BMI percentiles for the identification of abdominal obesity and metabolic risk in children and adolescents: evidence in support of the CDC 95th percentile

D M Harrington, A E Staiano, S T Broyles, A K Gupta, P T Katzmarzyk, D M Harrington, A E Staiano, S T Broyles, A K Gupta, P T Katzmarzyk

Abstract

Objectives: Body mass index (BMI) percentiles have been routinely and historically used to identify elevated adiposity. The aim of this study was to investigate the optimal Centers for Disease Control and Prevention (CDC) BMI percentile that predicts elevated visceral adipose tissue (VAT), fat mass and cardiometabolic risk in a biracial sample of children and adolescents.

Participants and methods: This cross-sectional analysis included 369 white and African-American children (5-18 years). BMI was calculated using height and weight and converted to BMI percentiles based on CDC growth charts. Receiver operating characteristic curve analysis identified the optimal (balance of sensitivity and specificity) BMI percentile to predict the upper quartile of age-adjusted VAT (measured by magnetic resonance imaging), age-adjusted fat mass (measured by dual-energy X-ray absorptiometry) and elevated cardiometabolic risk (≥ 2 of high glucose, triglycerides and blood pressure, and low high-density lipoprotein cholesterol) for each race-by-sex group.

Results: The optimal CDC BMI percentile to predict those in the top quartile of age-adjusted VAT, age-adjusted fat mass and elevated cardiometabolic risk were the 96th, the 96th and the 94th percentiles, respectively, for the sample as a whole. Sensitivity and specificity was satisfactory (>0.70) for VAT and fat mass. Compared to VAT and fat mass, there was a lower overall accuracy of the optimal percentile in identifying those with elevated cardiometabolic risk.

Conclusions: The present findings support the utility of the 95th CDC BMI percentile as a useful threshold for the prediction of elevated levels of VAT, fat mass and cardiometabolic risk in children and adolescents.

Trial registration: ClinicalTrials.gov NCT01595100.

Figures

Figure 1
Figure 1
ROC curves for CDC BMI percentiles in the prediction of upper quartile of age-adjusted VAT, upper quartile of age-adjusted fat mass and ≥ 2 cardiometabolic risk factors in the whole sample

References

    1. Cornier M-A, Després J-P, Davis N, Grossniklaus DA, Klein S, Lamarche B, et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation. 2011;124:1996–2019.
    1. Freedman DS, Sherry B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics. 2009;124:S23–S34.
    1. Ogden CL, Kuczmarski RJ, Flegal KM, Mei Z, Guo S, Wei R, et al. Centers for Disease Control and Prevention 2000 growth charts for the United States: Improvements to the 1977 National Center for Health Statistics version. Pediatrics. 2002;109:45–60.
    1. Barlow SE. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120:S164–S192.
    1. Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: The Bogalusa heart study. J Pediatr. 2007;150:12–17.
    1. Caprio S, Hyman LD, McCarthy S, Lange R, Bronson M, Tamborlane WV. Fat distribution and cardiovascular risk factors in obese adolescent girls: importance of the intraabdominal fat depot. Am J Clin Nutr. 1996;64:12–17.
    1. Ng VWS, Kong APS, Choi KC, Ozaki R, Wong GWK, So WY, et al. BMI and waist circumference in predicting cardiovascular risk factor clustering in Chinese adolescents. Obesity. 2007;15:494–503.
    1. Ice CL, Cottrell L, Neal WA. Body mass index as a surrogate measure of cardiovascular risk factor clustering in fifth-grade children: Results from the coronary artery risk detection in the Appalachian Communities Project. Int J Pediat Obes. 2009;4:316–324.
    1. Katzmarzyk P, Srinivasan S, Chen W, Malina R, Bouchard C, Berenson G. Body mass index, waist circumference, and clustering of cardiovascular disease risk factors in a biracial sample of children and adolescents. Pediatrics. 2004;114:198–205.
    1. Vieira ACR, Alvarez MM, Kanaan S, Sichieri R, Veiga GV. Body mass index for predicting hyperglycemia and serum lipid changes in Brazilian adolescents. Rev Saúde Pública. 2009;43:44–52.
    1. Sung R, Yu C, Choi K, McManus A, Li A, Xu S, et al. Waist circumference and body mass index in Chinese children: Cutoff values for predicting cardiovascular risk factors. Int JObes. 2007;31:550–558.
    1. Centers for Disease Control and Prevention. [Accessed January 30, 2012];A SAS program for the CDC growth charts. 2011 .
    1. Expert Panel on Integrated Guidelines for Cardiovascular Health Risk Reduction in Children and Adolescents, National Heart Lung and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics. 2011;128:S213–S256.
    1. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39:561–577.
    1. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–1293.
    1. Neovius M, Rasmussen F. Evaluation of BMI-based classification of adolescent overweight and obesity: choice of percentage body fat cutoffs exerts a large influence. The COMPASSstudy. Eur J Clin Nutr. 2008;62:1201–1207.
    1. Marques-Vidal P, Marcelino G, Ravasco P, Camilo ME, Oliveira JM. Body fat levels in children and adolescents: Effects on the prevalence of obesity. Eur E J Clin Nutr Metab. 2008;3:e321–e327.
    1. Duncan JS, Duncan EK, Schofield G. Accuracy of body mass index (BMI) thresholds for predicting excess body fat in girls from five ethnicities. Asia Pac J Clin Nutr. 2009;18:404–411.
    1. Zimmermann MB, Gübeli C, Püntener C, Molinari L. Detection of overweight and obesity in a national sample of 6–12-y-old Swiss children: accuracy and validity of reference values for body mass index from the US Centers for Disease Control and Prevention and the International Obesity Task Force. Am J Clin Nutr. 2004;79:838–843.
    1. Reilly JJ, Dorosty AR, Emmett PM. Identification of the obese child: adequacy of the body mass index for clinical practice and epidemiology. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. Int J Obes Relat Metab Disord. 2000;24:1623–1627.
    1. Reilly JJ, Dorosty AR, Ghomizadeh NM, Sherriff A, Wells JC, Ness AR. Comparison of waist circumference percentiles versus body mass index percentiles for diagnosis of obesity in a large cohort of children. Int J Pediat Obes. 2010;5:151–156.
    1. Lazarus R, Baur L, Webb K, Blyth F. Body mass index in screening for adiposity in children and adolescents: systematic evaluation using receiver operating characteristic curves. Am J Clin Nutr. 1996;63:500–506.
    1. Sardinha LB, Going SB, Teixeira PJ, Lohman TG. Receiver operating characteristic analysis of body mass index, triceps skinfold thickness, and arm girth for obesity screening in children and adolescents. Am J Clin Nutr. 1999;70:1090–1095.
    1. Williams DP, Going SB, Lohman TG, Harsha DW, Srinivasan SR, Webber LS, et al. Body fatness and risk for elevated blood pressure, total cholesterol, and serum lipoprotein ratios in children and adolescents. Am J Public Health. 1992;82:358–363.
    1. McCarthy HD, Cole TJ, Fry T, Jebb SA, Prentice AM. Body fat reference curves for children. Int J Obes. 2006;30:598–602.
    1. Laurson KR, Eisenmann JC, Welk GJ. Body fat percentile curves for U.S. children and adolescents. Am J Prev Med. 2011;41:S87–S92.
    1. Barreira TV, Staiano AE, Harrington DM, Heymsfield SB, Smith SR, Bouchard C, et al. Anthropometric correlates of total body fat, abdominal adiposity, and cardiovascular disease risk factors in a biracial sample of men and women. Mayo Clin Proc. 2012;87:452–460.
    1. Goran MI, Gower BA, Treuth M, Nagy TR. Prediction of intra-abdominal and subcutaneous abdominal adipose tissue in healthy pre-pubertal children. Int J Obes Relat Metab Disord. 1998;22:549–558.
    1. Liem ET, De Lucia Rolfe E, L’Abée C, Sauer PJJ, Ong KK, Stolk RP. Measuring abdominal adiposity in 6 to 7-year-old children. Eur J Clin Nutr. 2009;63:835–841.
    1. Benfield LL, Fox KR, Peters DM, Blake H, Rogers I, Grant C, et al. Magnetic resonance imaging of abdominal adiposity in a large cohort of British children. Int J Obes Relat Metab Disord. 2008;32:91–99.
    1. Neovius M, Rössner SM, Vågstrand K, von Hausswolff-Juhlin YL, Hoffstedt J, Ekelund U. Adiposity measures as indicators of metabolic risk factors in adolescents. Obes Facts. 2009;2:294–301.
    1. Freedman DS, Wang J, Maynard LM, Thornton JC, Mei Z, Pierson RN, et al. Relation of BMI to fat and fat-free mass among children and adolescents. Int J Obes Relat Metab Disord. 2005;29:1–8.
    1. Neovius MG, Linné YM, Barkeling BS, Rossner SO. Sensitivity and specificity of classification systems for fatness in adolescents. Am J Clin Nutr. 2004;80:597–603.
    1. Guo SS, Roche AF, Chumlea WC, Gardner JD, Siervogel RM. The predictive value of childhood body mass index values for overweight at age 35 y. Am J Clin Nutr. 1994;59:810–819.
    1. Guo SS, Wu W, Chumlea WC, Roche AF. Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am J Clin Nutr. 2002;76:653–658.
    1. Sun SS, Liang R, Huang TTK, Daniels SR, Arslanian S, Liu K, et al. Childhood obesity predicts adult metabolic syndrome: The Fels longitudinal study. J Pediatr. 2008;152:191–200.
    1. Webber LS, Osganian V, Luepker RV, Feldman HA, Stone EJ, Elder JP, et al. Cardiovascular risk factors among third grade children in four regions of the United States: The CATCH study. Am J Epidemiol. 1995;141:428–439.
    1. Bacha F, Saad R, Gungor N, Janosky J, Arslanian SA. Obesity, regional fat distribution, and syndrome X in obese black versus white adolescents: Race differential in diabetogenic and atherogenic risk factors. J Clin Endocr Metab. 2003;88:2534–2540.
    1. Dugas LR, Cao G, Luke AH, Durazo-Arvizu RA. Adiposity Is not equalin a multi-race/ethnic adolescent population: NHANES 1999–2004. Obesity. 2011;19:2099–2101.
    1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among us children and adolescents, 1999–2010. JAMA. 2012;307:483–490.

Source: PubMed

3
Abonnieren