingdom Named Patient Programme. Eur J Cancer. 2014;50:1717–21. doi: 10.1016/j.ejca.2014.03.001.
    1. Tam IY, Chung LP, Suen WS, Wang E, Wong MC, Ho KK, et al. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res. 2006;12:1647–53. doi: 10.1158/1078-0432.CCR-05-1981.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours; revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45:228–47. doi: 10.1016/j.ejca.2008.10.026.
    1. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. (assessed May 28, 2009)
    1. Chmielecki J, Foo J, Oxnard GR, Hutchinson K, Ohashi K, Somwar R, et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci Transl Med. 2011;3:90ra59. doi: 10.1126/scitranslmed.3002356.
    1. Zakowski MF, Ladanyi M, Kris MG. EGFR mutations in small-cell lung cancers in patients who have never smoked. N Engl J Med. 2006;355:213–5. doi: 10.1056/NEJMc053610.
    1. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26. doi: 10.1126/scitranslmed.3002003.
    1. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci. 2007;104:20932–7. doi: 10.1073/pnas.0710370104.
    1. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43. doi: 10.1126/science.1141478.
    1. Takezawa K, Pirazzoli V, Arcila ME, Nebhan CA, Song X, de Stanchina E, et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR mutant lung cancers that lack the second-site EGFR T790M mutation. Cancer Discov. 2012;2:922–33. doi: 10.1158/-12-0108.
    1. Ohashi K, Sequist LV, Arcila ME, Moran T, Chmielecki J, Lin YL, et al. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci. 2012;109:E2127–33. doi: 10.1073/pnas.1203530109.
    1. Hata AKN, Katakami N, Yoshioka H, Takeshita J, Tanaka K, Nanjo S, et al. Rebiopsy of non-small cell lung cancer patients with acquired resistance to EGFR-TKI: Comparison between T790M mutation-positive and -negative populations. J Clin Oncol. 2012;30(15_Suppl);abstr 7528.
    1. Riely GJ, Kris MG, Zhao B, Akhurst T, Milton DT, Moore E, et al. Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus. Clin Cancer Res. 2007;13:5150–5. doi: 10.1158/1078-0432.CCR-07-0560.
    1. Yokouchi H, Yamazaki K, Kinoshita I, Konishi J, Asahina H, Sukoh N, et al. Clinical benefit of readministration of gefitinib for initial gefitinib-responders with non-small cell lung cancer. BMC Cancer. 2007;7:51. doi: 10.1186/1471-2407-7-51.
    1. Cho BC, Im CK, Park MS, Kim SK, Chang J, Park JP, et al. Phase II study of erlotinib in advanced non-small-cell lung cancer after failure of gefitinib. J Clin Oncol. 2007;25:2528–33. doi: 10.1200/JCO.2006.10.4166.
    1. Lee DH, Kim SW, Suh C, Yoon DH, Yi EJ, Lee JS. Phase II study of erlotinib as a salvage treatment for non-small-cell lung cancer patients after failure of gefitinib treatment. Ann Oncol. 2008;19:2039–42. doi: 10.1093/annonc/mdn423.
    1. Costa DB, Nguyen KS, Cho BC, Sequist LV, Jackman DM, Riely GJ, et al. Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib. Clin Cancer Res. 2008;14:7060–7. doi: 10.1158/1078-0432.CCR-08-1455.
    1. Pfizer announces 2 top-line results from 2 phase III trials of dacomitinib in patients with refractory advanced non-small cell lung cancer [press release]. New York, NY: Pfizer Inc; January 27, 2014.
    1. Soria J, Sequist LV, Gadgeel S, Goldman J, Wakelee H, Varga A, et al. First-in-human evaluation of CO-1686, an irreversible highly selective TKI of mutations of EGFR (activating and T790M). 15th World Conference on Lung Cancer; October 27–30 2013; Sydney, New South Wales, Australia.
    1. Ranson M, Pao W, Kim D, Kim DW, Kim SW, Ohe Y, et al. AZD9291: an irreversible, potent and selective tyrosine kinase inhibitor of activating EGFR and resistance T790M mutations in advanced NSCLC. 15th World Conference on Lung Cancer; October 27–30 2013; Sydney, New South Wales, Australia.
    1. Sequist LV, Soria JC, Goldman JW, Wakelee HA, Gadgeel SM, Varga A, et al. Rociletinib in EGFR-mutated non-small-cell lung cancer. N Engl J Med. 2015;372:1700–9. doi: 10.1056/NEJMoa1413654.
    1. Jänne PA, Yang JC, Kim DW, Planchard D, Ohe Y, Ramalingam SS, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372:1689–99. doi: 10.1056/NEJMoa1411817.
    1. Janjigian YY, Groen HJ, Horn L, Smit EF, Fu Y, Wang F, et al. Activity and tolerability of afatinib (BIBW 2992) and cetuximab in NSCLC patients with acquired resistance to erlotinib or gefitinib. J Clin Oncol. 2011;29 (suppl; abstr 7525).
    1. Janjigian YY, Smit EF, Horn L, Groen HJ, Camidge R, Gettinger S, et al. Activity of afatinib/cetuximab in patients (pts) with EGFR mutant non-small cell lung cancer (NSCLC) and acquired resistance (AR) to EGFR inhibitors. Ann Oncol. 2012;23 (suppl 9;abstr 12270).
    1. Yu HA, Arcila M, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of Tumor Specimens at the Time of Acquired Resistance to EGFR TKI therapy in 155 patients with EGFR mutant lung cancers. Clin Cancer Res. 2013;19:2240–47. doi: 10.1158/1078-0432.CCR-12-2246.

Source: PubMed

3
Abonnieren