Early Influence of Musical Abilities and Working Memory on Speech Imitation Abilities: Study with Pre-School Children

Markus Christiner, Susanne Maria Reiterer, Markus Christiner, Susanne Maria Reiterer

Abstract

Musical aptitude and language talent are highly intertwined when it comes to phonetic language ability. Research on pre-school children's musical abilities and foreign language abilities are rare but give further insights into the relationship between language and musical aptitude. We tested pre-school children's abilities to imitate unknown languages, to remember strings of digits, to sing, to discriminate musical statements and their intrinsic (spontaneous) singing behavior ("singing-lovers versus singing nerds"). The findings revealed that having an ear for music is linked to phonetic language abilities. The results of this investigation show that a working memory capacity and phonetic aptitude are linked to high musical perception and production ability already at around the age of 5. This suggests that music and (foreign) language learning capacity may be linked from childhood on. Furthermore, the findings put emphasis on the possibility that early developed abilities may be responsible for individual differences in both linguistic and musical performances.

Keywords: intrinsic singing; musical aptitude; phonetic language aptitude; singing ability; working memory.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Working memory, singing ability and speech imitation was higher in children with high (compared to low) musical aptitude.

References

    1. Patel A.D. Music, Language and the Brain. Oxford University Press; Oxford, UK: 2008.
    1. Patel A.D. Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Front. Psychol. 2011;2:142. doi: 10.3389/fpsyg.2011.00142.
    1. Fonseca-Mora M.C., Jara-Jiménez P., Gómez-Domínguez M. Musical plus phonological input for young foreign language readers. Front. Psychol. 2015;6:286. doi: 10.3389/fpsyg.2015.00286.
    1. Fonseca-Mora M.C., Toscano-Fuentes C., Wermke K. Melodies that help: The relation between language aptitude and musical intelligence. Angl. Int. J. Engl. Stud. 2011;22:101–118.
    1. Seither-Preisler A., Parncutt R., Schneider P. Size and synchronization of auditory cortex promotes musical, literacy and attentional skills in children. J. Neurosci. 2014;34:10937–10949. doi: 10.1523/JNEUROSCI.5315-13.2014.
    1. Chobert J., François C., Velay J.-L., Besson M. Twelve months of active musical training in 8- to 10-year-old children enhances the preattentive processing of syllabic duration and voice onset time. Cereb. Cortex. 2012;24:956–967. doi: 10.1093/cercor/bhs377.
    1. François C., Chobert J., Besson M., Schön D. Music training for the development of speech segmentation. Cereb. Cortex. 2012;23:2038–2043. doi: 10.1093/cercor/bhs180.
    1. Besson M., Chobert J., Marie C. Transfer of training between music and speech: Common processing, attention, and memory. Front. Psychol. 2011;2:94. doi: 10.3389/fpsyg.2011.00094.
    1. Moreno S., Marques C., Santos A., Santos M., Castro S.L., Besson M. Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cereb. Cortex. 2008;19:712–723. doi: 10.1093/cercor/bhn120.
    1. Moreno S., Bialystok E., Barac R., Schellenberg E.G., Cepeda N.J., Chau T. Short-term music training enhances verbal intelligence and executive function. Psychol. Sci. 2012;22:1425–1433. doi: 10.1177/0956797611416999.
    1. Sun Y., Lu X., Ho H.T., Johnson B.W., Sammler D., Thompson W.F. Syntactic processing in music and language: Parallel abnormalities observed in congenital amusia. Neuroimage Clin. 2018;19:640–651. doi: 10.1016/j.nicl.2018.05.032.
    1. Fitch W.T. The evolution of music in comparative perspective. Ann. N. Y. Acad. Sci. 2005;1060:29–49. doi: 10.1196/annals.1360.004.
    1. Fitch W.T., Martins M.D. Hierarchical processing in music, language, and action: Lashley revisited. Ann. N. Y. Acad. Sci. 2014;1316:87–104. doi: 10.1111/nyas.12406.
    1. Theofanopoulou C., Boeckx C., Jarvis E.D. A hypothesis on a role of oxytocin in the social mechanisms of speech and vocal learning. Proc. Biol. Sci. R. B. 2017;284:20170988. doi: 10.1098/rspb.2017.0988.
    1. Milovanov R. Musical aptitude and foreign language learning skills: Neural and behavioural evidence about their connections; Proceedings of the 7th Triennial Conference of European Society for the Cognitive Sciences of Music (ESCOM 2009); Jyväskylä, Finland. 12–16 August 2009; pp. 338–342.
    1. Slevc R.L., Myake A. Differences in second-language proficiency—Does musical ability matter? Psychol. Sci. 2006;8:675–681. doi: 10.1111/j.1467-9280.2006.01765.x.
    1. Milovanov R., Huotilainen M., Välimäki V., Esquef P.A.A., Tervaniemi M. Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Res. 2008;1194:81–89. doi: 10.1016/j.brainres.2007.11.042.
    1. Christiner M., Reiterer S.M. Song and speech: Examining the link between singing talent and speech imitation ability. Front. Psychol. 2013;4:874. doi: 10.3389/fpsyg.2013.00874.
    1. Christiner M., Reiterer S.M. A Mozart in not a Pavarotti: Singers outperform instrumentalists on foreign accent imitation. Front. Hum. Neurosc. 2015;9:482. doi: 10.3389/fnhum.2015.00482.
    1. Christiner M., Reiterer S.M. Music, song and speech: A closer look at the interfaces between musicality, singing and individual differences in phonetic language aptitude. In: Granena G., Jackson D.O., Yilmaz Y., editors. Cognitive Individual Differences in Second Language Processing and Acquisition. John Benjamins; Amsterdam, The Netherlands: 2016. pp. 131–156.
    1. Schön D., Magne C., Besson M. The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology. 2004;41:341–349. doi: 10.1111/1469-8986.00172.x.
    1. Wong P.C.M., Perrachione T.K. Learning pitch patterns in lexical identification by native english-speaking adults. Appl. Psycholinguist. 2007;28:565–585. doi: 10.1017/S0142716407070312.
    1. Pakulak E., Neville H.J. Proficiency differences in syntactic processing of monolingual native speakers indexed by event-related potentials. J. Cogn. Neurosci. 2010;22:2728–2744. doi: 10.1162/jocn.2009.21393.
    1. Andringa S.J. The use of native speaker norms in critical period hypothesis research. Stud. Second Lang. Acqu. 2014;36:565–596. doi: 10.1017/S0272263113000600.
    1. Korecky-Kröll K., Uzunkaya-Sharma K., Czinglar C., Sommer-Lolei S., Yanagida T., Dressler W.U. The lower the slower: Parental SES and input affect speed of development of vocabulary and morphology; Proceedings of the Child Language Symposium at the Meeting of University of Warwick; Coventry, UK. 20–21 July 2015.
    1. Korecky-Kröll K., Uzunkaya-Sharma K., Dressler W.U. Requests in Turkish and German child-directed and child speech: Evidence from different socio-economic backgrounds. In: Ketrez N., Küntay A.C., Özçalýþkan S., Özyürek A., editors. Social Environment and Cognition in Language Development: Studies in Honor of AyhanAksu-Koç. Benjamins; Amsterdam, The Netherlands: 2017. pp. 53–68.
    1. Gagné F. From gifts to talents: The DMGT as a developmental model. In: Sternberg R.J., Davidson J.E., editors. Conceptions of Giftedness. 2nd ed. Cambridge University Press; Cambridge, UK: 2005. pp. 98–119.
    1. Wen Z., Biedroń A., Skehan P. Foreign language aptitude theory: Yesterday, today and tomorrow. Lang. Teach. 2017;50:1–31. doi: 10.1017/S0261444816000276.
    1. Vinkhuyzen A.A.E., Van Der Sluis S., Posthuma D., Boomsma D.I. The heritability of aptitude and exceptional talent across different domains in adolescents and young adults. Behav. Genet. 2009;39:380–392. doi: 10.1007/s10519-009-9260-5.
    1. Elmer S., Jänggi J., Jäncke L. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters. Cortex. 2014;54:179–189. doi: 10.1016/j.cortex.2014.02.014.
    1. Vandermosten M., Price C.J., Golestani N. Plasticity of white matter connectivity in phonetics experts. Brain Struct. Funct. 2016;221:3825–3833. doi: 10.1007/s00429-015-1114-8.
    1. Kepinska O., de Rover M., Caspers J., Schiller N.O. On neural correlates of individual differences in novel grammar learning: An fMRI study. Neuropsychologia. 2016;98:156–168. doi: 10.1016/j.neuropsychologia.2016.06.014.
    1. Vaquero L., Rodriguez-Fornells A., Reiterer S. The left, the better: White-matter brain integrity predicts foreign language imitation ability. Cereb. Cortex. 2017;27:3906–3917. doi: 10.1093/cercor/bhw199.
    1. Reiterer S.M., Hu X., Erb M., Rota G., Nardo D., Grodd W., Winkler S., Ackermann H. Individual differences in audio-vocal speech imitation aptitude in late bilinguals: Functional neuro-imaging and brain morphology. Front. Psychol. 2011;2:271. doi: 10.3389/fpsyg.2011.00271.
    1. Abutalebi J., Cappa S.F., Perani D. The bilingual brain as revealed by functional neuroimaging. Biling. Lang. Cogn. 2001;4:179–190. doi: 10.1017/S136672890100027X.
    1. Perani D., Abutalebi J., Paulesu E., Brambati S., Scifo P., Cappa S.F., Fazio F. The role of age of acquisition and language usage in early, high-proficient bilinguals: An fMRI study during verbal fluency. Hum. Brain Mapp. 2003;9:170–182. doi: 10.1002/hbm.10110.
    1. Oikkonen J., Huang Y., Onkamo P., Ukkola-Vuoti L., Raijas P., Karma K., Vieland V.J. A genome-wide linkage and association study of musical aptitude identifies loci containing genes related to inner ear development and neurocognitive functions. Mol. Psychiatry. 2015;20:275–282. doi: 10.1038/mp.2014.8.
    1. Benner J., Wengenroth M., Reinhardt J., Stippich C., Schneider P., Blatow M. Prevalence and function of Heschl’s gyrus morphotypes in musicians. Brain Struct. Funct. 2017;222:3587–3603. doi: 10.1007/s00429-017-1419-x.
    1. Schneider P., Andermann M., Wengenroth M., Goebel R., Flor H., Rupp A., Diesch E. Reduced volume of Heschl’s gyrus in tinnitus. Neuroimage. 2009;45:927–939. doi: 10.1016/j.neuroimage.2008.12.045.
    1. Schneider P., Scherg M., Dosch G.H., Specht H.J., Gutschalk A., Rupp A. Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat. Neurosci. 2002;5:688–694. doi: 10.1038/nn871.
    1. Schneider P., Sluming V., Roberts N., Bleeck S., Rupp A. Structural, functional and perceptual differences in Heschl’s gyrus and musical instrument preference. Ann. N. Y. Acad. Sci. 2005;1060:387–394. doi: 10.1196/annals.1360.033.
    1. Baumann S., Koeneke S., Meyer M., Lutz K., Jancke L. A network for sensory-motor integration: What happens in the auditory cortex during piano playing without acoustic feedback? Ann. N. Y. Acad. Sci. 2005;1060:186–188. doi: 10.1196/annals.1360.038.
    1. Koelsch S., Fritz T., Schulze K., Alsop D., Schlaug G. Adults and children processing music: An fMRI study. Neuroimage. 2005;25:1068–1076. doi: 10.1016/j.neuroimage.2004.12.050.
    1. Bangert M., Peschel T., Schlaug G., Rotte M., Drescher D., Hinrichs H., Heinze H.J., Altenmüller E. Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. Neuroimage. 2006;30:917–926. doi: 10.1016/j.neuroimage.2005.10.044.
    1. Zatorre R.J., Chen J.L., Penhune V.B. When the brain plays music: Auditory-motor interactions in music perception and production. Nat. Rev. Neurosci. 2007;8:547–558. doi: 10.1038/nrn2152.
    1. Altenmüller E. Neurology of musical performance. Clin. Med. 2008;8:410–413. doi: 10.7861/clinmedicine.8-4-410.
    1. Chen J.L., Penhune V.B., Zatorre R.J. Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J. Cogn. Neurosci. 2008;20:226–239. doi: 10.1162/jocn.2008.20018.
    1. Brown R.M., Chen J.L., Hollinger A., Penhune V.B., Palmer C., Zatorre R.J. Repetition suppression in auditory-motor regions to pitch and temporal structure in music. J. Cogn. Neurosci. 2013;25:313–328. doi: 10.1162/jocn_a_00322.
    1. Imfeld A., Oechslin M.S., Meyer M., Loenneker T., Jancke L. White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study. Neuroimage. 2009;46:600–607. doi: 10.1016/j.neuroimage.2009.02.025.
    1. Halwani G.F., Loui P., Rüber T., Schlaug G. Effects of practice and experience on the arcuate fasciculus: Comparing singers, instrumentalists and non-musicians. Front. Psychol. 2011;2:156. doi: 10.3389/fpsyg.2011.00156.
    1. Gordon E.E. A Music Learning Theory for Newborn and Young Children. GIA; Chicago, IL, USA: 2003.
    1. Hyde K.L., Lerch J., Norton A., Forgeard M., Winner E., Evans A.C., Schlaug G. The Effects of Musical Training on Structural Brain Development. Ann. N. Y. Acad. Sci. 2009;1169:182–186. doi: 10.1111/j.1749-6632.2009.04852.x.
    1. Bongaerts T. Ultimate attainment in L2 pronunciation: The case of very advanced late L2 learners. In: Birdsong D., editor. Second Language Acquisition and the Critical Period Hypothesis. Lawrence Erlbaum; Mahwah, NJ, USA: 1999. pp. 133–159.
    1. Bongaerts T., Planken B., Schils E. Can late starters attain a native accent in foreign language? A test of the critical period hypothesis. In: Singleton D., Lengyel Z., editors. The Age Factor in Second Language Acquisition. Multilingual Matters; Clevedon, UK: 1995. pp. 30–50.
    1. Jaeggi S.M., Buschkuehl M., Jonides J., Shah P. Short- and longterm benefits of cognitive training. Proc. Natl. Acad. Sci. USA. 2011;108:10081–10086. doi: 10.1073/pnas.1103228108.
    1. Strait D.L., Hornickel J., Kraus N. Subcortical processing of speech regularities underlies reading and music aptitude in children. Behav. Brain Funct. 2011;7:44. doi: 10.1186/1744-9081-7-44.
    1. Koelsch S., Schulze K., Sammler D., Fritz T., Müller K., Gruber O. Functional architecture of verbal and tonal working memory: An fMRI study. Hum. Brain Mapp. 2009;30:859–873. doi: 10.1002/hbm.20550.
    1. Schulze K., Koelsch S. Working memory for speech and music. Ann. N. Y. Acad. Sci. 2012;1252:229–236. doi: 10.1111/j.1749-6632.2012.06447.x.
    1. Schulze K., Zysset S., Mueller K., Friederici A.D., Koelsch S. Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Hum. Brain Mapp. 2011;32:771–783. doi: 10.1002/hbm.21060.
    1. Williamson V.J., Baddeley A.D., Hitch G.J. Musicians’ and nonmusicians’ short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity. Mem. Cogn. 2010;38:163–175. doi: 10.3758/MC.38.2.163.
    1. Klingberg T., Forssberg H., Westerberg H. Training of working memory in children with ADHD. J. Clin. Exp. Neuropsychol. 2002;24:781–791. doi: 10.1076/jcen.24.6.781.8395.
    1. Roman A.S., Pisoni D.B., Kronenberger W.G. Assessment of working memory capacity in preschool children using the missing scan task. Infant Child Dev. 2014;23:575–587. doi: 10.1002/icd.1849.
    1. Christiner M., Rüdegger S., Reiterer S.M. Sing Chinese and tap Tagalog? Predicting individual differences in musical and phonetic aptitude using language families differing by sound-typology. Int. J. Multiling. 2018 doi: 10.1080/14790718.2018.1424171. in press.
    1. Ludke K.M., Ferreira F., Overy K. Singing can facilitate foreign language learning. Mem. Cogn. 2014;42:41–52. doi: 10.3758/s13421-013-0342-5.
    1. Kleber B., Veit R., Birbaumer N., Gruzelier J., Lotze M. The brain of opera singers: Experience-dependent changes in functional activation. Cereb. Cortex. 2010;20:1144–1152. doi: 10.1093/cercor/bhp177.
    1. Kleber B., Zeitouni A.G., Friberg A., Zatorre R.J. Experience-dependent modulation of feedback integration during singing: Role of the right anterior insula. J. Neurosci. 2013;33:6070–6080. doi: 10.1523/JNEUROSCI.4418-12.2013.
    1. Özdemir E., Norton A., Schlaug G. Shared and distinct neural correlates of singing and speaking. Neuroimage. 2006;33:628–635. doi: 10.1016/j.neuroimage.2006.07.013.
    1. García-López I., GavilánBouzas J. The singing voice. Acta Otorrinolaringol. 2010;61:441–451. doi: 10.1016/S2173-5735(10)70082-X.
    1. Krishnan S., Alcock K., Carey D., Bergström L., Karmiloff-Smith A., Dick F. Fractionating nonword repetition: The contributions of short-term memory and oromotor praxis are different. PLoS ONE. 2017;12:e0178356. doi: 10.1371/journal.pone.0178356.
    1. D’Souza D., D’Souza H., Karmiloff-Smith A. Precursors to language development in typically and atypically developing infants and toddlers: The importance of embracing complexity. J. Child Lang. 2017;44:591–627. doi: 10.1017/S030500091700006X.
    1. Gordon E.E. Primary Measures of Music Audiation. GIA; Chicago, IL, USA: 2006.
    1. Gouzouasis P., Guhn M., Kishor N. The predictive relationship between achievement and participation in music and achievement in core Grade 12 academic subjects. Music Educ. Res. 2007;9:81–92. doi: 10.1080/14613800601127569.
    1. Stamou L., Schmidt C.P., Humphreys J.T. Standardization of the Gordon Primary Measures of Music Audiation in Greece. J. Res. Music Educ. 2010;58:75–89. doi: 10.1177/0022429409360574.
    1. Wechsler D. The Measurement of Adult Intelligence. Williams and Wilkins; Baltimore, MD, USA: 1939.
    1. Hyde K.L., Lerch J., Norton A., Forgeard M., Winner E., Evans A.C., Schlaug G. Musical training shapes structural brain development. J. Neurosci. 2009;29:3019–3025. doi: 10.1523/JNEUROSCI.5118-08.2009.
    1. Moreno S., Bidelman G.M. Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hear. Res. 2014;308:84–97. doi: 10.1016/j.heares.2013.09.012.
    1. Hannon E.E., Trainor L.J. Music acquisition: Effects of enculturation and formal training on development. Trends Cogn. Sci. 2007;11:466–472. doi: 10.1016/j.tics.2007.08.008.
    1. Elmer S., Jäncke L. Relationships between music training, speech processing, and word learning: A network perspective. Ann. N. Y. Acad. Sci. 2018 doi: 10.1111/nyas.13581.
    1. Karma K. Auditory and Visual Temporal Structuring: How Important is Sound to Musical Thinking? Psychol. Music. 1994;22:20–30. doi: 10.1177/0305735694221002.
    1. Pulli K., Karma K., Norio R., Sistonen P., Göring H.H.H., Järvelä I. Genome-wide linkage scan for loci of musical aptitude in Finnish families: Evidence for a major locus at 4q22. J. Med. Genet. 2008;45:451–456. doi: 10.1136/jmg.2007.056366.
    1. Perkins J.M., Baran J.A., Gandour J. Hemispheric specialization in processing intonation contours. Aphasiology. 1996;10:343–362. doi: 10.1080/02687039608248416.
    1. Kraus N., Chandrasekaran B. Music training for the development of auditory skills. Nat. Rev. Neurosci. 2010;11:599–605. doi: 10.1038/nrn2882.
    1. Musacchia G., Sams M., Skoe E., Kraus N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc. Natl. Acad. Sci. USA. 2007;104:15894–15898. doi: 10.1073/pnas.0701498104.
    1. Trollinger V.L. The Brain in Singing and Language. Gen. Music Today. 2012;23:20–30. doi: 10.1177/1048371309353878.
    1. Loosli S.V., Buschkuehl M., Perrig W.J., Jaeggi S.M. Working memory training improves reading processes in typically developing children. Child Neuropsychol. 2012;18:62–78. doi: 10.1080/09297049.2011.575772.
    1. Yoshimura Y. The role of working memory in language aptitude. In: Bonch-Bruevich X., Crawford W.J., Hellermann J., Higgins C., Nguyen H., editors. The Past, Present, and Future of Second Language Research. Cascadilla Press; Sommerville, MA, USA: 2001. pp. 144–163.
    1. Trainor L.J. Are there critical periods for musical development? Dev. Psychobiol. 2005;46:262–278. doi: 10.1002/dev.20059.
    1. Iverson J.M. Developing language in a developing body: The relationship between motor development and language development. J. Child Lang. 2010;37:229–261. doi: 10.1017/S0305000909990432.
    1. Nasir S.M., Ostry D.J. Auditory plasticity and speech motor learning. Proc. Natl. Acad. Sci. USA. 2009;106:20470–20475. doi: 10.1073/pnas.0907032106.
    1. Goswami U., Wang H.-L., Cruz A., Fosker T., Mead N., Huss M. Language-universal Sensory Deficits in Developmental Dyslexia: English, Spanish, and Chinese. J. Cogn. Neurosci. 2011;23:325–337. doi: 10.1162/jocn.2010.21453.
    1. Dittinger E., Barbaroux M., D’Imperio M., Jäncke L., Elmer S., Besson M. Professional music training and novel word learning: From faster semantic encoding to longer-lasting word representations. J. Cogn. Neurosci. 2016;28:1584–1602. doi: 10.1162/jocn_a_00997.
    1. Yeung H.H., Chen K.H., Werker J.F. When does native language input affect phonetic perception? The precocious case of lexical tone. J. Mem. Lang. 2013;68:123–139. doi: 10.1016/j.jml.2012.09.004.
    1. Dick F., Krishnan S., Leech R., Curtin S. Language Development. In: Hickok G., Small S., editors. Neurobiology of Language. Academic Press; San Diego, CA, USA: 2016. pp. 373–388.
    1. Newman R., Ratner N.B., Jusczyk A.M., Jusczyk P.W., Dow K.A. Infants’ early ability to segment the conversational speech signal predicts later language development: A retrospective analysis. Dev. Psychol. 2006;42:643–655. doi: 10.1037/0012-1649.42.4.643.
    1. Sloboda J.A. Exploring the Musical Mind: Cognition, Emotion, Ability, Function. Oxford University Press; Oxford, UK: 2005.
    1. Wayland R.P., Guion S.G. Training English and Chinese Listeners to Perceive Thai Tones: A Preliminary Report. Lang. Learn. 2004;54:681–712. doi: 10.1111/j.1467-9922.2004.00283.x.
    1. Bidelman G.M., Hutka S., Moreno S. Tone language speakers and musicians share enhanced perceptual and cognitive abilities for musical pitch: Evidence for bidirectionality between the domains of language and music. PLoS ONE. 2013;8:e60676. doi: 10.1371/journal.pone.0060676.
    1. Delogu F., Lampis G., Olivetti Belardinelli M. Music-to-language transfer effect: May melodic ability improve learning of tonal languages by native nontonal speakers? Cogn. Process. 2006;7:203–207. doi: 10.1007/s10339-006-0146-7.

Source: PubMed

3
Abonnieren