Cardiovascular control during exercise in type 2 diabetes mellitus

Simon Green, Mikel Egaña, J Chris Baldi, Regis Lamberts, Judith G Regensteiner, Simon Green, Mikel Egaña, J Chris Baldi, Regis Lamberts, Judith G Regensteiner

Abstract

Controlled studies of male and female subjects with type 2 diabetes mellitus (DM) of short duration (~3-5 years) show that DM reduces peak VO2 (L·min(-1) and mL·kg(-1)·min(-1)) by an average of 12-15% and induces a greater slowing of the dynamic response of pulmonary VO2 during submaximal exercise. These effects occur in individuals less than 60 years of age but are reduced or absent in older males and are consistently associated with significant increases in the exercise pressor response despite normal resting blood pressure. This exaggerated pressor response, evidence of exertional hypertension in DM, is manifest during moderate submaximal exercise and coincides with a more constrained vasodilation in contracting muscles. Maximum vasodilation during contractions involving single muscle groups is reduced by DM, and the dynamic response of vasodilation during submaximal contractions is slowed. Such vascular constraint most likely contributes to exertional hypertension, impairs dynamic and peak VO2 responses, and reduces exercise tolerance. There is a need to establish the effect of DM on dynamic aspects of vascular control in skeletal muscle during whole-body exercise and to clarify contributions of altered cardiovascular control and increased arterial stiffness to exertional hypertension.

Figures

Figure 1
Figure 1
A simple conceptual model of cardiovascular control during exercise with links to oxygen uptake, fatigue, and exercise tolerance. Definitions of terms and description of most interrelationships between variables are described in the main text. The length of bidirectional arrows indicates the relative ranges of variables: the regulated variable, mean arterial pressure, varies through a smaller range than controlled variables such as cardiac output and systemic arterial resistance. Dashed bidirectional arrows indicate interactions between two variables. Arterial stiffness is not considered to be a part of a system of cardiovascular regulation and control, but it is influenced by this system (systemic arterial resistance) and also exerts an independent influence on mean arterial pressure.
Figure 2
Figure 2
(a) Effect of type 2 diabetes mellitus (DM) on the dynamic response of pulmonary oxygen uptake during submaximal exercise below the ventilatory threshold. DM blunts the cardiodynamic phase (“1”) and slows the rise (increases the time constant) of the primary phase (“2”). Note that a third phase (“slow component”) is observed at higher intensities and can also be observed in a minority of subjects below the ventilatory threshold, but the effect of DM on this phase is not clear. (b) Effect of DM on the dynamic response of limb blood flow and vascular conductance during submaximal contractions (calf muscle). DM blunts the fast growth phase (“1”), has minimal effect on the rapid decay phase (“2”), and slows the rise (increases the time constant) of the slow growth phase (“3”). Note that a fourth phase, a slow decay, is observed in some subjects but it is not shown in this figure and the effect of DM on it is not clear.

References

    1. Regensteiner J. G. Type 2 diabetes mellitus and cardiovascular exercise performance. Reviews in Endocrine and Metabolic Disorders. 2004;5(3):269–276. doi: 10.1023/b:remd.0000032416.13070.01.
    1. Reusch J. E. B., Bridenstine M., Regensteiner J. G. Type 2 diabetes mellitus and exercise impairment. Reviews in Endocrine and Metabolic Disorders. 2013;14(1):77–86. doi: 10.1007/s11154-012-9234-4.
    1. Levick J. R. An Introduction to Cardiovascular Physiology. An Introduction to Cardiovascular Physiology. 4th. London, UK: Arnold Publishers; 2003.
    1. Berne R. M., Levy M. N. Cardiovascular Physiology. 8th. St. Louis, Mo, USA: Mosby; 2001.
    1. Tyberg J. V. How changes in venous capacitance modulate cardiac output. Pflügers Archiv. 2002;445(1):10–17. doi: 10.1007/s00424-002-0922-x.
    1. Rowell L. B. Human Cardiovascular Control. New York, NY, USA: Oxford University Press; 1993.
    1. Sprangers R. L. H., Wesseling K. H., Imholz A. L. T., Impholz B. P. M., Wieling W. Initial blood pressure fall on stand up and exercise explained by changes in total peripheral resistance. Journal of Applied Physiology. 1991;70(2):523–530. doi: 10.1063/1.350267.
    1. Wieling W., Harms M. P. M., Ten Harkel A. D. J., Van Lieshout J. J., Sprangers R. L. H. Circulatory response evoked by a 3 s bout of dynamic leg exercise in humans. The Journal of Physiology. 1996;494(2):601–611. doi: 10.1113/jphysiol.1996.sp021518.
    1. Dempsey J. A., Amann M., Romer L. M., Miller J. D. Respiratory system determinants of peripheral fatigue and endurance performance. Medicine and Science in Sports and Exercise. 2008;40(3):457–461. doi: 10.1249/MSS.0b013e31815f8957.
    1. González-Alonso J., Calbet J. A. L., Nielsen B. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. The Journal of Physiology. 1998;513(3):895–905. doi: 10.1111/j.1469-7793.1998.895ba.x.
    1. O'Connor E., Green S., Kiely C., O'Shea D., Egaña M. Differential effects of age and type 2 diabetes on dynamic versus peak response of pulmonary oxygen uptake during exercise. Journal of Applied Physiology. 2015 doi: 10.1152/japplphysiol.01040.2014.
    1. Regensteiner J. G., Bauer T. A., Reusch J. E. B., et al. Cardiac dysfunction during exercise in uncomplicated type 2 diabetes. Medicine & Science in Sports & Exercise. 2009;41(5):977–984. doi: 10.1249/mss.0b013e3181942051.
    1. Scott J. A., Coombes J. S., Prins J. B., Leano R. L., Marwick T. H., Sharman J. E. Patients with type 2 diabetes have exaggerated brachial and central exercise blood pressure: relation to left ventricular relative wall thickness. American Journal of Hypertension. 2008;21(6):715–721. doi: 10.1038/ajh.2008.166.
    1. Pinto T. E., Gusso S., Hofman P. L., et al. Systolic and diastolic abnormalities reduce the cardiac response to exercise in adolescents with type 2 diabetes. Diabetes Care. 2014;37(5):1439–1446. doi: 10.2337/dc13-2031.
    1. Baldi J. C., Aoina J. L., Oxenham H. C., Bagg W., Doughty R. N. Reduced exercise arteriovenous O2 difference in Type 2 diabetes. Journal of Applied Physiology. 2003;94(3):1033–1038. doi: 10.1152/japplphysiol.00879.2002.
    1. Roy T. M., Petterson H. R., Snider H. L., et al. Autonomic influence on cardiovascular performance in diabetic subjects. The American Journal of Medicine. 1989;87(4):382–388. doi: 10.1016/s0002-9343(89)80818-6.
    1. Regensteiner J. G., Bauer T. A., Huebschmann A. G., et al. Sex differences in the effects of type 2 diabetes on exercise performance. Medicine & Science in Sports & Exercise. 2015;47(1):58–65. doi: 10.1249/mss.0000000000000371.
    1. Regensteiner J. G., Bauer T. A., Reusch J. E. B., et al. Abnormal oxygen uptake kinetic responses in women with type II diabetes mellitus. Journal of Applied Physiology. 1998;85(1):310–317.
    1. MacAnaney O., Malone J., Warmington S., O’Shea D., Green S., Egana M. Cardiac output responses are not related to the slowed oxygen uptake kinetics in type 2 diabetes. Medicine and Science in Sports and Exercise. 2011;43(6):935–942.
    1. O’Connor E., Kiely C., O’Shea D., Green S., Egana M. Similar level of impairment in exercise tolerance and VO2 kinetics in middle aged men and women. American Journal of Physiology—Regulatory and Integrative Physiology. 2012;303:R70–R76.
    1. Lalande S., Gusso S., Hofman P. L., Baldi J. C. Reduced leg blood flow during submaximal exercise in type 2 diabetes. Medicine & Science in Sports & Exercise. 2008;40(4):612–617. doi: 10.1249/mss.0b013e318161aa99.
    1. Regensteiner J. G., Sippel J., McFarling E. T., Wolfel E. E., Hiatt W. R. Effects of non-insulin dependent diabetes on oxygen consumption during treadmill exercise. Medicine & Science in Sports & Exercise. 1995;27(5):661–667.
    1. Wilkerson D. P., Poole D. C., Jones A. M., et al. Older type 2 diabetic males do not exhibit abnormal pulmonary oxygen uptake and muscle oxygen utilization dynamics during submaximal cycling exercise. American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 2011;300(3):R685–R692. doi: 10.1152/ajpregu.00479.2010.
    1. Brandenburg S. L., Reusch J. E. B., Bauer T. A., Jeffers B. W., Hiatt W. R., Regensteiner J. G. Effects of exercise training on oxygen uptake kinetic responses in women with type 2 diabetes. Diabetes Care. 1999;22(10):1640–1646. doi: 10.2337/diacare.22.10.1640.
    1. Gusso S., Hofman P., Lalande S., Cutfield W., Robinson E., Baldi J. C. Impaired stroke volume and aerobic capacity in female adolescents with type 1 and type 2 diabetes mellitus. Diabetologia. 2008;51(7):1317–1320. doi: 10.1007/s00125-008-1012-1.
    1. Baldi J. C., Aoina J. L., Whalley G. A., et al. The effect of type 2 diabetes on diastolic function. Medicine and Science in Sports and Exercise. 2006;38(8):1384–1388. doi: 10.1249/01.mss.0000228954.90591.95.
    1. Lalande S., Hofman P. L., Baldi J. C. Effect of reduced total blood volume on left ventricular volumes and kinetics in type 2 diabetes. Acta Physiologica. 2010;199(1):23–30. doi: 10.1111/j.1748-1716.2010.02081.x.
    1. Kiely C., O’Connor E., O’Shea D., Green S., Egana M. Hemodynamic responses during graded and constant-load plantar flexion exercise in middle-aged men and women with type 2 diabetes. Journal of Applied Physiology. 2014;117(7):755–764. doi: 10.1152/japplphysiol.00555.2014.
    1. Kingwell B. A., Formosa M., Muhlmann M., Bradley S. J., McConell G. K. Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation. Diabetes Care. 2003;26(3):899–904. doi: 10.2337/diacare.26.3.899.
    1. Kingwell B. A., Formosa M., Muhlmann M., Bradley S. J., McConell G. K. Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects. Diabetes. 2002;51(8):2572–2580. doi: 10.2337/diabetes.51.8.2572.
    1. MacAnaney O., Reilly H., O’Shea D., Egaña M., Green S. Effect of type 2 diabetes on the dynamic response characteristics of leg vascular conductance during exercise. Diabetes and Vascular Disease Research. 2011;8(1):12–21. doi: 10.1177/1479164110389625.
    1. Martin I. K., Katz A., Wahren J. Splanchnic and muscle metabolism during exercise in NIDDM patients. The American Journal of Physiology—Endocrinology and Metabolism. 1995;269(3):E583–E590.
    1. Egaña M., Green S. Effect of body tilt on calf muscle performance and blood flow in humans. Journal of Applied Physiology. 2005;98(6):2249–2258. doi: 10.1152/japplphysiol.01235.2004.
    1. Green S., Thorp R., Reeder E. J., Donnelly J., Fordy G. Venous occlusion plethysmography versus doppler ultrasound in the assessment of leg blood flow during calf exercise. European Journal of Applied Physiology. 2011;111(8):1889–1900. doi: 10.1007/s00421-010-1819-6.
    1. Reeder E. J., Green S. Dynamic response characteristics of hyperaemia in the human calf muscle: effect of exercise intensity and relation to electromyographic activity. European Journal of Applied Physiology. 2012;112(12):3997–4013. doi: 10.1007/s00421-012-2362-4.
    1. Grassi B., Poole D. C., Richardson R. S., Knight D. R., Erickson B. K., Wagner P. D. Muscle O2 uptake kinetics in humans: implications for metabolic control. Journal of Applied Physiology. 1996;80(3):988–998.
    1. Saunders N. R., Pyke K. E., Tschakovsky M. E. Dynamic response characteristics of local muscle blood flow regulatory mechanisms in human forearm exercise. Journal of Applied Physiology. 2005;98(4):1286–1296. doi: 10.1152/japplphysiol.01118.2004.
    1. Donnelly J., Green S. Effect of hypoxia on the dynamic response of hyperaemia in the contracting human calf muscle. Experimental Physiology. 2013;98(1):81–93. doi: 10.1113/expphysiol.2012.066258.
    1. Bakker W., Eringa E. C., Sipkema P., Van Hinsbergh V. W. M. Endothelial dysfunction and diabetes: Roles of hyperglycemia, impaired insulin signaling and obesity. Cell and Tissue Research. 2009;335(1):165–189. doi: 10.1007/s00441-008-0685-6.
    1. Barrett E. J., Rattigan S. Muscle perfusion: its measurement and role in metabolic regulation. Diabetes. 2012;61(11):2661–2668. doi: 10.2337/db12-0271.
    1. Delbin M. A., Trask A. J. The diabetic vasculature: physiological mechanisms of dysfunction and influence of aerobic exercise training in animal models. Life Sciences. 2014;102(1):1–9. doi: 10.1016/j.lfs.2014.02.021.
    1. Avogaro A., Albiero M., Menegazzo L., de Kreutzenberg S., Fadini G. P. Endothelial dysfunction in diabetes: the role of reparatory mechanisms. Diabetes Care. 2011;34(supplement 2):S285–S290. doi: 10.2337/dc11-s239.
    1. McVeigh G. E., Brennan G. M., Johnston G. D., et al. Impaired endothelium-dependent and independent vasodilation in patients with Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(8):771–776.
    1. Lesniewski L. A., Donato A. J., Behnke B. J., et al. Decreased NO signaling leads to enhanced vasoconstrictor responsiveness in skeletal muscle arterioles of the ZDF rat prior to overt diabetes and hypertension. American Journal of Physiology: Heart and Circulatory Physiology. 2008;294(4):H1840–H1850. doi: 10.1152/ajpheart.00692.2007.
    1. Novielli N. M., Al-Khazraji B. K., Medeiros P. J., Goldman D., Jackson D. N. Pre-diabetes augments neuropeptide Y(1)- and alpha(1)-receptor control of basal hindlimb vascular tone in young ZDF rats. PLoS ONE. 2012;7(10) doi: 10.1371/journal.pone.0046659.e46659
    1. Novielli N. M., Jackson D. N. Contraction-evoked vasodilation and functional hyperaemia are compromised in branching skeletal muscle arterioles of young pre-diabetic mice. Acta Physiologica. 2014;211(2):371–384. doi: 10.1111/apha.12297.
    1. Haug S. J., Segal S. S. Sympathetic neural inhibition of conducted vasodilatation along hamster feed arteries: complementary effects of α 1- and α 2-adrenoreceptor activation. The Journal of Physiology. 2005;563(2):541–555. doi: 10.1113/jphysiol.2004.072900.
    1. Van Teeffelen J. W. G. E., Segal S. S. Interaction between sympathetic nerve activation and muscle fibre contraction in resistance vessels of hamster retractor muscle. The Journal of Physiology. 2003;550(2):563–574. doi: 10.1113/jphysiol.2003.038984.
    1. Sexton W. L. Skeletal muscle vascular transport capacity in diabetic rats. Diabetes. 1994;43(2):225–231. doi: 10.2337/diab.43.2.225.
    1. Poole D. C. Role of exercising muscle in slow component of VO2 . Medicine and Science in Sports and Exercise. 1994;26(11):1335–1340.
    1. Rossiter H. B., Ward S. A., Doyle V. L., Howe F. A., Griffiths J. R., Whipp B. J. Inferences from pulmonary O2 uptake with respect to intramuscular [phosphocreatine] kinetics during moderate exercise in humans. The Journal of Physiology. 1999;518(3):921–932. doi: 10.1111/j.1469-7793.1999.0921p.x.
    1. Behnke B. J., Kindig C. A., McDonough P., Poole D. C., Sexton W. L. Dynamics of microvascular oxygen pressure during rest-contraction transition in skeletal muscle of diabetic rats. American Journal of Physiology—Heart and Circulatory Physiology. 2002;283(3):H926–H932. doi: 10.1152/ajpheart.00059.2002.
    1. Fitzpatrick R., Taylor J. L., McCloskey D. I. Effects of arterial perfusion pressure on force production in working human hand muscles. Journal of Physiology. 1996;495(3):885–891. doi: 10.1113/jphysiol.1996.sp021640.
    1. Hirvonen L., Sonnenschein R. R. Relation between blood flow and contraction force in active skeletal muscle. Circulation Research. 1962;10:94–104. doi: 10.1161/01.res.10.1.94.
    1. Hobbs S. F., McCloskey D. I. Effects of blood pressure on force production in cat and human muscle. Journal of Applied Physiology. 1987;63(2):834–839.
    1. Egaña M., Green S. Intensity-dependent effect of body tilt angle on calf muscle fatigue in humans. European Journal of Applied Physiology. 2007;99(1):1–9. doi: 10.1007/s00421-006-0308-4.
    1. Macdonald M. J., Shoemaker J. K., Tschakovsky M. E., Hughson R. L. Alveolar oxygen uptake and femoral artery blood flow dynamics in upright and supine leg exercise in humans. Journal of Applied Physiology. 1998;85(5):1622–1628.
    1. Egaña M., Ryan K., Warmington S. A., Green S. Effect of body tilt angle on fatigue and EMG activities in lower limbs during cycling. European Journal of Applied Physiology. 2010;108(4):649–656. doi: 10.1007/s00421-009-1254-8.
    1. Egaña M., Green S., Garrigan E. J., Warmington S. Effect of posture on high-intensity constant-load cycling performance in men and women. European Journal of Applied Physiology. 2006;96(1):1–9. doi: 10.1007/s00421-005-0057-9.
    1. Egaña M., Smith S., Green S. Revisiting the effect of posture on high-intensity constant-load cycling performance in men and women. European Journal of Applied Physiology. 2007;99(5):495–501. doi: 10.1007/s00421-006-0365-8.
    1. Limberg J. K., Morgan B. J., Sebranek J. J., Proctor L. T., Eldridge M. W., Schrage W. G. Neural control of blood flow during exercise in human metabolic syndrome. Experimental Physiology. 2014;99(9):1191–1202. doi: 10.1113/expphysiol.2014.078048.
    1. Green S., Cameron E. Interactive effect of acute sympathetic activation and exercise intensity on the dynamic response characteristics of vascular conductance in the human calf muscle. European Journal of Applied Physiology. 2014 doi: 10.1007/s00421-014-3069-5.

Source: PubMed

3
Abonnieren