Persistent Pulmonary Hypertension in Corrected Valvular Heart Disease: Hemodynamic Insights and Long-Term Survival

Javier Bermejo, Ana González-Mansilla, Teresa Mombiela, Ana I Fernández, Pablo Martínez-Legazpi, Raquel Yotti, Rocío García-Orta, Pedro L Sánchez-Fernández, Mario Castaño, Javier Segovia-Cubero, Pilar Escribano-Subias, J Alberto San Román, Xavier Borrás, Angel Alonso-Gómez, Javier Botas, María G Crespo-Leiro, Sonia Velasco, Antoni Bayés-Genís, Amador López, Roberto Muñoz-Aguilera, Manuel Jiménez-Navarro, José R González-Juanatey, Arturo Evangelista, Jaime Elízaga, Javier Martín-Moreiras, José M González-Santos, Eduardo Moreno-Escobar, Francisco Fernández-Avilés, SIOVAC (“Sildenafil for Improving Outcomes after VAlvular Correction”) Investigators, Javier Bermejo, Ana González-Mansilla, Teresa Mombiela, Ana I Fernández, Pablo Martínez-Legazpi, Raquel Yotti, Rocío García-Orta, Pedro L Sánchez-Fernández, Mario Castaño, Javier Segovia-Cubero, Pilar Escribano-Subias, J Alberto San Román, Xavier Borrás, Angel Alonso-Gómez, Javier Botas, María G Crespo-Leiro, Sonia Velasco, Antoni Bayés-Genís, Amador López, Roberto Muñoz-Aguilera, Manuel Jiménez-Navarro, José R González-Juanatey, Arturo Evangelista, Jaime Elízaga, Javier Martín-Moreiras, José M González-Santos, Eduardo Moreno-Escobar, Francisco Fernández-Avilés, SIOVAC (“Sildenafil for Improving Outcomes after VAlvular Correction”) Investigators

Abstract

Background The determinants and consequences of pulmonary hypertension after successfully corrected valvular heart disease remain poorly understood. We aim to clarify the hemodynamic bases and risk factors for mortality in patients with this condition. Methods and Results We analyzed long-term follow-up data of 222 patients with pulmonary hypertension and valvular heart disease successfully corrected at least 1 year before enrollment who had undergone comprehensive hemodynamic and imaging characterization as per the SIOVAC (Sildenafil for Improving Outcomes After Valvular Correction) clinical trial. Median (interquartile range) mean pulmonary pressure was 37 mm Hg (32-44 mm Hg) and pulmonary artery wedge pressure was 23 mm Hg (18-26 mm Hg). Most patients were classified either as having combined precapillary and postcapillary or isolated postcapillary pulmonary hypertension. After a median follow-up of 4.5 years, 91 deaths accounted for 4.21 higher-than-expected mortality in the age-matched population. Risk factors for mortality were male sex, older age, diabetes mellitus, World Health Organization functional class III and higher pulmonary vascular resistance-either measured by catheterization or approximated from ultrasound data. Higher pulmonary vascular resistance was related to diabetes mellitus and smaller residual aortic and mitral valve areas. In turn, the latter correlated with prosthetic nominal size. Six-month changes in the composite clinical score and in the 6-minute walk test distance were related to survival. Conclusions Persistent valvular heart disease-pulmonary hypertension is an ominous disease that is almost universally associated with elevated pulmonary artery wedge pressure. Pulmonary vascular resistance is a major determinant of mortality in this condition and is related to diabetes mellitus and the residual effective area of the corrected valve. These findings have important implications for individualizing valve correction procedures. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT00862043.

Keywords: heart failure; pulmonary hypertension; valvular heart disease.

Conflict of interest statement

None.

Figures

Figure 1. Enrollment of the study cohort.
Figure 1. Enrollment of the study cohort.
The confirmatory catheterization procedure excluded pulmonary hypertension (PH) (mean pulmonary arterial pressure [mPAP]

Figure 2. Hemodynamic characterization at enrollment.

CpcPH…

Figure 2. Hemodynamic characterization at enrollment.

CpcPH indicates combined postcapillary pulmonary hypertension; IpcPH, isolated postcapillary…

Figure 2. Hemodynamic characterization at enrollment.
CpcPH indicates combined postcapillary pulmonary hypertension; IpcPH, isolated postcapillary pulmonary hypertension; PAWP, pulmonary capillary pressure; PH, pulmonary hypertension; and PVR, pulmonary vascular resistance

Figure 3. Survival curves of the study…

Figure 3. Survival curves of the study cohort.

( A ) Global survival of the…

Figure 3. Survival curves of the study cohort.
(A) Global survival of the full cohort compared with the Spanish age‐matched control population. (B) Survival without cardiovascular mortality. (C, D) Stratification based on the role in the clinical trial and pulmonary hypertension (PH) classification group, respectively. CpcPH indicates combined postcapillary pulmonary hypertension; IpcPH, isolated postcapillary pulmonary hypertension; mPAP, mean pulmonary arterial pressure; PH, pulmonary hypertension; SIOVAC Sildenafil for Improving Outcomes After Valvular Correction; and SMR, standard mortality ratio.

Figure 4. The relationship between pulmonary vascular…

Figure 4. The relationship between pulmonary vascular resistance (PVR) and outcomes.

( A ) Kaplan‐Meir…

Figure 4. The relationship between pulmonary vascular resistance (PVR) and outcomes.
(A) Kaplan‐Meir survival curves based on the PVR quartile distribution. (B) Per‐quartile hazard ratio (HR) analysis. When analyzed by quantiles of the distribution, only quartile 4 vs quartile 1 was significant (HR not including 1), without significant differences in the intermediate categories.

Figure 5. Results of the multivariable regression…

Figure 5. Results of the multivariable regression fitting for predicting pulmonary vascular resistance (PVR) from…

Figure 5. Results of the multivariable regression fitting for predicting pulmonary vascular resistance (PVR) from ultrasound data.
AccTimePV indicates Doppler acceleration time as measured by pulsed‐wave Doppler at the level of the pulmonary valve (ms); BSA, body surface area (m2); HR, heart rate (min‐1); PVR, pulmonary vascular resistance (Wood units [WU]); SysDTI_RV, peak systolic myocardial velocity as measured by Doppler tissue imaging of the right ventricular free wall (cm/s); TVILVOT, left ventricular outflow‐tract pulsed‐wave Doppler time velocity integral (cm); and VmaxTR, peak jet velocity of the tricuspid regurgitation jet (m/s).

Figure 6. Kaplan‐Meier overall‐survival curves based on…

Figure 6. Kaplan‐Meier overall‐survival curves based on most relevant predictors.

Stratification based on sex (…

Figure 6. Kaplan‐Meier overall‐survival curves based on most relevant predictors.
Stratification based on sex (A), World Health Organization (WHO) functional class (B), and pulmonary vascular resistance (PVR), either measured (C) or estimated by ultrasound (D).

Figure 7. Survival curves of the 6‐month…

Figure 7. Survival curves of the 6‐month end points of the SIOVAC (Sildenafil for Improving…

Figure 7. Survival curves of the 6‐month end points of the SIOVAC (Sildenafil for Improving Outcomes After Valvular Correction) clinical trial.
(A, B, C) Split survival curves based on the clinical composite score, median change in brain natriuretic peptide (BNP) levels, and median change in the 6‐minute walk test (6MWT) distance, respectively. HR indicates hazard ratio.
All figures (7)
Figure 2. Hemodynamic characterization at enrollment.
Figure 2. Hemodynamic characterization at enrollment.
CpcPH indicates combined postcapillary pulmonary hypertension; IpcPH, isolated postcapillary pulmonary hypertension; PAWP, pulmonary capillary pressure; PH, pulmonary hypertension; and PVR, pulmonary vascular resistance
Figure 3. Survival curves of the study…
Figure 3. Survival curves of the study cohort.
(A) Global survival of the full cohort compared with the Spanish age‐matched control population. (B) Survival without cardiovascular mortality. (C, D) Stratification based on the role in the clinical trial and pulmonary hypertension (PH) classification group, respectively. CpcPH indicates combined postcapillary pulmonary hypertension; IpcPH, isolated postcapillary pulmonary hypertension; mPAP, mean pulmonary arterial pressure; PH, pulmonary hypertension; SIOVAC Sildenafil for Improving Outcomes After Valvular Correction; and SMR, standard mortality ratio.
Figure 4. The relationship between pulmonary vascular…
Figure 4. The relationship between pulmonary vascular resistance (PVR) and outcomes.
(A) Kaplan‐Meir survival curves based on the PVR quartile distribution. (B) Per‐quartile hazard ratio (HR) analysis. When analyzed by quantiles of the distribution, only quartile 4 vs quartile 1 was significant (HR not including 1), without significant differences in the intermediate categories.
Figure 5. Results of the multivariable regression…
Figure 5. Results of the multivariable regression fitting for predicting pulmonary vascular resistance (PVR) from ultrasound data.
AccTimePV indicates Doppler acceleration time as measured by pulsed‐wave Doppler at the level of the pulmonary valve (ms); BSA, body surface area (m2); HR, heart rate (min‐1); PVR, pulmonary vascular resistance (Wood units [WU]); SysDTI_RV, peak systolic myocardial velocity as measured by Doppler tissue imaging of the right ventricular free wall (cm/s); TVILVOT, left ventricular outflow‐tract pulsed‐wave Doppler time velocity integral (cm); and VmaxTR, peak jet velocity of the tricuspid regurgitation jet (m/s).
Figure 6. Kaplan‐Meier overall‐survival curves based on…
Figure 6. Kaplan‐Meier overall‐survival curves based on most relevant predictors.
Stratification based on sex (A), World Health Organization (WHO) functional class (B), and pulmonary vascular resistance (PVR), either measured (C) or estimated by ultrasound (D).
Figure 7. Survival curves of the 6‐month…
Figure 7. Survival curves of the 6‐month end points of the SIOVAC (Sildenafil for Improving Outcomes After Valvular Correction) clinical trial.
(A, B, C) Split survival curves based on the clinical composite score, median change in brain natriuretic peptide (BNP) levels, and median change in the 6‐minute walk test (6MWT) distance, respectively. HR indicates hazard ratio.

References

    1. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119. doi:10.1093/eurheartj/ehv317.
    1. Wijeratne DT, Lajkosz K, Brogly SB, Lougheed MD, Jiang L, Housin A, Barber D, Johnson A, Doliszny KM, Archer SL. Increasing incidence and prevalence of world health organization groups 1 to 4 pulmonary hypertension: A population‐based cohort study in Ontario, Canada. Circ Cardiovasc Qual Outcomes. 2018;11:e003973. doi:10.1161/CIRCOUTCOMES.117.003973.
    1. Weitsman T, Weisz G, Farkash R, Klutstein M, Butnaru A, Rosenmann D, Hasin T. Pulmonary hypertension with left heart disease: Prevalence, temporal shifts in etiologies and outcome. Am J Med. 2017;130:1272–1279.
    1. Hurdman J, Condliffe R, Elliot CA, Davies C, Hill C, Wild JM, Capener D, Sephton P, Hamilton N, Armstrong IJ, et al. ASPIRE registry: assessing the Spectrum of Pulmonary hypertension Identified at a REferral centre. Eur Respir J. 2012;39:945–955. doi:10.1183/09031936.00078411.
    1. Li M, Dumesnil JG, Mathieu P, Pibarot P. Impact of valve prosthesis‐patient mismatch on pulmonary arterial pressure after mitral valve replacement. J Am Coll Cardiol. 2005;45:1034–1040. doi:10.1016/j.jacc.2004.10.073.
    1. Murashita T, Okada Y, Kanemitsu H, Fukunaga N, Konishi Y, Nakamura K, Koyama T. The impact of preoperative and postoperative pulmonary hypertension on long‐term surgical outcome after mitral valve repair for degenerative mitral regurgitation. Ann Thorac Cardiovasc Surg. 2015;21:53–58. doi:10.5761/atcs.oa.13-00364.
    1. Magne J, Mathieu P, Dumesnil JG, Tanne D, Dagenais F, Doyle D, Pibarot P. Impact of prosthesis‐patient mismatch on survival after mitral valve replacement. Circulation. 2007;115:1417–1425. doi:10.1161/CIRCULATIONAHA.106.631549.
    1. Kainuma S, Taniguchi K, Toda K, Funatsu T, Kondoh H, Nishino M, Daimon T, Sawa Y. Pulmonary hypertension predicts adverse cardiac events after restrictive mitral annuloplasty for severe functional mitral regurgitation. J Thorac Cardiovasc Surg. 2011;142:783–792. doi:10.1016/j.jtcvs.2010.11.031.
    1. Chen Y, Liu JH, Chan D, Sit KY, Wong CK, Ho KL, Ho LM, Zhen Z, Lam YM, Lau CP, et al. Prevalence, predictors and clinical outcome of residual pulmonary hypertension following tricuspid annuloplasty. J Am Heart Assoc. 2016;5:e003353. doi:10.1161/JAHA.1116.003353.
    1. Testa L, Latib A, De Marco F, De Carlo M, Fiorina C, Montone R, Agnifili M, Barbanti M, Petronio AS, Biondi Zoccai G, et al. Persistence of severe pulmonary hypertension after transcatheter aortic valve replacement: Incidence and prognostic impact. Circ Cardiovasc Interv. 2016;9. doi:10.1161/CIRCINTERVENTIONS.115.003563.
    1. Kjaergaard J, Akkan D, Iversen KK, Kjoller E, Kober L, Torp‐Pedersen C, Hassager C. Prognostic importance of pulmonary hypertension in patients with heart failure. Am J Cardiol. 2007;99:1146–1150. doi:10.1016/j.amjcard.2006.11.052.
    1. Bermejo J, Yotti R, García‐Orta R, Sánchez‐Fernández PL, Castaño M, Segovia‐Cubero J, Escribano‐Subías P, San Román JA, Borrás X, Alonso‐Gómez A, et al. Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double‐blind, randomized clinical trial. Eur Heart J. 2018;39:1255–1264. doi:10.1093/eurheartj/ehx700.
    1. Gomez‐Sanchez MA, Saenz de la Calzada C, Escribano Subias P, Francisco Delgado Jimenez J, Lazaro Salvador M, Albarran Gonzalez A, Cea CL. Pilot assessment of the response of several pulmonary hemodynamic variables to sublingual sildenafil in candidates for heart transplantation. Eur J Heart Fail. 2004;6:615–617. doi:10.1016/j.ejheart.2003.11.015.
    1. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53:1801913. doi:10.1183/13993003.01913-2018.
    1. Packer M. Proposal for a new clinical end point to evaluate the efficacy of drugs and devices in the treatment of chronic heart failure. J Card Fail. 2001;7:176–182. doi:10.1054/jcaf.2001.25652.
    1. Seckinger A, Meiβner T, Moreaux J, Depeweg D, Hillengass J, Hose K, Rème T, Rösen‐Wolff A, Jauch A, Schnettler R, et al. Clinical and prognostic role of annexin A2 in multiple myeloma. Blood. 2012;120:1087–1094. doi:10.1182/blood-2012-03-415588.
    1. Instituto Nacional de Estadistica . Life tables: national results. Mortality tables for Spain by year, sex, age and functions. INEbase. URL: . Published 12/11/2019. Accessed January 8, 2020.
    1. Barbash IM, Escarcega RO, Minha Sa'ar, Ben‐Dor I, Torguson R, Goldstein SA, Wang Z, Okubagzi P, Satler LF, Pichard AD, et al. Prevalence and impact of pulmonary hypertension on patients with aortic stenosis who underwent transcatheter aortic valve replacement. Am J Cardiol. 2015;115:1435–1442. doi:10.1016/j.amjcard.2015.02.022.
    1. Goodale F Jr, Sanchez G, Friedlich AL, Scannell JG, Myers GS. Correlation of pulmonary arteriolar resistance with pulmonary vascular changes in patients with mitral stenosis before and after valvulotomy. N Engl J Med. 1955;252:979–983. doi:10.1056/NEJM195506092522303.
    1. Magne J, Pibarot P, Sengupta PP, Donal E, Rosenhek R, Lancellotti P. Pulmonary hypertension in valvular disease: a comprehensive review on pathophysiology to therapy from the HAVEC Group. JACC Cardiovasc Imaging. 2015;8:83–99. doi:10.1016/j.jcmg.2014.12.003.
    1. Fayyaz AU, Edwards WD, Maleszewski JJ, Konik EA, DuBrock HM, Borlaug BA, Frantz RP, Jenkins SM, Redfield MM. Global pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation. 2018;137:1796–1810. doi:10.1161/CIRCULATIONAHA.117.031608.
    1. Inciardi RM, Giugliano RP, Claggett B, Gupta DK, Chandra A, Ruff CT, Antman EM, Mercuri MF, Grosso MA, Braunwald E, et al. Left atrial structure and function and the risk of death or heart failure in atrial fibrillation. Eur J Heart Fail. 2019;21:1571–1579. doi:10.1002/ejhf.1606.
    1. Guazzi M, Labate V. Pulmonary hypertension in heart failure patients: Pathophysiology and prognostic implications. Curr Heart Fail Rep. 2016;13:281–294. doi:10.1007/s11897-016-0306-8.
    1. Muntwyler J, Abetel G, Gruner C, Follath F. One‐year mortality among unselected outpatients with heart failure. Eur Heart J. 2002;23:1861–1866. doi:10.1053/euhj.2002.3282.
    1. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–259. doi:10.1056/NEJMoa052256.
    1. Bryan AJ, Rogers CA, Bayliss K, Wild J, Angelini GD. Prospective randomized comparison of CarboMedics and St. Jude Medical bileaflet mechanical heart valve prostheses: ten‐year follow‐up. J Thorac Cardiovasc Surg. 2007;133:614–622. doi:10.1016/j.jtcvs.2006.08.075.
    1. Humbert M, Sitbon O, Chaouat A, Bertocchi Michèle, Habib G, Gressin V, Yaïci A, Weitzenblum E, Cordier JF, Chabot François, et al. Survival in patients with idiopathic, familial, and anorexigen‐associated pulmonary arterial hypertension in the modern management era. Circulation. 2010;122:156–163. doi:10.1161/CIRCULATIONAHA.109.911818.
    1. Tampakakis E, Shah SJ, Borlaug BA, Leary PJ, Patel HH, Miller WL, Kelemen BW, Houston BA, Kolb TM, Damico R, et al. Pulmonary effective arterial elastance as a measure of right ventricular afterload and its prognostic value in pulmonary hypertension due to left heart disease. Circ Heart Fail. 2018;11:e004436. doi:10.1161/CIRCHEARTFAILURE.117.004436.
    1. Weber L, Rickli H, Haager PK, Joerg L, Weilenmann D, Brenner R, Taramasso M, Baier P, Maisano F, Maeder MT. Haemodynamic mechanisms and long‐term prognostic impact of pulmonary hypertension in patients with severe aortic stenosis undergoing valve replacement. Eur J Heart Fail. 2019;21:172–181. doi:10.1002/ejhf.1322.
    1. Tampakakis E, Leary PJ, Selby VN, De Marco T, Cappola TP, Felker GM, Russell SD, Kasper EK, Tedford RJ. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail. 2015;3:9–16.
    1. Mutlak D, Khoury E, Lessick J, Kehat I, Agmon Y, Aronson D. Lack of increased cardiovascular risk due to functional tricuspid regurgitation in patients with left‐sided heart disease. J Am Soc Echocardiogr. 2019;32:e1531. doi:10.1016/j.echo.2019.08.014.
    1. Thenappan T, Shah SJ, Gomberg‐Maitland M, Collander B, Vallakati A, Shroff P, Rich S. Clinical characteristics of pulmonary hypertension in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2011;4:257–265. doi:10.1161/CIRCHEARTFAILURE.110.958801.
    1. Robbins IM, Newman JH, Johnson RF, Hemnes AR, Fremont RD, Piana RN, Zhao DX, Byrne DW. Association of the metabolic syndrome with pulmonary venous hypertension. Chest. 2009;136:31–36. doi:10.1378/chest.08-2008.
    1. Ranchoux B, Nadeau V, Bourgeois A, Provencher S, Tremblay É, Omura J, Coté N, Abu‐Alhayja’a R, Dumais V, Nachbar RT, et al. Metabolic syndrome exacerbates pulmonary hypertension due to left heart disease. Circ Res. 2019;125:449–466. doi:10.1161/CIRCRESAHA.118.314555.
    1. Fernández AI, Yotti R, González‐Mansilla A, Mombiela T, Gutiérrez‐Ibanes E, Pérez del Villar C, Navas‐Tejedor P, Chazo C, Martínez‐Legazpi P, Fernández‐Avilés F, et al. The biological bases of group 2 pulmonary hypertension. Int J Mol Sci. 2019;20. doi:10.3390/ijms20235884.
    1. Ammannaya GKK, Mishra P, Khandekar JV, Mohapatra CKR, Seth HS, Raut C, Shah V, Saini JS. Effect of prosthesis patient mismatch in mitral position on pulmonary hypertension. Eur J Cardiothorac Surg. 2017;52:1168–1174. doi:10.1093/ejcts/ezx167.
    1. Ehlken N, Lichtblau M, Klose H, Weidenhammer J, Fischer C, Nechwatal R, Uiker S, Halank M, Olsson K, Seeger W, et al. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo‐embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J. 2016;37:35–44. doi:10.1093/eurheartj/ehv337.

Source: PubMed

3
Abonnieren