Elevated C-reactive protein in children from risky neighborhoods: evidence for a stress pathway linking neighborhoods and inflammation in children

Stephanie T Broyles, Amanda E Staiano, Kathryn T Drazba, Alok K Gupta, Melinda Sothern, Peter T Katzmarzyk, Stephanie T Broyles, Amanda E Staiano, Kathryn T Drazba, Alok K Gupta, Melinda Sothern, Peter T Katzmarzyk

Abstract

Background: Childhood socioeconomic status is linked to adult cardiovascular disease and disease risk. One proposed pathway involves inflammation due to exposure to a stress-inducing neighborhood environment. Whether CRP, a marker of systemic inflammation, is associated with stressful neighborhood conditions among children is unknown.

Methods and results: The sample included 385 children 5-18 years of age from 255 households and 101 census tracts. Multilevel logistic regression analyses compared children and adolescents with CRP levels >3 mg/L to those with levels ≤ 3 mg/L across neighborhood environments. Among children living in neighborhoods (census tracts) in the upper tertile of poverty or crime, 18.6% had elevated CRP levels, in contrast to 7.9% of children living in neighborhoods with lower levels of poverty and crime. Children from neighborhoods with the highest levels of either crime or poverty had 2.7 (95% CI: 1.2-6.2) times the odds of having elevated CRP levels when compared to children from other neighborhoods, independent of adiposity, demographic and behavioral differences.

Conclusions: Children living in neighborhoods with high levels of poverty or crime had elevated CRP levels compared to children from other neighborhoods. This result is consistent with a psychosocial pathway favoring early development of cardiovascular risk that involves chronic stress from exposure to socially- and physically-disordered neighborhoods characteristic of poverty.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Variation in elevated C-reactive protein…
Figure 1. Variation in elevated C-reactive protein concentrations across neighborhood (census tract) poverty and crime.
Figure 2. Covariate-adjusted elevated C-reactive protein (CRP)…
Figure 2. Covariate-adjusted elevated C-reactive protein (CRP) concentrations across neighborhood (census tract) poverty and crime levels.
(A) Percent of children with elevated CRP in low, medium, and high crime neighborhoods, by low-medium poverty versus high poverty neighborhoods, and (B) percent of children with elevated CRP in low, medium, and high poverty neighborhoods, by low-medium crime versus high crime neighborhoods.

References

    1. Kaplan GA, Keil JE (1993) Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation 88: 1973–1998.
    1. Clark AM, DesMeules M, Luo W, Duncan AS, Wielgosz A (2009) Socioeconomic status and cardiovascular disease: risks and implications for care. Nat Rev Cardiol 6: 712–722.
    1. Brunner EJ, Marmot MG, Nanchahal K, Shipley MJ, Stansfeld SA, et al. (1997) Social inequality in coronary risk: central obesity and the metabolic syndrome. Evidence from the Whitehall II study. Diabetologia 40: 1341–1349.
    1. Dallongeville J, Cottel D, Ferrieres J, Arveiler D, Bingham A, et al. (2005) Household income is associated with the risk of metabolic syndrome in a sex-specific manner. Diabetes Care 28: 409–415.
    1. Perel P, Langenberg C, Ferrie J, Moser K, Brunner E, et al. (2006) Household wealth and the metabolic syndrome in the Whitehall II study. Diabetes Care 29: 2694–2700.
    1. Chichlowska KL, Rose KM, Diez-Roux AV, Golden SH, McNeill AM, et al. (2008) Individual and neighborhood socioeconomic status characteristics and prevalence of metabolic syndrome: the Atherosclerosis Risk in Communities (ARIC) Study. Psychosom Med 70: 986–992.
    1. Chichlowska KL, Rose KM, Diez-Roux AV, Golden SH, McNeill AM, et al. (2009) Life course socioeconomic conditions and metabolic syndrome in adults: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Epidemiol 19: 875–883.
    1. Kumari M, Head J, Marmot M (2004) Prospective study of social and other risk factors for incidence of type 2 diabetes in the Whitehall II study. Arch Intern Med 164: 1873–1880.
    1. Robbins JM, Vaccarino V, Zhang H, Kasl SV (2005) Socioeconomic status and diagnosed diabetes incidence. Diabetes Res Clin Pract 68: 230–236.
    1. Lidfeldt J, Li TY, Hu FB, Manson JE, Kawachi I (2007) A prospective study of childhood and adult socioeconomic status and incidence of type 2 diabetes in women. Am J Epidemiol 165: 882–889.
    1. Williams ED, Tapp RJ, Magliano DJ, Shaw JE, Zimmet PZ, et al. (2010) Health behaviours, socioeconomic status and diabetes incidence: the Australian Diabetes Obesity and Lifestyle Study (AusDiab). Diabetologia 53: 2538–2545.
    1. Lee TC, Glynn RJ, Pena JM, Paynter NP, Conen D, et al. (2011) Socioeconomic status and incident type 2 diabetes mellitus: data from the Women's Health Study. PLoS One 6: e27670.
    1. Darmon N, Drewnowski A (2008) Does social class predict diet quality? Am J Clin Nutr 87: 1107–1117.
    1. Trost SG, Owen N, Bauman AE, Sallis JF, Brown W (2002) Correlates of adults' participation in physical activity: review and update. Med Sci Sports Exerc 34: 1996–2001.
    1. Garrett BE, Dube SR, Trosclair A, Caraballo RS, Pechacek TF (2011) Cigarette smoking - United States, 1965–2008. MMWR Surveill Summ 60 Suppl: 109–113
    1. Lee RE, Cubbin C (2002) Neighborhood context and youth cardiovascular health behaviors. American Journal of Public Health 92: 428–436.
    1. Hanson M, Chen E (2007) Socioeconomic status and health behaviors in adolescence: a review of the literature. Journal of Behavioral Medicine 30: 263–285.
    1. Kuh D, Ben-Shlomo Y, editors (2004) A life course approach to chronic disease epidemiology. New York: Oxford University Press.
    1. Galobardes B, Smith GD, Lynch JW (2006) Systematic review of the influence of childhood socioeconomic circumstances on risk for cardiovascular disease in adulthood. Annals of Epidemiology 16: 91–104.
    1. Brunner E (1997) Stress and the biology of inequality. BMJ 314: 1472–1476.
    1. Baum A, Garofalo JP, Yali AM (1999) Socioeconomic status and chronic stress. Does stress account for SES effects on health? Ann N Y Acad Sci 896: 131–144.
    1. McEwen BS, Seeman T (1999) Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load. Ann N Y Acad Sci 896: 30–47.
    1. Bjorntorp P (2001) Do stress reactions cause abdominal obesity and comorbidities? Obes Rev 2: 73–86.
    1. Kassi E, Pervanidou P, Kaltsas G, Chrousos G (2011) Metabolic syndrome: definitions and controversies. BMC Med 9: 48.
    1. Black PH, Garbutt LD (2002) Stress, inflammation and cardiovascular disease. J Psychosom Res 52: 1–23.
    1. Brunner EJ, Hemingway H, Walker BR, Page M, Clarke P, et al. (2002) Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study. Circulation 106: 2659–2665.
    1. Attar BK, Guerra NG, Tolan PH (1994) Neighborhood disadvantage, stressful life events, and adjustment in urban elementary-school-children. Journal of Clinical Child Psychology 23: 391–400.
    1. Ross CE, Mirowsky J (2001) Neighborhood Disadvantage, Disorder, and Health. Journal of Health and Social Behavior 42: 258–276.
    1. Steptoe A, Feldman PJ (2001) Neighborhood problems as sources of chronic stress: development of a measure of neighborhood problems, and associations with socioeconomic status and health. Ann Behav Med 23: 177–185.
    1. Hill TD, Ross CE, Angel RJ (2005) Neighborhood disorder, psychophysiological distress, and health. J Health Soc Behav 46: 170–186.
    1. Glass TA, Rasmussen MD, Schwartz BS (2006) Neighborhoods and obesity in older adults: the Baltimore Memory Study. American Journal of Preventive Medicine 31: 455–463.
    1. Goldoftas BF (2008) Neighborhood Environmental Health and Risk Factors for Type 2 Diabetes in the English Longitudinal Study of Ageing. Epidemiology 19: S268 210.1097/1001.ede.0000340283.0000300157.0000340287f.
    1. Sundquist K, Theobald H, Yang M, Li X, Johansson SE, et al. (2006) Neighborhood violent crime and unemployment increase the risk of coronary heart disease: a multilevel study in an urban setting. Soc Sci Med 62: 2061–2071.
    1. Augustin T, Glass TA, James BD, Schwartz BS (2008) Neighborhood psychosocial hazards and cardiovascular disease: the Baltimore Memory Study. Am J Public Health 98: 1664–1670.
    1. McDade TW, Hawkley LC, Cacioppo JT (2006) Psychosocial and behavioral predictors of inflammation in middle-aged and older adults: the Chicago health, aging, and social relations study. Psychosom Med 68: 376–381.
    1. Steptoe A, Hamer M, Chida Y (2007) The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun 21: 901–912.
    1. Gouin JP, Glaser R, Malarkey WB, Beversdorf D, Kiecolt-Glaser J (2011) Chronic stress, daily stressors, and circulating inflammatory markers. Health Psychol.2011/09/21 ed.
    1. Gupta AK, Johnson WD (2010) Prediabetes and prehypertension in disease free obese adults correlate with an exacerbated systemic proinflammatory milieu. J Inflamm 7: 36.
    1. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB (1999) Elevated C-reactive protein levels in overweight and obese adults. JAMA 282: 2131–2135.
    1. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286: 327–334.
    1. Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, et al. (2003) C-reactive protein and the risk of developing hypertension. JAMA 290: 2945–2951.
    1. Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, et al. (2010) C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375: 132–140.
    1. Jarvisalo MJ, Harmoinen A, Hakanen M, Paakkunainen U, Viikari J, et al. (2002) Elevated serum C-reactive protein levels and early arterial changes in healthy children. Arterioscler Thromb Vasc Biol 22: 1323–1328.
    1. Balagopal PB, de Ferranti SD, Cook S, Daniels SR, Gidding SS, et al. (2011) Nontraditional risk factors and biomarkers for cardiovascular disease: mechanistic, research, and clinical considerations for youth: a scientific statement from the American Heart Association. Circulation 123: 2749–2769.
    1. Juonala M, Viikari JS, Ronnemaa T, Taittonen L, Marniemi J, et al. (2006) Childhood C-reactive protein in predicting CRP and carotid intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. Arterioscler Thromb Vasc Biol 26: 1883–1888.
    1. Pollitt RA, Kaufman JS, Rose KM, Diez-Roux AV, Zeng D, et al. (2007) Early-life and adult socioeconomic status and inflammatory risk markers in adulthood. Eur J Epidemiol 22: 55–66.
    1. Petersen KL, Marsland AL, Flory J, Votruba-Drzal E, Muldoon MF, et al. (2008) Community socioeconomic status is associated with circulating interleukin-6 and C-reactive protein. Psychosom Med 70: 646–652.
    1. Pollitt RA, Kaufman JS, Rose KM, Diez-Roux AV, Zeng D, et al. (2008) Cumulative life course and adult socioeconomic status and markers of inflammation in adulthood. J Epidemiol Community Health 62: 484–491.
    1. Schafer MH, Ferraro KF, Williams SR (2011) Low socioeconomic status and body mass index as risk factors for inflammation in older adults: conjoint influence on C-reactive protein? Journals of Gerontology Series A-Biological Sciences and Medical Sciences 66: 667–673.
    1. Slopen N, Koenen KC, Kubzansky LD (2011) Childhood adversity and immune and inflammatory biomarkers associated with cardiovascular risk in youth: A systematic review. Brain Behav Immun.
    1. Jaye DL, Waites KB (1997) Clinical applications of C-reactive protein in pediatrics. Pediatr Infect Dis J 16: 735–746; quiz 746–737.
    1. U.S. Census Bureau (2010) Poverty Thresholds 2009.
    1. Prochaska JJ, Sallis JF, Long B (2001) A physical activity screening measure for use with adolescents in primary care. Arch Pediatr Adolesc Med 155: 554–559.
    1. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, et al. (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association's strategic Impact Goal through 2020 and beyond. Circulation 121: 586–613.
    1. Little RJA, Rubin DB (1987) Statistical analysis with missing data. New York: J. Wiley & Sons.
    1. Schafer JL (1997) Analysis of Incomplete Multivariate Data. New York: Chapman and Hall.
    1. Ford ES, Ajani UA, Mokdad AH (2005) The metabolic syndrome and concentrations of C-reactive protein among U.S. youth. Diabetes Care 28: 878–881.
    1. Lande MB, Pearson TA, Vermilion RP, Auinger P, Fernandez ID (2008) Elevated blood pressure, race/ethnicity, and C-reactive protein levels in children and adolescents. Pediatrics 122: 1252–1257.
    1. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, 3rd, et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107: 499–511.
    1. Cook DG, Mendall MA, Whincup PH, Carey IM, Ballam L, et al. (2000) C-reactive protein concentration in children: relationship to adiposity and other cardiovascular risk factors. Atherosclerosis 149: 139–150.
    1. Ford ES, Galuska DA, Gillespie C, Will JC, Giles WH, et al. (2001) C-reactive protein and body mass index in children: findings from the Third National Health and Nutrition Examination Survey, 1988–1994. J Pediatr 138: 486–492.
    1. Ford ES (2003) C-reactive protein concentration and cardiovascular disease risk factors in children: findings from the National Health and Nutrition Examination Survey 1999–2000. Circulation 108: 1053–1058.
    1. Skinner AC, Steiner MJ, Henderson FW, Perrin EM (2010) Multiple markers of inflammation and weight status: cross-sectional analyses throughout childhood. Pediatrics 125: e801–809.
    1. Holmes ME, Ekkekakis P, Eisenmann JC (2010) The physical activity, stress and metabolic syndrome triangle: a guide to unfamiliar territory for the obesity researcher. Obes Rev 11: 492–507.
    1. Williams ED, Magliano DJ, Zimmet PZ, Kavanagh AM, Stevenson CE, et al. (2012) Area-Level Socioeconomic Status and Incidence of Abnormal Glucose Metabolism: The Australian Diabetes, Obesity and Lifestyle (AusDiab) study. Diabetes Care 35: 1455–1461.
    1. Owen N, Poulton T, Hay FC, Mohamed-Ali V, Steptoe A (2003) Socioeconomic status, C-reactive protein, immune factors, and responses to acute mental stress. Brain, Behavior, and Immunity 17: 286–295.
    1. Nazmi A, Victora CG (2007) Socioeconomic and racial/ethnic differentials of C-reactive protein levels: a systematic review of population-based studies. BMC Public Health 7: 212.
    1. Muennig P, Sohler N, Mahato B (2007) Socioeconomic status as an independent predictor of physiological biomarkers of cardiovascular disease: Evidence from NHANES. Preventive Medicine 45: 35–40.
    1. Dowd JB, Zajacova A, Aiello AE (2010) Predictors of inflammation in U.S. children aged 3–16 years. Am J Prev Med 39: 314–320.
    1. Goodman E, McEwen BS, Huang B, Dolan LM, Adler NE (2005) Social inequalities in biomarkers of cardiovascular risk in adolescence. Psychosom Med 67: 9–15.
    1. Alley DE, Seeman TE, Ki Kim J, Karlamangla A, Hu P, et al. (2006) Socioeconomic status and C-reactive protein levels in the US population: NHANES IV. Brain Behav Immun 20: 498–504.
    1. Howe LD, Galobardes B, Sattar N, Hingorani AD, Deanfield J, et al. (2010) Are there socioeconomic inequalities in cardiovascular risk factors in childhood, and are they mediated by adiposity? Findings from a prospective cohort study. International Journal of Obesity 34: 1149–1159.
    1. Murasko JE (2008) Male-female differences in the association between socioeconomic status and atherosclerotic risk in adolescents. Soc Sci Med 67: 1889–1897.
    1. Dulin-Keita A, Casazza K, Fernandez JR, Goran MI, Gower B (2012) Do neighbourhoods matter? Neighbourhood disorder and long-term trends in serum cortisol levels. J Epidemiol Community Health 66: 24–29.
    1. Link BG, Phelan J (1995) Social conditions as fundamental causes of disease. Journal of Health and Social Behavior Extra Issue: 80–94.
    1. Chinn S (2000) A simple method for converting an odds ratio to effect size for use in meta-analysis. Stat Med 19: 3127–3131.
    1. Cohen J (1992) A power primer. Psychol Bull 112: 155–159.
    1. Leventhal T, Brooks-Gunn J (2000) The neighborhoods they live in: The effects of neighborhood residence on child and adolescent outcomes. Psychological Bulletin 126: 309–337.
    1. Chen E, Paterson LQ (2006) Neighborhood, family, and subjective socioeconomic status: How do they relate to adolescent health? Health Psychol 25: 704–714.
    1. Morley R, Harland P, Law CM, Lucas A (2000) Birthweight and social deprivation: influences on serum lipids and fibrinogen. Acta Paediatr 89: 703–707.
    1. Jackson RW, Treiber FA, Turner JR, Davis H, Strong WB (1999) Effects of race, sex, and socioeconomic status upon cardiovascular stress responsivity and recovery in youth. Int J Psychophysiol 31: 111–119.
    1. Helba M, Binkovitz LA (2009) Pediatric body composition analysis with dual-energy X-ray absorptiometry. Pediatr Radiol 39: 647–656.
    1. Freedman DS, Wang J, Maynard LM, Thornton JC, Mei Z, et al. (2005) Relation of BMI to fat and fat-free mass among children and adolescents. Int J Obes (Lond) 29: 1–8.
    1. Federico B, D'Aliesio F, Pane F, Capelli G, Rodio A (2011) Body mass index has a curvilinear relationship with the percentage of body fat among children. BMC Res Notes 4: 301.
    1. Cohen S (1999) Social status and susceptibility to respiratory infections. Ann N Y Acad Sci 896: 246–253.
    1. Sundquist J, Malmstrom M, Johansson S-E (1999) Cardiovascular risk factors and the neighbourhood environment: a multilevel analysis. International Journal of Epidemiology 28: 841–845.
    1. McLaren L (2007) Socioeconomic status and obesity. Epidemiol Rev 29: 29–48.
    1. Ludwig J, Sanbonmatsu L, Gennetian L, Adam E, Duncan GJ, et al. (2011) Neighborhoods, obesity, and diabetes–a randomized social experiment. N Engl J Med 365: 1509–1519.
    1. Shrewsbury V, Wardle J (2008) Socioeconomic status and adiposity in childhood: a systematic review of cross-sectional studies 1990–2005. Obesity (Silver Spring) 16: 275–284.
    1. Fuligni AJ, Telzer EH, Bower J, Cole SW, Kiang L, et al. (2009) A preliminary study of daily interpersonal stress and C-reactive protein levels among adolescents from Latin American and European backgrounds. Psychosom Med 71: 329–333.

Source: PubMed

3
Abonnieren