Perioperative circulating tumor DNA as a potential prognostic marker for operable stage I to IIIA non-small cell lung cancer

Ning Li, Bao-Xiao Wang, Jian Li, Yang Shao, Ming-Tian Li, Jian-Jun Li, Peng-Peng Kuang, Zui Liu, Tian-Yu Sun, Hui-Qi Wu, Wei Ou, Si-Yu Wang, Ning Li, Bao-Xiao Wang, Jian Li, Yang Shao, Ming-Tian Li, Jian-Jun Li, Peng-Peng Kuang, Zui Liu, Tian-Yu Sun, Hui-Qi Wu, Wei Ou, Si-Yu Wang

Abstract

Background: Circulating tumor DNA (ctDNA) has emerged as a noninvasive biomarker for dynamically monitoring tumors. However, published data on perioperative ctDNA in patients with operable non-small cell lung cancer (NSCLC) are currently limited.

Methods: This prospective study recruited 123 patients with resectable stage I to IIIA NSCLC. Preoperative and postoperative plasma samples and tumor tissue samples were subjected to next-generation sequencing with a panel of 425 cancer-related genes. Peripheral blood samples were collected before surgery, postoperatively within 1 month, and every 3 to 6 months for up to 3 years.

Results: After 4 exclusions, 119 eligible patients were enrolled from June 2016 to February 2019. Presurgical ctDNA was detectable in 29 of 117 patients (24.8%) and was associated with inferior recurrence-free survival (RFS; hazard ratio [HR], 2.42; 95% CI, 1.11-5.27; P = .022) and inferior overall survival (OS; HR, 5.54; 95% CI, 1.01-30.35; P = .026). Similarly, ctDNA was detected in 12 of 116 first postsurgical samples (10.3%) and was associated with shorter RFS (HR, 3.04; 95% CI, 1.22-7.58; P = .012). During surveillance after surgery, longitudinal ctDNA-positive patients (37 of 119; 31.1%) had significantly shorter RFS (HR, 3.46; 95% CI, 1.59-7.55; P < .001) and significantly shorter OS (HR, 9.99; 95% CI, 1.17-85.78; P = .010) in comparison with longitudinal ctDNA-negative patients. Serial ctDNA detection preceded radiologic disease recurrence by a median lead time of 8.71 months.

Conclusions: These results suggest that perioperative ctDNA analyses can predict recurrence and survival, and serial ctDNA analyses can identify disease recurrence/metastasis earlier than routine radiologic imaging in patients with resectable NSCLC.

Lay summary: The utility of serial circulating tumor DNA (ctDNA) monitoring for predicting disease recurrence and survival for early-stage non-small cell lung cancer (NSCLC) has not been well characterized. The detection of ctDNA before and after surgery is associated with the identification of a high risk of disease recurrence and long-term patient outcomes for resectable NSCLC. Perioperative ctDNA analyses identify disease recurrence earlier than routine radiologic imaging. ctDNA analyses can detect minimal residual disease for resectable NSCLC and thus can facilitate early intervention.

Trial registration: ClinicalTrials.gov NCT03465241.

Keywords: circulating tumor DNA (ctDNA); non-small cell lung cancer (NSCLC); prognosis; recurrence; surgery.

© 2021 American Cancer Society.

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. doi:10.3322/caac.21492
    1. Gridelli C, Rossi A, Carbone DP, et al. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1:15009. doi:10.1038/nrdp.2015.9
    1. Pantel K, Alix-Panabieres C. Liquid biopsy and minimal residual disease-latest advances and implications for cure. Nat Rev Clin Oncol. 2019;16:409-424. doi:10.1038/s41571-019-0187-3
    1. Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC-challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 2018;15:577-586. doi:10.1038/s41571-018-0058-3
    1. Calman L, Beaver K, Hind D, Lorigan P, Roberts C, Lloyd-Jones M. Survival benefits from follow-up of patients with lung cancer: a systematic review and meta-analysis. J Thorac Oncol. 2011;6:1993-2004. doi:10.1097/jto.0b013e31822b01a1
    1. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446-454. doi:10.1038/nature25183
    1. Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer. 2019;19:553-567. doi:10.1038/s41568-019-0180-2
    1. Aggarwal C, Rolfo CD, Oxnard GR, Gray JE, Sholl LM, Gandara DR. Strategies for the successful implementation of plasma-based NSCLC genotyping in clinical practice. Nat Rev Clin Oncol. 2021;18:56-62. doi:10.1038/s41571-020-0423-x
    1. Abbosh C, Birkbak NJ, Wilson GA, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446-451. doi:10.1038/nature22364
    1. Garcia-Murillas I, Schiavon G, Weigelt B, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7:302ra133. doi:10.1126/scitranslmed.aab0021
    1. Olsson E, Winter C, George A, et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med. 2015;7:1034-1047. doi:10.15252/emmm.201404913
    1. Garcia-Murillas I, Chopra N, Comino-Mendez I, et al. Assessment of molecular relapse detection in early-stage breast cancer. JAMA Oncol. 2019;5:1473-1478. doi:10.1001/jamaoncol.2019.1838
    1. Tie J, Wang Y, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8:346ra92. doi:10.1126/scitranslmed.aaf6219
    1. Reinert T, Henriksen TV, Christensen E, et al. Analysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancer. JAMA Oncol. 2019;5:1124-1131. doi:10.1001/jamaoncol.2019.0528
    1. Wang Y, Li L, Cohen JD, et al. Prognostic potential of circulating tumor DNA measurement in postoperative surveillance of nonmetastatic colorectal cancer. JAMA Oncol. 2019;5:1118-1123. doi:10.1001/jamaoncol.2019.0512
    1. Tie J, Cohen JD, Wang Y, et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 2019;5:1710-1717. doi:10.1001/jamaoncol.2019.3616
    1. Pietrasz D, Pecuchet N, Garlan F, et al. Plasma circulating tumor DNA in pancreatic cancer patients is a prognostic marker. Clin Cancer Res. 2017;23:116-123. doi:10.1158/1078-0432.ccr-16-0806
    1. Lee RJ, Gremel G, Marshall A, et al. Circulating tumor DNA predicts survival in patients with resected high-risk stage II/III melanoma. Ann Oncol. 2018;29:490-496. doi:10.1093/annonc/mdx717
    1. Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548-554. doi:10.1038/nm.3519
    1. Chaudhuri AA, Chabon JJ, Lovejoy AF, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 2017;7:1394-1403. doi:10.1158/-17-0716
    1. Torga G, Pienta KJ. Patient-paired sample congruence between 2 commercial liquid biopsy tests. JAMA Oncol. 2018;4:868-870. doi:10.1001/jamaoncol.2017.4027
    1. Rubins J, Unger M, Colice GL; American College of Chest Physicians. Follow-up and surveillance of the lung cancer patient following curative intent therapy: ACCP evidence-based clinical practice guideline (2nd edition). Chest. 2007;132(suppl):355S-367S. doi:10.1378/chest.07-1390
    1. Deveson IW, Gong B, Lai K, et al. Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nat Biotechnol. 2021;39:1115-1128. doi:10.1038/s41587-021-00857-z
    1. Moss J, Magenheim J, Neiman D, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 2018;9:5068. doi:10.1038/s41467-018-07466-6
    1. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531-548. doi:10.1038/nrclinonc.2017.14
    1. Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat Rev Cancer. 2019;19:495-509. doi:10.1038/s41568-019-0179-8
    1. Saito H, Fukuhara T, Furuya N, et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 2019;20:625-635. doi:10.1016/s1470-2045(19)30035-x
    1. Nakagawa K, Garon EB, Seto T, et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:1655-1669. doi:10.1016/s1470-2045(19)30634-5
    1. Hosomi Y, Morita S, Sugawara S, et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J Clin Oncol. 2020;38:115-123. doi:10.1200/jco.19.01488
    1. Reck M, Rabe KF. Precision diagnosis and treatment for advanced non-small-cell lung cancer. N Engl J Med. 2017;377:849-861. doi:10.1056/nejmra1703413
    1. Wang Z, Cheng Y, An T, et al. Detection of EGFR mutations in plasma circulating tumour DNA as a selection criterion for first-line gefitinib treatment in patients with advanced lung adenocarcinoma (BENEFIT): a phase 2, single-arm, multicentre clinical trial. Lancet Respir Med. 2018;6:681-690. doi:10.1016/s2213-2600(18)30264-9
    1. Wu YL, Tsuboi M, He J, et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N Engl J Med. 2020;383:1711-1723. doi:10.1056/nejmoa2027071
    1. Gyawali B, West HJ. Lessons from ADAURA on adjuvant cancer drug trials: evidence, ethics, and economics. J Clin Oncol. 2021;39:175-177. doi:10.1200/jco.20.01762
    1. Luskin MR, Murakami MA, Manalis SR, Weinstock DM. Targeting minimal residual disease: a path to cure? Nat Rev Cancer. 2018;18:255-263. doi:10.1038/nrc.2017.125

Source: PubMed

3
Abonnieren