Nicotine vaccines to assist with smoking cessation: current status of research

Tobias Raupach, Philippe H J Hoogsteder, Constant P Onno van Schayck, Tobias Raupach, Philippe H J Hoogsteder, Constant P Onno van Schayck

Abstract

Tobacco smoking causes cardiovascular, respiratory and malignant disease, and stopping smoking is among the key medical interventions to lower the worldwide burden of these disorders. However, the addictive properties of cigarette smoking, including nicotine inhalation, render most quit attempts unsuccessful. Recommended therapies, including combinations of counselling and medication, produce long-term continuous abstinence rates of no more than 30%. Thus, more effective treatment options are needed. An intriguing novel therapeutic concept is vaccination against nicotine. The basic principle of this approach is that, after entering the systemic circulation, a substantial proportion of nicotine can be bound by antibodies. Once bound to antibodies, nicotine is no longer able to cross the blood-brain barrier. As a consequence, the rewarding effects of nicotine are diminished, and relapse to smoking is less likely to occur. Animal studies indicate that antibodies profoundly change the pharmacokinetics of the drug and can interfere with nicotine self-administration and impact on the severity of withdrawal symptoms. To date, five phase I/II clinical trials using vaccines against nicotine have been published. Results have been disappointing in that an increase in quit rates was only observed in small groups of smokers displaying particularly high antibody titres. The failure of encouraging preclinical data to completely translate to clinical studies may be partially explained by shortcomings of animal models of addiction and an incomplete understanding of the complex physiological and behavioural processes contributing to tobacco addiction. This review summarizes the current status of research and suggests some directions for the future development of vaccines against nicotine. Ideally, these vaccines could one day become part of a multifaceted approach to treating tobacco addiction that includes counselling and pharmacotherapy.

Figures

Table I
Table I
Effects of passive immunization and vaccination against nicotine on pharmacokinetics, brain function and behaviour and withdrawal in animal studies
Table II
Table II
Results of phase I/II clinical trials of vaccines against nicotine

References

    1. WHO. WHO report on the global tobacco epidemic, 2011: warning about the dangers of tobacco. Geneva: WHO, 2011 [online]. Available from URL: [Accessed 2012 Feb 14]
    1. Doll R, Peto R, Boreham J, et al. Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ. 2004;328(7455):1519. doi: 10.1136/.
    1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. doi: 10.1371/journal.pmed.0030442.
    1. Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362(24):2295–303. doi: 10.1056/NEJMra0809890.
    1. Steinberg MB, Schmelzer AC, Richardson DL, et al. The case for treating tobacco dependence as a chronic disease. Ann Intern Med. 2008;148(7):554–6. doi: 10.7326/0003-4819-148-7-200804010-00012.
    1. Lancaster T, Stead LF. Individual behavioural counselling for smoking cessation. Cochrane Database Syst Rev 2005 Apr 18; (2): CD001292
    1. Raupach T, van Schayck CP. Pharmacotherapy for smoking cessation: current advances and research topics. CNS Drugs. 2011;25(5):371–82. doi: 10.2165/11590620-000000000-00000.
    1. Fiore MC, Jaén CR, Baker TB. Clinical practice guideline. Rockville (MD): US Department of Health and Human Services; Public Health Service; 2008. Treating tobacco use and dependence: 2008 update.
    1. Ebbert JO, Hays JT, Hurt RD. Combination pharmacotherapy for stopping smoking: what advantages does it offer? Drugs. 2010;70(6):643–50. doi: 10.2165/11536100-000000000-00000.
    1. Kortmann GL, Dobler CJ, Bizarro L, et al. Pharmacogenetics of smoking cessation therapy. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):17–28.
    1. Rennard S, Hughes J, Cincirpini PM, et al. A randomized placebo-controlled trial of varenicline for smoking cessation allowing flexible quit dates. Nicotine Tob Res. Epub 2011 Nov 11
    1. Lindson N, Aveyard P. An updated meta-analysis of nicotine preloading for smoking cessation: investigating mediators of the effect. Psychopharmacology (Berl) 2011;214(3):579–92. doi: 10.1007/s00213-010-2069-3.
    1. Balmford J, Borland R, Hammond D, et al. Adherence to and reasons for premature discontinuation from stopsmoking medications: data from the ITC Four-Country Survey. Nicotine Tob Res. 2011;13(2):94–102. doi: 10.1093/ntr/ntq215.
    1. Shiffman S. Light and intermittent smokers: background and perspective. Nicotine Tob Res. 2009;11(2):122–5. doi: 10.1093/ntr/ntn020.
    1. Buchhalter AR, Fant RV, Henningfield JE. Novel pharmacological approaches for treating tobacco dependence and withdrawal: current status. Drugs. 2008;68(8):1067–88. doi: 10.2165/00003495-200868080-00005.
    1. Vocci FJ, Chiang CN. Vaccines against nicotine: how effective are they likely to be in preventing smoking? CNS Drugs. 2001;15(7):505–14. doi: 10.2165/00023210-200115070-00001.
    1. Cornuz J, Zwahlen S, Jungi WF, et al. A vaccine against nicotine for smoking cessation: a randomized controlled trial. PLoS One. 2008;3(6):e2547. doi: 10.1371/journal.pone.0002547.
    1. Wagena EJ, de Vos A, Horwith G, et al. The immunogenicity and safety of a nicotine vaccine in smokers and nonsmokers: results of a randomized, placebo-controlled phase 1/2 trial. Nicotine Tob Res. 2008;10(1):213–8. doi: 10.1080/14622200701704921.
    1. Maurer P, Jennings GT, Willers J, et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and immunogenicity. Eur J Immunol. 2005;35(7):2031–40. doi: 10.1002/eji.200526285.
    1. Hatsukami DK, Rennard S, Jorenby D, et al. Safety and immunogenicity of a nicotine conjugate vaccine in current smokers. Clin Pharmacol Ther. 2005;78(5):456–67. doi: 10.1016/j.clpt.2005.08.007.
    1. Hatsukami DK, Jorenby DE, Gonzales D, et al. Immunogenicity and smoking-cessation outcomes for a novel nicotine immunotherapeutic. Clin Pharmacol Ther. 2011;89(3):392–9. doi: 10.1038/clpt.2010.317.
    1. Hukkanen J, Jacob P, 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57(1):79–115. doi: 10.1124/pr.57.1.3.
    1. Kozlowski LT, Mehta NY, Sweeney CT, et al. Filter ventilation and nicotine content of tobacco in cigarettes from Canada, the United Kingdom, and the United States. Tob Control. 1998;7(4):369–75. doi: 10.1136/tc.7.4.369.
    1. Benowitz NL, Jacob P., 3rd Daily intake of nicotine during cigarette smoking. Clin Pharmacol Ther. 1984;35(4):499–504. doi: 10.1038/clpt.1984.67.
    1. Henningfield JE, Stapleton JM, Benowitz NL, et al. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug Alcohol Depend. 1993;33(1):23–9. doi: 10.1016/0376-8716(93)90030-T.
    1. Benowitz NL, Jacob P, 3rd, Jones RT, et al. Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. J Pharmacol Exp Ther. 1982;221(2):368–72.
    1. Benowitz NL, Jacob P., 3rd Nicotine and cotinine elimination pharmacokinetics in smokers and nonsmokers. Clin Pharmacol Ther. 1993;53(3):316–23. doi: 10.1038/clpt.1993.27.
    1. Berkman CE, Park SB, Wrighton SA, et al. In vitro-in vivo correlations of human (S)-nicotine metabolism. Biochem Pharmacol. 1995;50(4):565–70. doi: 10.1016/0006-2952(95)00168-Y.
    1. Benowitz NL, Swan GE, Jacob P, 3rd, et al. CYP2A6 genotype and the metabolism and disposition kinetics of nicotine. Clin Pharmacol Ther. 2006;80(5):457–67. doi: 10.1016/j.clpt.2006.08.011.
    1. Benowitz NL, Lessov-Schlaggar CN, Swan GE, et al. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther. 2006;79(5):480–8. doi: 10.1016/j.clpt.2006.01.008.
    1. Lerman C, Tyndale R, Patterson F, et al. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin Pharmacol Ther. 2006;79(6):600–8. doi: 10.1016/j.clpt.2006.02.006.
    1. Patterson F, Schnoll RA, Wileyto EP, et al. Toward personalized therapy for smoking cessation: a randomized placebo-controlled trial of bupropion. Clin Pharmacol Ther. 2008;84(3):320–5. doi: 10.1038/clpt.2008.57.
    1. Balfour DJ. Neural mechanisms underlying nicotine dependence. Addiction. 1994;89(11):1419–23. doi: 10.1111/j.1360-0443.1994.tb03738.x.
    1. Picciotto MR, Caldarone BJ, King SL, et al. Nicotinic receptors in the brain: links between molecular biology and behavior. Neuropsychopharmacology. 2000;22(5):451–65. doi: 10.1016/S0893-133X(99)00146-3.
    1. Rose JE, Behm FM, Westman EC, et al. PET studies of the influences of nicotine on neural systems in cigarette smokers. Am J Psychiatry. 2003;160(2):323–33. doi: 10.1176/appi.ajp.160.2.323.
    1. Kenny PJ, Markou A. Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology. 2006;31(6):1203–11.
    1. Henningfield JE, Keenan RM. Nicotine delivery kinetics and abuse liability. J Consult Clin Psychol. 1993;61(5):743–50. doi: 10.1037/0022-006X.61.5.743.
    1. Samaha AN, Yau WY, Yang P, et al. Rapid delivery of nicotine promotes behavioral sensitization and alters its neurobiological impact. Biol Psychiatry. 2005;57(4):351–60. doi: 10.1016/j.biopsych.2004.11.040.
    1. Benowitz NL, Porchet H, Sheiner L, et al. Nicotine absorption and cardiovascular effects with smokeless tobacco use: comparison with cigarettes and nicotine gum. Clin Pharmacol Ther. 1988;44(1):23–8. doi: 10.1038/clpt.1988.107.
    1. Henningfield JE, Miyasato K, Jasinski DR. Abuse liability and pharmacodynamic characteristics of intravenous and inhaled nicotine. J Pharmacol Exp Ther. 1985;234(1):1–12.
    1. Benowitz NL. Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol. 1996;36:597–613. doi: 10.1146/annurev.pa.36.040196.003121.
    1. Corrigall WA, Franklin KB, Coen KM, et al. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology (Berl) 1992;107(2–3):285–9. doi: 10.1007/BF02245149.
    1. Pierce RC, Kumaresan V. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev. 2006;30(2):215–38. doi: 10.1016/j.neubiorev.2005.04.016.
    1. Dome P, Lazary J, Kalapos MP, et al. Smoking, nicotine and neuropsychiatric disorders. Neurosci Biobehav Rev. 2010;34(3):295–342. doi: 10.1016/j.neubiorev.2009.07.013.
    1. Leonard S, Bertrand D. Neuronal nicotinic receptors: from structure to function. Nicotine Tob Res. 2001;3(3):203–23. doi: 10.1080/14622200110050213.
    1. Suaud-Chagny MF, Chergui K, Chouvet G, et al. Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area. Neuroscience. 1992;49(1):63–72. doi: 10.1016/0306-4522(92)90076-E.
    1. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445–9. doi: 10.1038/nn1578.
    1. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85(14):5274–8. doi: 10.1073/pnas.85.14.5274.
    1. Picciotto MR, Addy NA, Mineur YS, et al. It is not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Prog Neurobiol. 2008;84(4):329–42. doi: 10.1016/j.pneurobio.2007.12.005.
    1. Brody AL, Mandelkern MA, London ED, et al. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry. 2006;63(8):907–15. doi: 10.1001/archpsyc.63.8.907.
    1. Epping-Jordan MP, Watkins SS, Koob GF, et al. Dramatic decreases in brain reward function during nicotine withrawal. Nature. 1998;393(6680):76–9. doi: 10.1038/30001.
    1. Shiffman S, West R, Gilbert D. Recommendation for the assessment of tobacco craving and withdrawal in smoking cessation trials. Nicotine Tob Res. 2004;6(4):599–614. doi: 10.1080/14622200410001734067.
    1. Hughes JR, Hatsukami D. Signs and symptoms of tobacco withdrawal. Arch Gen Psychiatry. 1986;43(3):289–94. doi: 10.1001/archpsyc.1986.01800030107013.
    1. Benowitz NL. Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. Clin Pharmacol Ther. 2008;83(4):531–41. doi: 10.1038/clpt.2008.3.
    1. Piasecki TM. Relapse to smoking. Clin Psychol Rev. 2006;26(2):196–215. doi: 10.1016/j.cpr.2005.11.007.
    1. Piasecki TM, Fiore MC, Baker TB. Profiles in discouragement: two studies of variability in the time course of smoking withdrawal symptoms. J Abnorm Psychol. 1998;107(2):238–51. doi: 10.1037/0021-843X.107.2.238.
    1. Davis JA, Gould TJ. Associative learning, the hippocampus, and nicotine addiction. Curr Drug Abuse Rev. 2008;1(1):9–19. doi: 10.2174/1874473710801010009.
    1. Krall EA, Garvey AJ, Garcia RI. Smoking relapse after 2 years of abstinence: findings from the VA Normative Aging Study. Nicotine Tob Res. 2002;4(1):95–100. doi: 10.1080/14622200110098428.
    1. Yang T, Fisher KJ, Li F, et al. Attitudes to smoking cessation and triggers to relapse among Chinese male smokers. BMC Public Health. 2006;6:65. doi: 10.1186/1471-2458-6-65.
    1. Kenford SL, Fiore MC, Jorenby DE, et al. Predicting smoking cessation: who will quit with and without the nicotine patch. JAMA. 1994;271(8):589–94. doi: 10.1001/jama.1994.03510320029025.
    1. Bonese KF, Wainer BH, Fitch FW, et al. Changes in heroin self-administration by a rhesus monkey after morphine immunisation. Nature. 1974;252(5485):708–10. doi: 10.1038/252708a0.
    1. Killian A, Bonese K, Rothberg RM, et al. Effects of passive immunization against morphine on heroin selfadministration. Pharmacol Biochem Behav. 1978;9(3):347–52. doi: 10.1016/0091-3057(78)90295-2.
    1. Orson FM, Kinsey BM, Singh RA, et al. Substance abuse vaccines. Ann N Y Acad Sci. 2008;1141:257–69. doi: 10.1196/annals.1441.027.
    1. Fox BS, Kantak KM, Edwards MA, et al. Efficacy of a therapeutic cocaine vaccine in rodent models. Nat Med. 1996;2(10):1129–32. doi: 10.1038/nm1096-1129.
    1. Pentel PR, Malin DH, Ennifar S, et al. A nicotine conjugate vaccine reduces nicotine distribution to brain and attenuates its behavioral and cardiovascular effects in rats. Pharmacol Biochem Behav. 2000;65(1):191–8. doi: 10.1016/S0091-3057(99)00206-3.
    1. LeSage MG, Keyler DE, Pentel PR. Current status of immunologic approaches to treating tobacco dependence: vaccines and nicotine-specific antibodies. AAPS J. 2006;8(1):E65–75. doi: 10.1208/aapsj080108.
    1. Moreno AY, Janda KD. Immunopharmacotherapy: vaccination strategies as a treatment for drug abuse and dependence. Pharmacol Biochem Behav. 2009;92(2):199–205. doi: 10.1016/j.pbb.2009.01.015.
    1. Matsushita H, Noguchi M, Tamaki E. Conjugate of bovine serum albumin with nicotine. Biochem Biophys Res Commun. 1974;57(4):1006–10. doi: 10.1016/0006-291X(74)90796-7.
    1. Castro A, Monji N, Ali H, et al. Nicotine antibodies: comparison of ligand specificities of antibodies produced against two nicotine conjugates. Eur J Biochem. 1980;104(2):331–40. doi: 10.1111/j.1432-1033.1980.tb04433.x.
    1. Le Sage MG, Keyler DE, Hieda Y, et al. Effects of a nicotine conjugate vaccine on the acquisition and maintenance of nicotine self-administration in rats. Psychopharmacology (Berl) 2006;184(3–4):409–16.
    1. Pravetoni M, Keyler DE, Raleigh MD, et al. Vaccination against nicotine alters the distribution of nicotine delivered via cigarette smoke inhalation to rats. Biochem Pharmacol. 2011;81(9):1164–70. doi: 10.1016/j.bcp.2011.02.004.
    1. Pentel P, Malin D. A vaccine for nicotine dependence: targeting the drug rather than the brain. Respiration. 2002;69(3):193–7. doi: 10.1159/000063617.
    1. Keyler DE, Roiko SA, Benlhabib E, et al. Monoclonal nicotine-specific antibodies reduce nicotine distribution to brain in rats: dose- and affinity-response relationships. Drug Metab Dispos. 2005;33(7):1056–61. doi: 10.1124/dmd.105.004234.
    1. de Villiers SH, Lindblom N, Kalayanov G, et al. Nicotine hapten structure, antibody selectivity and effect relationships: results from a nicotine vaccine screening procedure. Vaccine. 2010;28(10):2161–8. doi: 10.1016/j.vaccine.2009.12.051.
    1. Oliver JL, Pashmi G, Barnett P, et al. Development of an anti-cotinine vaccine to potentiate nicotine-based smoking cessation strategies. Vaccine. 2007;25(42):7354–62. doi: 10.1016/j.vaccine.2007.08.019.
    1. Sziraki I, Sershen H, Benuck M, et al. The effect of cotinine on nicotine- and cocaine-induced dopamine release in the nucleus accumbens. Neurochem Res. 1999;24(11):1471–8. doi: 10.1007/s11064-999-0001-1.
    1. Buccafusco JJ, Shuster LC, Terry AV., Jr Disconnection between activation and desensitization of autonomic nicotinic receptors by nicotine and cotinine. Neurosci Lett. 2007;413(1):68–71. doi: 10.1016/j.neulet.2006.11.028.
    1. Bardo MT, Green TA, Crooks PA, et al. Nornicotine is self-administered intravenously by rats. Psychopharmacology (Berl) 1999;146(3):290–6. doi: 10.1007/s002130051119.
    1. Matsukura S, Sakamoto N, Imura H, et al. Radioimmunoassay of nicotine. Biochem Biophys Res Commun. 1975;64(2):574–80. doi: 10.1016/0006-291X(75)90360-5.
    1. Roiko SA, Harris AC, LeSage MG, et al. Passive immunization with a nicotine-specific monoclonal antibody decreases brain nicotine levels but does not precipitate withdrawal in nicotine-dependent rats. Pharmacol Biochem Behav. 2009;93(2):105–11. doi: 10.1016/j.pbb.2009.04.011.
    1. Malin DH, Lake JR, Lin A, et al. Passive immunization against nicotine prevents nicotine alleviation of nicotine abstinence syndrome. Pharmacol Biochem Behav. 2001;68(1):87–92. doi: 10.1016/S0091-3057(00)00436-6.
    1. Hieda Y, Keyler DE, Ennifar S, et al. Vaccination against nicotine during continued nicotine administration in rats: immunogenicity of the vaccine and effects on nicotine distribution to brain. Int J Immunopharmacol. 2000;22(10):809–19. doi: 10.1016/S0192-0561(00)00042-4.
    1. Cerny EH, Levy R, Mauel J, et al. Preclinical development of a vaccine ‘against smoking’. Onkologie. 2002;25(5):406–11. doi: 10.1159/000067433.
    1. Hieda Y, Keyler DE, Vandevoort JT, et al. Active immunization alters the plasma nicotine concentration in rats. J Pharmacol Exp Ther. 1997;283(3):1076–81.
    1. de Villiers SH, Lindblom N, Kalayanov G, et al. Active immunization against nicotine suppresses nicotineinduced dopamine release in the rat nucleus accumbens shell. Respiration. 2002;69(3):247–53. doi: 10.1159/000063628.
    1. Sanderson SD, Cheruku SR, Padmanilayam MP, et al. Immunization to nicotine with a peptide-based vaccine composed of a conformationally biased agonist of C5a as a molecular adjuvant. Int Immunopharmacol. 2003;3(1):137–46. doi: 10.1016/S1567-5769(02)00260-6.
    1. de Villiers SH, Lindblom N, Kalayanov G, et al. Active immunization against nicotine alters the distribution of nicoine but not the metabolism to cotinine in the rat. Naunyn Schmiedebergs Arch Pharmacol. 2004;370(4):299–304. doi: 10.1007/s00210-004-0960-3.
    1. Keyler DE, Hieda Y, St Peter J, et al. Altered disposition of repeated nicotine doses in rats immunized against nicotine. Nicotine Tob Res. 1999;1(3):241–9. doi: 10.1080/14622299050011361.
    1. Satoskar SD, Keyler DE, LeSage MG, et al. Tissuedependent effects of immunization with a nicotine conjugate vaccine on the distribution of nicotine in rats. Int Immunopharmacol. 2003;3(7):957–70. doi: 10.1016/S1567-5769(03)00094-8.
    1. Hieda Y, Keyler DE, VanDe Voort JT, et al. Immunization of rats reduces nicotine distribution to brain. Psychopharmacology (Berl) 1999;143(2):150–7. doi: 10.1007/s002130050930.
    1. Pentel PR, Dufek MB, Roiko SA, et al. Differential effects of passive immunization with nicotine-specific antibodies on the acute and chronic distribution of nicotine to brain in rats. J Pharmacol Exp Ther. 2006;317(2):660–6. doi: 10.1124/jpet.105.097873.
    1. Carrera MR, Ashley JA, Hoffman TZ, et al. Investigations using immunization to attenuate the psychoactive effects of nicotine. Bioorg Med Chem. 2004;12(3):563–70. doi: 10.1016/j.bmc.2003.11.029.
    1. Malin DH, Alvarado CL, Woodhouse KS, et al. Passive immunization against nicotine attenuates nicotine discrimination. Life Sci. 2002;70(23):2793–8. doi: 10.1016/S0024-3205(02)01523-0.
    1. Moreno AY, Azar MR, Warren NA, et al. A critical evaluation of a nicotine vaccine within a self-administration behavioral model. Mol Pharm. 2010;7(2):431–41. doi: 10.1021/mp900213u.
    1. Lindblom N, de Villiers SH, Kalayanov G, et al. Active immunization against nicotine prevents reinstatement of nicotine-seeking behavior in rats. Respiration. 2002;69(3):254–60. doi: 10.1159/000063629.
    1. Lindblom N, de Villiers SH, Semenova S, et al. Active immunisation against nicotine blocks the reward facilitating effects of nicotine and partially prevents nicotine withdrawal in the rat as measured by dopamine output in the nucleus accumbens, brain reward thresholds and somatic signs. Naunyn Schmiedebergs Arch Pharmacol. 2005;372(3):182–94. doi: 10.1007/s00210-005-0019-0.
    1. Malin DH, Moon WD, Goyarzu P, et al. Passive immunization against nicotine attenuates somatic nicotine withdrawal syndrome in the rat. Nicotine Tob Res. 2010;12(4):438–44. doi: 10.1093/ntr/ntq021.
    1. Keyler DE, Roiko SA, Earley CA, et al. Enhanced immunogenicity of a bivalent nicotine vaccine. Int Immunopharmacol. 2008;8(11):1589–94. doi: 10.1016/j.intimp.2008.07.001.
    1. Tuncok Y, Hieda Y, Keyler DE, et al. Inhibition of nicotine-induced seizures in rats by combining vaccination against nicotine with chronic nicotine infusion. Exp Clin Psychopharmacol. 2001;9(2):228–34. doi: 10.1037/1064-1297.9.2.228.
    1. Roiko SA, Harris AC, Keyler DE, et al. Combined active and passive immunization enhances the efficacy of immunotherapy against nicotine in rats. J Pharmacol Exp Ther. 2008;325(3):985–93. doi: 10.1124/jpet.107.135111.
    1. Cornish KE, Harris AC, LeSage MG, et al. Combined active and passive immunization against nicotine: minimizing monoclonal antibody requirements using a target antibody concentration strategy. Int Immunopharmacol. 2011;11(11):1809–15. doi: 10.1016/j.intimp.2011.07.009.
    1. Corrigall WA. Nicotine self-administration in animals as a dependence model. Nicotine Tob Res. 1999;1(1):11–20. doi: 10.1080/14622299050011121.
    1. LeSage MG, Keyler DE, Collins G, et al. Effects of continuous nicotine infusion on nicotine self-administration in rats: relationship between continuously infused and selfadministered nicotine doses and serum concentrations. Psychopharmacology (Berl) 2003;170(3):278–86. doi: 10.1007/s00213-003-1539-2.
    1. Bevins RA, Wilkinson JL, Sanderson SD. Vaccines to combat smoking. Expert Opin Biol Ther. 2008;8(4):379–83. doi: 10.1517/14712598.8.4.379.
    1. Trial watch: Xenova’s TA-NIC vaccine shows promise Expert Rev Vaccines. 2004;3(4):386. doi: 10.1586/14760584.3.4.386.
    1. Cerny EH, Cerny T. Vaccines against nicotine. Hum Vaccin. 2009;5(4):200–5. doi: 10.4161/hv.5.4.7310.
    1. Nabi Biopharmaceuticals announces results of first NicVAX® phase III clinical trial: smoking cessation immunotherapy failed to meet primary endpoint. Rockville (MD): Nabi Pharmaceuticals, 2011
    1. Gunnell D, Irvine D, Wise L, et al. Varenicline and suicidal behaviour: a cohort study based on data from the General Practice Research Database. BMJ. 2009;339:b3805. doi: 10.1136/bmj.b3805.
    1. Ross S, Williams D. Bupropion: risks and benefits. Expert Opin Drug Saf. 2005;4(6):995–1003. doi: 10.1517/14740338.4.6.995.
    1. Hall W. The prospects for immunotherapy in smoking cessation. Lancet. 2002;360(9339):1089–91. doi: 10.1016/S0140-6736(02)11134-2.
    1. Brischoux F, Chakraborty S, Brierley DI, et al. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A. 2009;106(12):4894–9. doi: 10.1073/pnas.0811507106.
    1. Hnasko TS, Sotak BN, Palmiter RD. Morphine reward in dopamine-deficient mice. Nature. 2005;438(7069):854–7. doi: 10.1038/nature04172.
    1. Naqvi NH, Rudrauf D, Damasio H, et al. Damage to the insula disrupts addiction to cigarette smoking. Science. 2007;315(5811):531–4. doi: 10.1126/science.1135926.
    1. Rose JE, Mukhin AG, Lokitz SJ, et al. Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarettes containing 1 1C-nicotine. Proc Natl Acad Sci U S A. 2010;107(11):5190–5. doi: 10.1073/pnas.0909184107.
    1. Fagerström K. Determinants of tobacco use and renaming the FTND to the Fagerström Test for Cigarette Dependence. Nicotine Tob Res. 2012;14(1):75–9. doi: 10.1093/ntr/ntr137.
    1. Rose JE, Behm FM, Westman EC, et al. Dissociating nicotine and nonnicotine components of cigarette smoking. Pharmacol Biochem Behav. 2000;67(1):71–81. doi: 10.1016/S0091-3057(00)00301-4.
    1. Hughes JR, Rose GL, Callas PW. Nicotine is more reinforcing in smokers with a past history of alcoholism than in smokers without this history. Alcohol Clin Exp Res. 2000;24(11):1633–8. doi: 10.1111/j.1530-0277.2000.tb01964.x.
    1. Rose JE. Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology (Berl) 2006;184(3–4):274–85. doi: 10.1007/s00213-005-0250-x.
    1. Clemens KJ, Caille S, Stinus L, et al. The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats. Int J Neuropsychopharmacol. 2009;12(10):1355–66. doi: 10.1017/S1461145709000273.
    1. Belluzzi JD, Wang R, Leslie FM. Acetaldehyde enhances acquisition of nicotine self-administration in adolescent rats. Neuropsychopharmacology. 2005;30(4):705–12. doi: 10.1038/sj.npp.1300586.
    1. van Amsterdam J, Talhout R, Vleeming W, et al. Contribution of monoamine oxidase (MAO) inhibition to tobacco and alcohol addiction. Life Sci. 2006;79(21):1969–73. doi: 10.1016/j.lfs.2006.06.010.
    1. Barrett SP. The effects of nicotine, denicotinized tobacco, and nicotine-containing tobacco on cigarette craving, withdrawal, and self-administration in male and female smokers. Behav Pharmacol. 2010;21(2):144–52. doi: 10.1097/FBP.0b013e328337be68.
    1. Benowitz NL, Hall SM, Herning RI, et al. Smokers of lowyield cigarettes do not consume less nicotine. N Engl J Med. 1983;309(3):139–42. doi: 10.1056/NEJM198307213090303.
    1. Caggiula AR, Donny EC, White AR, et al. Cue dependency of nicotine self-administration and smoking. Pharmacol Biochem Behav. 2001;70(4):515–30. doi: 10.1016/S0091-3057(01)00676-1.
    1. Shiffman S, Ferguson SG, Gwaltney CJ. Immediate hedonic response to smoking lapses: relationship to smoking relapse, and effects of nicotine replacement therapy. Psychopharmacology (Berl) 2006;184(3-4):608–18. doi: 10.1007/s00213-005-0175-4.
    1. Malaiyandi V, Sellers EM, Tyndale RF. Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence. Clin Pharmacol Ther. 2005;77(3):145–58. doi: 10.1016/j.clpt.2004.10.011.
    1. Schoedel KA, Hoffmann EB, Rao Y, et al. Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians. Pharmacogenetics. 2004;14(9):615–26. doi: 10.1097/00008571-200409000-00006.
    1. Benowitz NL, Perez-Stable EJ, Herrera B, et al. Slower metabolism and reduced intake of nicotine from cigarette smoking in Chinese-Americans. J Natl Cancer Inst. 2002;94(2):108–15. doi: 10.1093/jnci/94.2.108.
    1. Tyndale RF, Sellers EM. Genetic variation in CYP2A6-mediated nicotine metabolism alters smoking behavior. Ther Drug Monit. 2002;24(1):163–71. doi: 10.1097/00007691-200202000-00026.
    1. Schnoll RA, Patterson F, Wileyto EP, et al. Nicotine metabolic rate predicts successful smoking cessation with transdermal nicotine: a validation study. Pharmacol Biochem Behav. 2009;92(1):6–11. doi: 10.1016/j.pbb.2008.10.016.
    1. Hughes JR, Keely J, Naud S. Shape of the relapse curve and long-term abstinence among untreated smokers. Addiction. 2004;99(1):29–38. doi: 10.1111/j.1360-0443.2004.00540.x.
    1. West R, Sohal T. ‘Catastrophic’ pathways to smoking cessation: findings from national survey. Bmj. 2006;332(7539):458–60. doi: 10.1136/.
    1. Gonzales D, Rennard SI, Nides M, et al. Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial. JAMA. 2006;296(1):47–55. doi: 10.1001/jama.296.1.47.
    1. Zatonski W, Cedzynska M, Tutka P, et al. An uncontrolled trial of cytisine (Tabex) for smoking cessation. Tob Control. 2006;15(6):481–4. doi: 10.1136/tc.2006.016097.
    1. West R, Zatonski W, Cedzynska M, et al. Placebocontrolled trial of cytisine for smoking cessation. N Engl J Med. 2011;365(13):1193–200. doi: 10.1056/NEJMoa1102035.
    1. Leader AE, Lerman C, Cappella JN. Nicotine vaccines: will smokers take a shot at quitting? Nicotine Tob Res. 2010;12(4):390–7. doi: 10.1093/ntr/ntq015.
    1. Lu D, Hickey AJ. Pulmonary vaccine delivery. Expert Rev Vaccines. 2007;6(2):213–26. doi: 10.1586/14760584.6.2.213.
    1. Davis SS. Nasal vaccines. Adv Drug Deliv Rev. 2001;51(1–3):21–42. doi: 10.1016/S0169-409X(01)00162-4.
    1. Hall W, Gartner C. Ethical and policy issues in using vaccines to treat and prevent cocaine and nicotine dependence. Curr Opin Psychiatry. 2011;24(3):191–6. doi: 10.1097/YCO.0b013e328345922b.
    1. Hasman A, Holm S. Nicotine conjugate vaccine: is there a right to a smoking future? J Med Ethics. 2004;30(4):344–5. doi: 10.1136/jme.2002.001602.

Source: PubMed

3
Abonnieren