Intensified tuberculosis case-finding in HIV-positive adults managed at Ethiopian health centers: diagnostic yield of Xpert MTB/RIF compared with smear microscopy and liquid culture

Taye T Balcha, Erik Sturegård, Niclas Winqvist, Sten Skogmar, Anton Reepalu, Zelalem Habtamu Jemal, Gudeta Tibesso, Thomas Schön, Per Björkman, Taye T Balcha, Erik Sturegård, Niclas Winqvist, Sten Skogmar, Anton Reepalu, Zelalem Habtamu Jemal, Gudeta Tibesso, Thomas Schön, Per Björkman

Abstract

Background: Detection of active tuberculosis (TB) before antiretroviral therapy (ART) initiation is important, but optimal diagnostic methods for use in resource-limited settings are lacking. We assessed the prevalence of TB, evaluated the diagnostic yield of Xpert MTB/RIF in comparison with smear microscopy and culture, and the impact of Xpert results on clinical management in HIV-positive adults eligible for ART at health centers in a region of Ethiopia.

Methods: Participants were prospectively recruited and followed up at 5 health centers. Trained nurses collected data on socio-demographic characteristics, medical history and symptoms, and performed physical examination. Two paired morning sputum samples were obtained, and lymph node aspirates in case of lymphadenopathy. Diagnostic yield of Xpert MTB/RIF in sputum was compared with smear microscopy and liquid culture.

Results: TB was diagnosed in 145/812 participants (17.9%), with bacteriological confirmation in 137 (16.9%). Among bacteriologically confirmed cases, 31 were smear-positive (22.6%), 96 were Xpert-positive (70.1%), and 123 were culture-positive (89.8%). Xpert MTB/RIF increased the TB detection rate by 64 cases (47.4%) compared with smear microscopy. The overall sensitivity of Xpert MTB/RIF was 66.4%, and was not significantly lower when testing one compared with two samples. While Xpert MTB/RIF was 46.7% sensitive among patients with CD4 cell counts >200 cells/mm(3), this increased to 82.9% in those with CD4 cell counts ≤100 cells/mm(3). Compared with Xpert-positive TB patients, Xpert-negative cases had less advanced HIV and TB disease characteristics.

Conclusions: Previously undiagnosed TB is common among HIV-positive individuals managed in Ethiopian health centers. Xpert MTB/RIF increased TB case detection, especially in patients with advanced immunosuppression. An algorithm based on the use of a single morning sputum sample for individuals with negative sputum smear microscopy could be considered for intensified case finding in patients eligible for ART. However, technical and cost-effectiveness issues relevant for low-income countries warrant further study.

Trial registration: ClinicalTrials.gov NCT01433796.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow chart of the study…
Figure 1. Flow chart of the study participants.

References

    1. Lawn SD, Harries AD, Anglaret X, Myer L, Wood R (2008) Early mortality among adults accessing antiretroviral treatment programmes in sub-Saharan Africa. AIDS 22: 1897–1908.
    1. Gupta A, Nadkarni G, Yang W-T, Chandrasekhar A, Gupte N, et al. (2011) Early mortality in adults initiating antiretroviral therapy (ART) in low- and middle-income countries (LMIC): a systematic review and meta-analysis. PLoS One 6: e28691.
    1. Lawn SD, Kranzer K, Edwards DJ, McNally M, Bekker L-G, et al. (2010) Tuberculosis during the first year of antiretroviral therapy in a South African cohort using an intensive pretreatment screening strategy. AIDS 24: 1323–1328.
    1. Moore D, Liechty C, Ekwaru P, Were W, Mwima G, et al. (2007) Prevalence, incidence and mortality associated with tuberculosis in HIV-infected patients initiating antiretroviral therapy in rural Uganda. AIDS 21: 713–719.
    1. Mtei L, Matee M, Herfort O, Bakari M, Horsburgh CR, et al. (2005) High rates of clinical and subclinical tuberculosis among HIV-infected ambulatory subjects in Tanzania. Clin Infect Dis 40: 1500–1507.
    1. Lawn SD, Wood R (2011) Tuberculosis in antiretroviral treatment services in resource-limited settings: addressing the challenges of screening and diagnosis. J Infect Dis 204 Suppl: S1159–67.
    1. Lawn SD, Zumla AI (2011) Tuberculosis. Lancet 378: 57–72.
    1. Koenig SP, Riviere C, Leger P, Joseph P, Severe P, et al. (2009) High mortality among patients with AIDS who received a diagnosis of tuberculosis in the first 3 months of antiretroviral therapy. Clin Infect Dis 48: 829–831.
    1. Bock NN, Jensen PA, Miller B, Nardell E (2007) Tuberculosis infection control in resource-limited settings in the era of expanding HIV care and treatment. J Infect Dis 196 Suppl: S108–13.
    1. Harries AD, Zachariah R, Corbett EL, Lawn SD, Santos-Filho ET, et al. (2010) The HIV-associated tuberculosis epidemic–when will we act? Lancet 375: 1906–1919.
    1. Rangaka MX, Wilkinson RJ, Glynn JR, Boulle A, van Cutsem G, et al. (2012) Effect of Antiretroviral Therapy on the Diagnostic Accuracy of Symptom Screening for Intensified Tuberculosis Case Finding in a South African HIV Clinic. Clin Infect Dis 55: 1698–1706.
    1. WHO (2012) policy on collaborative TB/HIV activities: guidelines for national programmes and other stakeholders. Geneva, Switzerland: World Health Organization.
    1. Getahun H, Kittikraisak W, Heilig CM, Corbett EL, Ayles H, et al. (2011) Development of a Standardized Screening Rule for Tuberculosis in People Living with HIV in Resource-Constrained Settings: Individual Participant Meta-Analysis of Observational Studies. PLoS Med 8: e1000391.
    1. Lawn SD, Brooks SV, Kranzer K, Nicol MP, Whitelaw A, et al. (2011) Screening for HIV-associated tuberculosis and rifampicin resistance before antiretroviral therapy using the Xpert MTB/RIF assay: a prospective study. PLoS Med 8: e1001067.
    1. Cain KP, McCarthy KD, Heilig CM, Monkongdee P, Tasaneeyapan T, et al. (2010) An algorithm for tuberculosis screening and diagnosis in people with HIV. N Engl J Med 362: 707–716.
    1. Bassett IV, Wang B, Chetty S, Giddy J, Losina E, et al. (2010) Intensive tuberculosis screening for HIV-infected patients starting antiretroviral therapy in Durban, South Africa. Clin Infect Dis 51: 823–829.
    1. Aparna S, Moorthy KVK, Gokhale S (2006) From microscopy centre to culture laboratory: a viable ride for mycobacteria. Int J Tuberc Lung Dis 10: 447–449.
    1. WHO (2010) Roadmap for rolling out Xpert MTB/RIF for rapid diagnosis of TB and MDR TB. Geneva, Switzerland.
    1. Helb D, Jones M, Story E, Boehme C, Wallace E, et al. (2009) Rapid Detection of Mycobacterium tuberculosis and Rifampin Resistance by Use of On-Demand, Near-Patient Technology. J Clin Microbiol 48: 229–237.
    1. Steingart K, Sohn H, Schiller I, La K, Boehme, Catharina C, Pamela Nabeta DH, et al. (2013) et al. Xpert ® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults (Review). Cochrane Rev
    1. Ligthelm LJ, Nicol MP, Hoek KGP, Jacobson R, van Helden PD, et al. (2011) Xpert MTB/RIF for rapid diagnosis of tuberculous lymphadenitis from fine-needle-aspiration biopsy specimens. J Clin Microbiol 49: 3967–3970.
    1. Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, et al. (2011) Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet 377: 1495–1505.
    1. Theron G, Peter J, van Zyl-Smit R, Mishra H, Streicher E, et al. (2011) Evaluation of the Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in a high HIV prevalence setting. Am J Respir Crit Care Med 184: 132–140.
    1. Lawn SD, Kerkhoff AD, Vogt M, Ghebrekristos Y, Whitelaw A, et al. (2012) Characteristics and Early Outcomes of Patients With Xpert MTB/RIF-Negative Pulmonary Tuberculosis Diagnosed During Screening Before Antiretroviral Therapy. Clin Infect Dis 1–9.
    1. Trébucq A, Enarson DA, Chiang CY, Deun A Van, Harries AD, et al. (2011) Xpert ® MTB/RIF for national tuberculosis programmes in low-income countries: when, where and how? Int J Tuberc Lung Dis 15: 1567–1571.
    1. WHO/TDR/FIND (2006) Diagnostics for tuberculosis Global demand and market potential Diagnostics for tuberculosis Global demand and market potential, Geneva.
    1. WHO (2012) Global Tuberculosis Report. Geneva, Switzerland
    1. Datiko DG, Yassin Ma, Chekol LT, Kabeto LE, Lindtjørn B (2008) The rate of TB-HIV co-infection depends on the prevalence of HIV infection in a community. BMC Public Health 8: 266.
    1. Shah S, Demissie M, Lambert L, Ahmed J, Leulseged S, et al. (2009) Intensified tuberculosis case finding among HIV-Infected persons from a voluntary counseling and testing center in Addis Ababa, Ethiopia. J Acquir Immune Defic Syndr 50: 537–545.
    1. Balcha TT, Jeppsson A (2010) Outcomes of antiretroviral treatment: a comparison between hospitals and health centers in Ethiopia. J Int Assoc Physicians Aids Care 9: 318–324.
    1. Assefa Y, Kiflie A, Tekle B, Mariam DH, Laga M, et al. (2012) Effectiveness and acceptability of delivery of antiretroviral treatment in health centres by health officers and nurses in Ethiopia. J Health Serv Res Policy 17: 24–29.
    1. Ministry of Health (2006) AIDS in Ethiopia. Available: .
    1. Ministry of Health of Ethiopia (2008) Guidelines for Management of Opportunistic Infections and Antiretroviral Treatment in Adolescents and Adults in Ethiopia. Available: .
    1. Ministry of Health of Ethiopia (2012) Guidelines for clinical and programmatic management of tb, leprosy and tb/hiv in ethiopia fifth edition. Available: .
    1. WHO/International Union Against Tuberculosis and Lung Disease (2000) Technical guide: Sputum Examination for Tuberculosis by Direct Microscopy in Low-income Countries.
    1. WHO (2013) Revised definitions and reporting framework for tuberculosis. Geneva, Switzerland.
    1. Bassett IV, Wang B, Chetty S, Giddy J, Losina E, et al. (2010) Intensive Tuberculosis Screening for HIV-Infected Patients Starting Antiretroviral Therapy in Durban, South Africa. Clin Infect Dis 02114: 823–829.
    1. WHO (2012) Global tuberculosis report. Geneva, Switzerland: World Health Organization.
    1. Corbett EL, Macpherson P (2013) Tuberculosis screening in high human immunodeficiency virus prevalence settings: turning promise into reality. Int J Tuberc Lung Dis 17: 1125–1138.
    1. Reid MJa, Shah NS (2009) Approaches to tuberculosis screening and diagnosis in people with HIV in resource-limited settings. Lancet Infect Dis 9: 173–184.
    1. Mugusi F, Villamor E, Urassa W, Saathoff E, Bosch RJ, et al. (2006) HIV co-infection, CD4 cell counts and clinical correlates of bacillary density in pulmonary tuberculosis. Int J Tuberc Lung Dis 10: 663–669.
    1. Oni T, Burke R, Tsekela R, Bangani N, Seldon R, et al. (2011) High prevalence of subclinical tuberculosis in HIV-1-infected persons without advanced immunodeficiency: implications for TB screening. Thorax 66: 669–673.
    1. Schoch OD, Rieder P, Tueller C, Altpeter E, Zellweger J-P, et al. (2007) Diagnostic yield of sputum, induced sputum, and bronchoscopy after radiologic tuberculosis screening. Am J Respir Crit Care Med 175: 80–86.
    1. Blakemore R, Story E, Helb D, Banada P, Owens MR, et al. (2010) Evaluation of the Analytical Performance of the Xpert MTB/RIF Assay Evaluation of the Analytical Performance of the Xpert MTB/RIF Assay †. J Clin Microbiol
    1. Williamson Da, Basu I, Bower J, Freeman JT, Henderson G, et al. (2012) An evaluation of the Xpert MTB/RIF assay and detection of false-positive rifampicin resistance in Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 74: 207–209.

Source: PubMed

3
Abonnieren