Age-Related Performance on Vowel Identification and the Spectral-temporally Modulated Ripple Test in Children With Normal Hearing and With Cochlear Implants

Mishaela DiNino, Julie G Arenberg, Mishaela DiNino, Julie G Arenberg

Abstract

Children's performance on psychoacoustic tasks improves with age, but inadequate auditory input may delay this maturation. Cochlear implant (CI) users receive a degraded auditory signal with reduced frequency resolution compared with normal, acoustic hearing; thus, immature auditory abilities may contribute to the variation among pediatric CI users' speech recognition scores. This study investigated relationships between age-related variables, spectral resolution, and vowel identification scores in prelingually deafened, early-implanted children with CIs compared with normal hearing (NH) children. All participants performed vowel identification and the Spectral-temporally Modulated Ripple Test (SMRT). Vowel stimuli for NH children were vocoded to simulate the reduced spectral resolution of CI hearing. Age positively predicted NH children's vocoded vowel identification scores, but time with the CI was a stronger predictor of vowel recognition and SMRT performance of children with CIs. For both groups, SMRT thresholds were related to vowel identification performance, analogous to previous findings in adults. Sequential information analysis of vowel feature perception indicated greater transmission of duration-related information compared with formant features in both groups of children. In addition, the amount of F2 information transmitted predicted SMRT thresholds in children with NH and with CIs. Comparisons between the two CIs of bilaterally implanted children revealed disparate task performance levels and information transmission values within the same child. These findings indicate that adequate auditory experience contributes to auditory perceptual abilities of pediatric CI users. Further, factors related to individual CIs may be more relevant to psychoacoustic task performance than are the overall capabilities of the child.

Keywords: children; cochlear implants; development; spectral resolution; vowel identification.

Figures

Figure 1.
Figure 1.
Vocoded vowel identification performance of normal hearing children as a function of age. Vowel identification scores are in rationalized arcsine units (RAU). Each circle represents data from one child. Solid line represents the line of best fit.
Figure 2.
Figure 2.
Relationships between vowel feature information transmission and SMRT thresholds in normal hearing children. Percentage of information transmitted for (a) F1, (b) F2, and (c) duration plotted against SMRT thresholds. Each circle represents data from one child. Solid line represents the line of best fit for the significant relationship.
Figure 3.
Figure 3.
Vowel identification performance of children with CIs as a function of age-related variables. (a–c), vowel identification in quiet versus (a) chronological age, (b) aided hearing age, and (c) CI age. (d–f), vowel identification in noise versus (d) chronological age, (e) aided hearing age, and (f) CI age. Vowel identification scores are in rationalized arcsine units (RAU). Each symbol represents data from one CI. Squares indicate first-implanted CIs and triangles indicate second-implanted CIs. Dashed lines connect data from the two CIs of each bilaterally implanted child. Solid lines represent the lines of best fit for significant relationships.
Figure 4.
Figure 4.
SMRT thresholds of children with NH and with CIs as a function of age-related variables. (a) SMRT thresholds of NH children by age. Each circle represents data from one child. (b–d) SMRT thresholds of children with CIs by (b) chronological age, (c) aided hearing age, and (d) CI age. Each symbol represents data from one CI. Squares indicate first-implanted CIs and triangles indicate second-implanted CIs. Dashed lines connect data from the two CIs of each bilaterally implanted child. Solid lines represent the lines of best fit for significant relationships.
Figure 5.
Figure 5.
Vowel identification performance of children with NH and with CIs compared with SMRT thresholds. (a) Vocoded vowel identification performance in rationalized arcsine units (RAU) of NH children plotted against SMRT thresholds. Each symbol represents data from one child. (b) Vowel identification in quiet scores in RAU of pediatric CI users plotted against SMRT thresholds. (c) Vowel identification in noise scores in RAU of pediatric CI users plotted against SMRT thresholds. Each symbol represents data from one CI. Squares indicate first-implanted CIs and triangles indicate second-implanted CIs. Dashed lines connect data from the two CIs of each bilaterally implanted child. Solid lines represent the lines of best fit for significant relationships.
Figure 6.
Figure 6.
Comparison of task performance between first- and second-implanted ears of bilateral CI users. Bars indicate differences in performance (first implant − second implant) on (a) vowel identification in quiet, (b) vowel identification in noise, and (c) the SMRT. Scores above 0 indicate better performance when tested with the first implanted ear. Subjects are ordered by amount of enhancement in vowel identification in quiet scores with their first-implanted ear compared with their second. Only subjects who scored >80% on vowel recognition in quiet were tested in noise (P02, P03, P06, P07, P09, and P10).
Figure 7.
Figure 7.
Relationships between vowel feature information transmission and SMRT thresholds in children with CIs. Percentage of information transmitted for F1 (a, d), F2 (b, e), and duration (c, f) from vowel identification in quiet (a–c) and vowel identification in noise (d–e) plotted against SMRT thresholds. Each symbol represents data from one CI. Squares indicate first-implanted CIs and triangles indicate second-implanted CIs. Dashed lines connect data from the two CIs of each bilaterally implanted child. Solid lines represent the lines of best fit for significant relationships.

References

    1. Ainsworth W. A. (1972) Duration as a cue in the recognition of synthetic vowels. The Journal of the Acoustical Society of America 51: 648–651. doi: 10.1121/1.1912889.
    1. Allen P., Wightman F. (1992) Spectral pattern discrimination by children. Journal of Speech and Hearing Research 35(1): 222–233. doi: 10.1044/jshr.3501.222.
    1. Aronoff J. M., Landsberger D. M. (2013) The development of a modified spectral ripple test. The Journal of the Acoustical Society of America 134(2): EL217–EL222. doi: 10.1121/1.4813802.
    1. Boothroyd A., Mulhearn B., Gong J., Ostroff J. (1996) Effects of spectral smearing on phoneme and word recognition. The Journal of the Acoustical Society of America 100(3): 1807–1818.
    1. Dawes P., Bishop D. V. M. (2008) Maturation of visual and auditory temporal processing in school-aged children. Journal of Speech, Language, and Hearing Research 51(4): 1002–1015. doi: 10.1044/1092-4388((2008/073).
    1. de Jong, M. A. M., Briaire, J. J., & Frijns, J. H. M. (2017). Learning effects in psychophysical tests of spectral and temporal resolution. Ear and Hearing. doi: 10.1097/AUD.0000000000000499.
    1. DiNino M., Wright R. A., Winn M. B., Bierer J. A. (2016) Vowel and consonant confusions from spectrally manipulated stimuli designed to simulate poor cochlear implant electrode–neuron interfaces. The Journal of the Acoustical Society of America 140(6): 4404–4418. doi: 10.1121/1.4971420.
    1. Dorman M. F., Loizou P. C., Kemp L. L., Kirk K. I. (2000) Word recognition by children listening to speech processed into a small number of channels: Data from normal-hearing children and children with cochlear implants. Ear and Hearing 21(6): 590–596. doi: 10.1097/00003446-200012000-00006.
    1. Drennan W. R., Won J. H., Timme A. O., Rubinstein J. T. (2016) Nonlinguistic outcome measures in adult cochlear implant users over the first year of implantation. Ear and Hearing 37: 354–364. doi: 10.1097/AUD.0000000000000261.
    1. Eggermont J. J., Ponton C. W. (2003) Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: Correlations with changes in structure and speech perception. Acta Oto-laryngologica 123: 249–252. doi: 10.1080/0036554021000028098.
    1. Eggermont J. J., Ponton C. W., Don M., Waring M. D., Kwong B. (1997) Maturational delays in cortical evoked potentials in cochlear implant users. Acta Oto-laryngologica 117: 161–163. doi: 10.3109/00016489709117760.
    1. Eisenberg L. S., Fisher L. M., Johnson K. C., Ganguly D. H., Grace T., Niparko J. K. the CDaCI Investigative Team (2016) Sentence recognition in quiet and noise by pediatric cochlear implant users: Relationships to spoken language. Otology and Neurotology 37(2): 75–81. doi: 10.1097/MAO.0000000000000910.
    1. Eisenberg L. S., Martinez A. S., Holowecky S. R., Pogorelsky S. (2002) Recognition of lexically controlled words and sentences by children with normal hearing and children with cochlear implants. Ear and Hearing 23(5): 450–462. doi: 10.1097/.
    1. Eisenberg L. S., Shannon R. V., Martinez A. S., Wygonski J., Boothroyd A. (2000) Speech recognition with reduced spectral cues as a function of age. The Journal of the Acoustical Society of America 107(5 Pt 1): 2704–2710. doi: 10.1121/1.428656.
    1. Elliott L. L. (1979) Performance of children aged 9 to 17 years on a test of speech intelligibility in noise using sentence material with controlled word predictability. The Journal of the Acoustical Society of America 66(3): 651–653. doi: 10.1121/1.383691.
    1. Geers A. E., Moog J. S., Biedenstein J., Brenner C., Hayes H. (2009) Spoken language scores of children using cochlear implants compared to hearing age-mates at school entry. Journal of Deaf Studies and Deaf Education 14(3): 371–385. doi: 10.1093/deafed/enn046.
    1. Hall J. W., Buss E., Grose J. H., Dev M. B. (2004) Developmental effects in the masking-level difference. Journal of Speech, Language, and Hearing Research 47(1): 13–20. doi: 10.1044/1092-4388((2004/002).
    1. Hartley D. E., Wright B. A., Hogan S. C., Moore D. R. (2000) Age-related improvements in auditory backward and simultaneous masking in 6- to 10-year-old children. Journal of Speech, Language, and Hearing Research 43(6): 1402–1415. doi: 10.1044/jslhr.4306.1402.
    1. Heffner R.-M. S. (1937) Notes on the length of vowels. American Speech 12(2): 128–134.
    1. Henry B. A., Turner C. W. (2003) The resolution of complex spectral patterns by cochlear implant and normal-hearing listeners. The Journal of the Acoustical Society of America 113(5): 2861–2873. doi: 10.1121/1.1561900.
    1. Henry B. A., Turner C. W., Behrens A. (2005) Spectral peak resolution and speech recognition in quiet: Normal hearing, hearing impaired, and cochlear implant listeners. The Journal of the Acoustical Society of America 118(2): 1111–1121. doi: 10.1121/1.1944567.
    1. Hepper P. G., Shahidullah B. S. (1994) Development of fetal hearing. Archives of Disease in Childhood 71(2): F81–F87. doi: 10.1136/fn.71.2.F81.
    1. Hillenbrand J., Getty L. A., Clark M. J., Wheeler K. (1995) Acoustic characteristics of American English vowels. The Journal of the Acoustical Society of America 97: 3099–3111. doi: 10.1121/1.411872.
    1. Holden L. K., Firszt J. B., Reeder R. M., Uchanski R. M., Dwyer N. Y., Holden T. A. (2016) Factors affecting outcomes in cochlear implant recipients implanted with a perimodiolar electrode array located in scala tympani. Otolology and Neurotology 37: 1662–1668. doi: 10.1097/MAO.0000000000001241.
    1. Horn D. L., Dudley D. J., Dedhia K., Nie K., Drennan W. R., Won J. H., Werner L. A. (2017) Effects of age and hearing mechanism on spectral resolution in normal hearing and cochlear-implanted listeners. The Journal of the Acoustical Society of America 141(1): 613 doi: 10.1121/1.4974203.
    1. IBM SPSS Statistics for Windows (Version 19.0). [Computer software], Armonk, NY: IBM Corp.
    1. Johnson C. E. (2000) Children’s phoneme identification in reverberation and noise. Journal of Speech, Language, and Hearing Research 43(1): 144–157.
    1. Jung K. H., Won J. H., Drennan W. R., Jameyson E., Miyasaki G., Norton S. J., Rubinstein J. T. (2012) Psychoacoustic performance and music and speech perception in prelingually deafened children with cochlear implants. Audiology and Neuro-Otology 17(3): 189–197. doi: 10.1159/000336407.
    1. Kirby B. J., Browning J. M., Brennan M. A., Spratford M., McCreery R. W. (2015) Spectro-temporal modulation detection in children. The Journal of the Acoustical Society of America 138(5): EL465–EL468. doi: 10.1121/1.4935081.
    1. Kral A., Tillein J., Heid S., Hartmann R., Klinke R. (2005) Postnatal cortical development in congenital auditory deprivation. Cerebral Cortex 15: 552–562. doi: 10.1093/cercor/bhh156.
    1. Landsberger D. M., Padilla M., Martinez A. S., Eisenberg L. S. (2017) Spectral-temporal modulated ripple discrimination by children with cochlear implants. Ear and Hearing 39(1): 60–68. doi: 10.1097/AUD.0000000000000463.
    1. Lawler M., Yu J., Aronoff J. M. (2017) Comparison of the spectral-temporally modulated ripple test with the Arizona biomedical institute sentence test in cochlear implant users. Ear and Hearing 38: 760–766. doi: 10.1097/AUD.0000000000000496.
    1. Maxon A. B., Hochberg I. (1982) Development of psychoacoustic behavior: Sensitivity and discrimination. Ear and Hearing 3(6): 301–308.
    1. Miller G. A., Nicely P. E. (1955) An analysis of perceptual confusions among some English consonants. The Journal of the Acoustical Society of America 27: 338–352. doi: 10.1121/1.1907526.
    1. Moore D. R. (2002) Auditory development and the role of experience. British Medical Bulletin 63: 171–181. doi: 10.1093/bmb/63.1.171.
    1. Moore J. K., Guan Y.-L. (2001) Cytoarchitectural and axonal maturation in human auditory cortex. Journal of the Association for Research in Otolaryngology 2(4): 297–311. doi: 10.1007/s101620010052.
    1. Moore J. K., Linthicum F. H. (2007) The human auditory system: A timeline of development. International Journal of Audiology 46(9): 460–478. doi: 10.1080/14992020701383019.
    1. Niparko, J. K., Tobey, E. A., Thal, D. J., Eisenberg, L. S., Wang, N.-Y., Quittner, A. L., … the CDaCI Investigative Team. (2010). Spoken language development in children following cochlear implantation. Journal of the American Medical Association, 303(15), 1498–1506. doi: 10.1001/jama.2010.451.
    1. Nittrouer S., Caldwell-Tarr A., Moberly A. C., Lowenstein J. H. (2014) Perceptual weighting strategies of children with cochlear implants and normal hearing. Journal of Communication Disorders 52: 111–133. doi: 10.1016/j.jcomdis.2014.09.003.
    1. O’Brien, E., & Winn, M. B. (2017). Aliasing of spectral ripple through CI processors: A challenge to the interpretation of correlation with speech recognition scores. Poster session presented at the conference on implantable auditory prostheses, Tahoe, CA.
    1. Oh S.-H., Kim C.-S., Kang E. J., Lee D. S., Lee H. J., Chang S. O., Koo K. W. (2003) Speech perception after cochlear implantation over a 4-year time period. Acta Oto-laryngologica 123: 148–153. doi: 10.1080/0036554021000028111.
    1. Park M. H., Won J. H., Horn D. L., Rubinstein J. T. (2015) Acoustic temporal modulation detection in normal-hearing and cochlear implanted listeners: Effects of hearing mechanism and development. Journal of the Association for Research in Otolaryngology 16(3): 389–399. doi: 10.1007/s10162-014-0499-z.
    1. Parkinson A. J., el-Kholy W., Tyler R. S. (1998) Vowel perception in prelingually deafened children with multichannel cochlear implants. Journal of the American Academy of Audiology 9(3): 179–190.
    1. Peter V., Wong K., Narne V. K., Sharma M., Purdy S. C., McMahon C. (2014) Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). Journal of the American Academy of Audiology 25(2): 210–218. doi: 10.3766/jaaa.25.2.9.
    1. Ponton C. W., Eggermont J. J., Kwong B., Don M. (2000) Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clinical Neurophysiology 111(2): 220–236.
    1. Ramsden R., Greenham P., O’Driscoll M., Mawman D., Proops D., Craddock L., Pickerill M. (2005) Evaluation of bilaterally implanted adult subjects with the nucleus 24 cochlear implant system. Otology and Neurotology 26(5): 988–998.
    1. Rayes H., Sheft S., Shafiro V. (2014) Discrimination of static and dynamic spectral patterns by children and young adults in relationship to speech perception in noise. Audiology Research 4(1): 28–35. doi: 10.4081/audiores.2014.101.
    1. Reeder R. M., Firszt J. B., Holden L. K., Strube M. J. (2014) A longitudinal study in adults with sequential bilateral cochlear implants: Time course for individual ear and bilateral performance. Journal of Speech, Language, and Hearing Research 57(3): 1108–1126. doi: 10.1044/2014_JSLHR-H-13-0087.
    1. Roman A. S., Pisoni D. B., Kronenberger W. G., Faulkner K. F. (2017) Some neurocognitive correlates of noise-vocoded speech perception in children with normal hearing: A replication and extension of Eisenberg et al. (2002). Ear and Hearing 38(3): 344–356. doi: 10.1097/AUD.0000000000000393.
    1. Ruffin C. V., Kronenberger W. G., Colson B. G., Henning S. C., Pisoni D. B. (2013) Long-term speech and language outcomes in prelingually deaf children, adolescents and young adults who received cochlear implants in childhood. Audiology and Neurotology 18(5): 289–296. doi: 10.1159/000353405.
    1. Ruffin C. V., Tyler R. S., Witt S. A., Dunn C. C., Gantz B. J., Rubinstein J. T. (2007) Long-term performance of Clarion 1.0 cochlear implant users. Laryngoscope 117: 1183–1190. doi: 10.1097/MLG.0b013e318058191a.
    1. Saoji A. A., Litvak L., Spahr A. J., Eddins D. A. (2009) Spectral modulation detection and vowel and consonant identifications in cochlear implant listeners. The Journal of the Acoustical Society of America 126: 955–958. doi: 10.1121/1.3179670.
    1. Shannon R. V., Galvin J. J., Baskent D. (2002) Holes in hearing. Journal of the Association for Research in Otolaryngology 3(2): 185–199.
    1. Shannon R. V., Zeng F. G., Kamath V., Wygonski J., Ekelid M. (1995) Speech recognition with primarily temporal cues. Science 270: 303–304.
    1. Sharma A., Kraus N., McGee T. J., Nicol T. G. (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalography and Clinical Neurophysiology 104(6): 540–545.
    1. Studebaker, G. A., (1985). A “rationalized” arcsine transform. Journal of Speech and Hearing Research, 28, 455–462.
    1. Supin A. Y., Popov V. V., Milekhina O. N., Tarakanov M. B. (1994) Frequency resolving power measured by rippled noise. Hearing Research 78(1): 31–40. doi: 10.1016/0378-5955(94)90041-8.
    1. Svirsky M. A., Teoh S.-W., Neuburger H. (2004) Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation. Audiology and Neurotology 9(4): 224–233. doi: 10.1159/000078392.
    1. Talarico M., Abdilla G., Aliferis M., Balazic I., Giaprakis I., Stefanakis T., et al. (2007) Effect of age and cognition on childhood speech in noise perception abilities. Audiology and Neuro-Otology 12(1): 13–19. doi: 10.1159/000096153.
    1. Tobey E. A., Thal D., Niparko J. K., Eisenberg L. S., Quittner A. L., Wang N.-Y. CDaCI Investigative Team (2013) Influence of implantation age on school-age language performance in pediatric cochlear implant users. International Journal of Audiology 52(4): 219–229. doi: 10.3109/14992027.2012.759666.
    1. Tyler R. S., Fryauf-Bertschy H., Kelsay D. M., Gantz B. J., Woodworth G. P., Parkinson A. (1997) Speech perception by prelingually deaf children using cochlear implants. Otolaryngology—Head and Neck Surgery 117(3 Pt 1): 180–187.
    1. Vongpaisal T., Trehub S. E., Glenn Schellenberg E., van Lieshout P. (2012) Age-related changes in talker recognition with reduced spectral cues. The Journal of the Acoustical Society of America 131(1): 501–508. doi: 10.1121/1.3669978.
    1. Wake M., Hughes E. K., Poulakis Z., Collins C., Rickards F. W. (2004) Outcomes of children with mild-profound congenital hearing loss at 7 to 8 years: A population study. Ear and Hearing 25(1): 1–8. doi: 10.1097/01.AUD.0000111262.12219.2F.
    1. Wang M. D., Bilger R. C. (1973) Consonant confusions in noise: A study of perceptual features. The Journal of the Acoustical Society of America 54: 1248–1266.
    1. Wang N.-Y., Eisenberg L. S., Johnson K. C., Fink N. E., Tobey E. A., Quittner A. L. the CDaCI Investigative Team (2008) Tracking development of speech recognition: Longitudinal data from hierarchical assessments in the childhood development after cochlear implantation study. Otology and Neurotology 29(2): 240–245. doi: 10.1097/MAO.0b013e3181627a37.
    1. Winn M. B., Chatterjee M., Idsardi W. J. (2012) The use of acoustic cues for phonetic identification: Effects of spectral degradation and electric hearing. The Journal of the Acoustical Society of America 131: 1465–1479. doi: 10.1121/1.3672705.
    1. Winn M. B., Won J. H., Moon I. J. (2016) Assessment of spectral and temporal resolution in cochlear implant users using psychoacoustic discrimination and speech cue categorization. Ear and Hearing 37(6): e377–e390. doi: 10.1097/AUD.0000000000000328.
    1. Won J. H., Clinard C. G., Kwon S., Dasika V. K., Nie K., Drennan W. R., et al. (2011) Relationship between behavioral and physiological spectral-ripple discrimination. Journal of the Association for Research in Otolaryngology 12(3): 375–393. doi: 10.1007/s10162-011-0257-4.
    1. Won J. H., Drennan W. R., Rubinstein J. T. (2007) Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users. Journal of the Association for Research in Otolaryngology 8(3): 384–392. doi: 10.1007/s10162-007-0085-8.
    1. Wright R., Souza P. (2012) Comparing identification of standardized and regionally valid vowels. Journal of Speech, Language, and Hearing Research 55(1): 182–193. doi: 10.1044/1092-4388((2011/10-0278).
    1. Xu L., Thompson C. S., Pfingst B. E. (2005) Relative contributions of spectral and temporal cues for phoneme recognition. Journal of the Acoustical. Society of America 117: 3255–3267. doi: 10.1121/1.1886405.
    1. Zhang J., Tyler R., Ji H., Dunn C., Wang N., Hansen M., Gantz B. (2015) Speech, spatial and qualities of hearing scale (SSQ) and spatial hearing questionnaire (SHQ) changes over time in adults with simultaneous cochlear implants. American Journal of Audiology 24: 384–397. doi: 10.1044/2015_AJA-14-0074.
    1. Zhou N. (2017) Deactivating stimulation sites based on low-rate thresholds improves spectral ripple and speech reception thresholds in cochlear implant users. The Journal of the Acoustical Society of America 141: EL243 doi: 10.1121/1.4977235.

Source: PubMed

3
Abonnieren