Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naïve volunteers: effect of injection volume and dose on infectivity rates

Gloria P Gómez-Pérez, Almudena Legarda, Jose Muñoz, B Kim Lee Sim, María Rosa Ballester, Carlota Dobaño, Gemma Moncunill, Joseph J Campo, Pau Cisteró, Alfons Jimenez, Diana Barrios, Benjamin Mordmüller, Josefina Pardos, Mireia Navarro, Cecilia Justino Zita, Carlos Arlindo Nhamuave, Alberto L García-Basteiro, Ariadna Sanz, Marta Aldea, Anita Manoj, Anusha Gunasekera, Peter F Billingsley, John J Aponte, Eric R James, Caterina Guinovart, Rosa M Antonijoan, Peter G Kremsner, Stephen L Hoffman, Pedro L Alonso, Gloria P Gómez-Pérez, Almudena Legarda, Jose Muñoz, B Kim Lee Sim, María Rosa Ballester, Carlota Dobaño, Gemma Moncunill, Joseph J Campo, Pau Cisteró, Alfons Jimenez, Diana Barrios, Benjamin Mordmüller, Josefina Pardos, Mireia Navarro, Cecilia Justino Zita, Carlos Arlindo Nhamuave, Alberto L García-Basteiro, Ariadna Sanz, Marta Aldea, Anita Manoj, Anusha Gunasekera, Peter F Billingsley, John J Aponte, Eric R James, Caterina Guinovart, Rosa M Antonijoan, Peter G Kremsner, Stephen L Hoffman, Pedro L Alonso

Abstract

Background: Controlled human malaria infection (CHMI) by mosquito bite is a powerful tool for evaluation of vaccines and drugs against Plasmodium falciparum malaria. However, only a small number of research centres have the facilities required to perform such studies. CHMI by needle and syringe could help to accelerate the development of anti-malaria interventions by enabling centres worldwide to employ CHMI.

Methods: An open-label CHMI study was performed with aseptic, purified, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) in 36 malaria naïve volunteers. In part A, the effect of the inoculation volume was assessed: 18 participants were injected intramuscularly (IM) with a dose of 2,500 PfSPZ divided into two injections of 10 µL (n = 6), 50 µL (n = 6) or 250 µL (n = 6), respectively. In part B, the injection volume that resulted in highest infectivity rates in part A (10 µL) was used to formulate IM doses of 25,000 PfSPZ (n = 6) and 75,000 PfSPZ (n = 6) divided into two 10-µL injections. Results from a parallel trial led to the decision to add a positive control group (n = 6), each volunteer receiving 3,200 PfSPZ in a single 500-µL injection by direct venous inoculation (DVI).

Results: Four/six participants in the 10-µL group, 1/6 in the 50-µL group and 2/6 in the 250-µL group developed parasitaemia. Geometric mean (GM) pre-patent periods were 13.9, 14.0 and 15.0 days, respectively. Six/six (100%) participants developed parasitaemia in the 25,000 and 75,000 PfSPZ IM and 3,200 PfSPZ DVI groups. GM pre-patent periods were 12.2, 11.4 and 11.4 days, respectively. Injection of PfSPZ Challenge was well tolerated and safe in all groups.

Conclusions: IM injection of 75,000 PfSPZ and DVI injection of 3,200 PfSPZ resulted in infection rates and pre-patent periods comparable to the bite of five PfSPZ-infected mosquitoes. Remarkably, it required 23.4-fold more PfSPZ administered IM than DVI to achieve the same parasite kinetics. These results allow for translation of CHMI from research to routine use, and inoculation of PfSPZ by IM and DVI regimens.

Trial registration: ClinicalTrials.gov NCT01771848.

Figures

Fig. 1
Fig. 1
Flow chart of volunteer recruitment. This trial was divided in two parts. In part A the impact of volume of inoculation on infectivity rate and pre-patent period was tested by injecting the same dose of P. falciparum sporozoites (PfSPZ) in three different injection volumes. In part B, the volume that resulted in the highest infectivity rate was used for the formulation of two increased IM doses. A DVI group was included in part B to independently corroborate the results of the trial in Tübingen [18]. IM intramuscular, DVI direct venous inoculation, back up refers to the extra volunteers who were enrolled in each part of the study. Group 1: 2,500 PfSPZ in 10 μL; group 2: 2,500 PfSPZ in 50 μL; group 3: 2,500 PfSPZ in 250 μL; group 4: 3,200 PfSPZ in 500 μL; group 5: 25,000 PfSPZ in 10 μL; group 6: 75,000 PfSPZ in 10 μL.
Fig. 2
Fig. 2
Kaplan–Meier plot of time to infection. OM optic microscopy; group 1: 2,500 PfSPZ in 10 μL × 2 IM; group 2: 2,500 PfSPZ in 50 μL × 2 IM. Group 3: 2,500 PfSPZ in 250 μL × 2 IM; group 4: 3,200 PfSPZ in 500 μL × 1 DVI; group 5: 25,000 PfSPZ in 10 μL × 2 IM; group 6: 75,000 PfSPZ in 10 μL × 2 IM; PfSPZP. falciparum sporozoites, IM intramuscular injection, DVI direct venous inoculation.
Fig. 3
Fig. 3
Relationship between dose of PfSPZ Challenge and pre-patent period. Geometric means (horizontal bars) and 95% confidence intervals (vertical bars) for pre-patent periods. Individual pre-patent periods are shown.
Fig. 4
Fig. 4
Parasite kinetics measured by qPCR per group. Density units are parasites/mL; Limit of quantification of qPCR was 30 parasites per mL. Group 1: 2,500 PfSPZ in 10 μL × 2 IM; group 2: 2,500 PfSPZ in 50 μL × 2 IM. Group 3: 2,500 PfSPZ in 250 μL × 2 IM; group 4: 3,200 PfSPZ in 500 μL × 1 DVI; group 5: 25,000 PfSPZ in 10 μL × 2 IM; group 6: 75,000 PfSPZ in 10 μL × 2 IM; PfSPZPlasmodium falciparum sporozoites, IM intramuscular injection, DVI direct venous inoculation.

References

    1. WHO (2013) World Malaria Report 2013. World Health Organization, Geneva.
    1. Teklehaimanot A, Mejia P. Malaria and poverty. Ann N Y Acad Sci. 2008;1136:32–37. doi: 10.1196/annals.1425.037.
    1. Bi Y, Tong S. Poverty and malaria in the Yunnan province, China. Infect Dis Poverty. 2014;3:32. doi: 10.1186/2049-9957-3-32.
    1. Plowe CV, Alonso P, Hoffman SL. The potential role of vaccines in the elimination of falciparum malaria and the eventual eradication of malaria. J Infect Dis. 2009;200:1646–1649. doi: 10.1086/646613.
    1. Sauerwein RW, Roestenberg M, Moorthy VS. Experimental human challenge infections can accelerate clinical malaria vaccine development. Nat Rev Immunol. 2011;11:57–64. doi: 10.1038/nri2902.
    1. Roestenberg M, de Vlas SJ, Nieman AE, Sauerwein RW, Hermsen CC. Efficacy of preerythrocytic and blood-stage malaria vaccines can be assessed in small sporozoite challenge trials in human volunteers. J Infect Dis. 2012;206:319–323. doi: 10.1093/infdis/jis355.
    1. Sheehy SH, Spencer AJ, Douglas AD, Sim BK, Longley RJ, Edwards NJ, et al. Optimising controlled human malaria infection studies using cryopreserved parasites administered by needle and syringe. PLoS One. 2013;8:e65960. doi: 10.1371/journal.pone.0065960.
    1. Epstein JE, Rao S, Williams F, Freilich D, Luke T, Sedegah M, et al. Safety and clinical outcome of experimental challenge of human volunteers with Plasmodium falciparum-infected mosquitoes: an update. J Infect Dis. 2007;196:145–154. doi: 10.1086/518510.
    1. Chulay JD, Schneider I, Cosgriff TM, Hoffman SL, Ballou WR, Quakyi IA, et al. Malaria transmitted to humans by mosquitoes infected from cultured Plasmodium falciparum. Am J Trop Med Hyg. 1986;35:66–68.
    1. Laurens MB, Duncan CJ, Epstein JE, Hill AV, Komisar JL, Lyke KE, et al. A consultation on the optimization of controlled human malaria infection by mosquito bite for evaluation of candidate malaria vaccines. Vaccine. 2012;30:5302–5304. doi: 10.1016/j.vaccine.2012.04.088.
    1. Lyke KE, Laurens M, Adams M, Billingsley PF, Richman A, Loyevsky M, et al. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial. PLoS One. 2010;5:e13490. doi: 10.1371/journal.pone.0013490.
    1. Laurens MB, Billingsley P, Richman A, Eappen AG, Adams M, Li T, et al. Successful human infection with P. falciparum using three aseptic Anopheles stephensi mosquitoes: a new model for controlled human malaria infection. PLoS One. 2013;8:e68969. doi: 10.1371/journal.pone.0068969.
    1. Roestenberg M, O’Hara GA, Duncan CJ, Epstein JE, Edwards NJ, Scholzen A, et al. Comparison of clinical and parasitological data from controlled human malaria infection trials. PLoS One. 2012;7:e38434. doi: 10.1371/journal.pone.0038434.
    1. Verhage DF, Telgt DS, Bousema JT, Hermsen CC, van Gemert GJ, van der Meer JW, et al. Clinical outcome of experimental human malaria induced by Plasmodium falciparum-infected mosquitoes. Neth J Med. 2005;63:52–58.
    1. Shekalaghe S, Rutaihwa M, Billingsley PF, Chemba M, Daubenberger CA, James ER, et al. Controlled human malaria infection of Tanzanians by intradermal injection of aseptic, purified, cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 2014;91:471–480. doi: 10.4269/ajtmh.14-0119.
    1. Jeffery GM, Rendtorff RC. Preservation of viable human malaria sporozoites by low-temperature freezing. Exp Parasitol. 1955;4:445–454. doi: 10.1016/0014-4894(55)90036-9.
    1. Roestenberg M, Bijker EM, Sim BK, Billingsley PF, James ER, Bastiaens GJ, et al. Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. Am J Trop Med Hyg. 2013;88:5–13. doi: 10.4269/ajtmh.2012.12-0613.
    1. Mordmüller B, Supan C, Sim KL, Gomez-Perez GP, Ospina Salazar CL, Held J, et al. Direct venous inoculation of Plasmodium falciparum sporozoites for controlled human malaria infection: a dose-finding trial in two centres. Malar J. 2015;14:117. doi: 10.1186/s12936-015-0628-0.
    1. Ploemen IH, Chakravarty S, van Gemert GJ, Annoura T, Khan SM, Janse CJ, et al. Plasmodium liver load following parenteral sporozoite administration in rodents. Vaccine. 2013;31:3410–3416. doi: 10.1016/j.vaccine.2012.09.080.
    1. Hoffman SL, Billingsley PF, James E, Richman A, Loyevsky M, Li T, et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum Vaccin. 2010;6:97–106. doi: 10.4161/hv.6.1.10396.
    1. Epstein JE, Tewari K, Lyke KE, Sim BK, Billingsley PF, Laurens MB, et al. Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity. Science. 2011;334:475–480. doi: 10.1126/science.1211548.
    1. Guidance for industry (2007) Toxicity grading scale for healthy adult and adolescent volunteers enrolled in preventive vaccine trials.
    1. Planche T, Krishna S, Kombila M, Engel K, Faucher JF, Ngou-Milama E, et al. Comparison of methods for the rapid laboratory assessment of children with malaria. Am J Trop Med Hyg. 2001;65:599–602.
    1. Hermsen CC, Telgt DS, Linders EH, van de Locht LA, Eling WM, Mensink EJ, et al. Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. Mol Biochem Parasitol. 2001;118:247–251. doi: 10.1016/S0166-6851(01)00379-6.
    1. OpenClinica™:
    1. Nieman AE, de Mast Q, Roestenberg M, Wiersma J, Pop G, Stalenhoef A, et al. Cardiac complication after experimental human malaria infection: a case report. Malar J. 2009;8:277. doi: 10.1186/1475-2875-8-277.
    1. Bijker EM, Bastiaens GJ, Teirlinck AC, van Gemert GJ, Graumans W, van de Vegte-Bolmer M, et al. Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc Natl Acad Sci USA. 2013;110:7862–7867. doi: 10.1073/pnas.1220360110.
    1. Sheehy SH, Duncan CJ, Elias SC, Choudhary P, Biswas S, Halstead FD, et al. ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans. Mol Ther. 2012;20:2355–2368. doi: 10.1038/mt.2012.223.
    1. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013;341:1359–1365. doi: 10.1126/science.1241800.
    1. Sulaiman H, Ismail MD, Jalalonmuhali M, Atiya N, Ponnampalavanar S. Severe Plasmodium falciparum infection mimicking acute myocardial infarction. Malar J. 2014;13:341. doi: 10.1186/1475-2875-13-341.
    1. Vanderberg JP. Imaging mosquito transmission of Plasmodium sporozoites into the mammalian host: immunological implications. Parasitol Int. 2014;63:150–164. doi: 10.1016/j.parint.2013.09.010.

Source: PubMed

3
Abonnieren