Comparison of visual outcomes of a diffractive trifocal intraocular lens and a refractive bifocal intraocular lens in eyes with axial myopia: a prospective cohort study

Tong Sun, Yiyun Liu, Yufei Gao, Chuhao Tang, Qianqian Lan, Tingting Yang, Xiaorui Zhao, Hong Qi, Tong Sun, Yiyun Liu, Yufei Gao, Chuhao Tang, Qianqian Lan, Tingting Yang, Xiaorui Zhao, Hong Qi

Abstract

Background: To assess and compare the efficacy, safety, accuracy, predictability and visual quality of a diffractive trifocal intraocular lens (IOL) and a refractive rotationally asymmetric bifocal IOL in eyes with axial myopia.

Methods: This prospective cohort study enrolled patients with implantation of the diffractive trifocal IOL or the refractive bifocal IOL. Eyes were divided into four groups according to the IOL implanted and axial length. Manifest refraction, uncorrected and corrected visual acuity at far, intermediate and near distances, prediction error of spherical equivalent (SE), contrast sensitivity and aberrations were evaluated three months after surgery.

Results: In total, 80 eyes of 80 patients were included: 20 eyes in each group. Three months postoperatively, the corrected distance visual acuity of two trifocal groups were significantly better than the axial myopia bifocal group (P = 0.007 and 0.043). There was no significant difference of postoperative SE (P = 0.478), but the SE predictability of the trifocal IOL was better, whether in axial myopia groups (P = 0.015) or in control groups (P = 0.027). The contrast sensitivity was similar among four groups. The total aberration, higher order aberration and trefoil aberration of bifocal groups were significantly higher (all P < 0.001).

Conclusions: The diffractive trifocal IOL and the refractive bifocal IOL both provided good efficacy, accuracy, predictability and safety for eyes with axial myopia. By contrast, the trifocal IOL had a better performance in corrected distance visual acuity and visual quality.

Trial registration: The study was retrospectively registered and posted on clinicaltrials.gov at 12/02/2020 (NCT04265846).

Keywords: Axial length; Cataract; Multifocal intraocular lens; Myopia; Visual quality.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
The distribution of cumulative visual acuity of four groups three months after implantation. (CDVA = corrected distance visual acuity; CIVA = corrected intermediate visual acuity; CNVA = corrected near visual acuity; logMAR = logarithm of the minimum angle of resolution; UDVA = uncorrected distance visual acuity; UIVA = uncorrected intermediate visual acuity; UNVA = uncorrected near visual acuity)
Fig. 2
Fig. 2
The SE refractive accuracy of four groups three months after implantation. (D = dioptre; SE = spherical equivalent)
Fig. 3
Fig. 3
The PE of postoperative SE of four groups three months after implantation. (D = dioptre; PE = prediction error; SE = spherical equivalent)
Fig. 4
Fig. 4
Contrast sensitivity curves of four groups three months after implantation. (cpd = cycles per degree; *Statistically significant difference [P < 0.05])

References

    1. Schallhorn JM, Pantanelli SM, Lin CC, Al-Mohtaseb ZN, Steigleman WA, 3rd, Santhiago MR, Olsen TW, Kim SJ, Waite AM, Rose-Nussbaumer JR. Multifocal and accommodating intraocular lenses for the treatment of presbyopia: a report by the American academy of ophthalmology. Ophthalmology. 2021;128(10):1469–1482. doi: 10.1016/j.ophtha.2021.03.013.
    1. Rampat R, Gatinel D. Multifocal and extended depth-of-focus intraocular lenses in 2020. Ophthalmology. 2021;128(11):e164–85.
    1. Ganesh S, Brar S, Pawar A. Long-term visual outcomes and patient satisfaction following bilateral implantation of trifocal intraocular lenses. Clin Ophthalmol. 2017;11:1453–1459. doi: 10.2147/OPTH.S125921.
    1. Almulhim AK, Alarfaj KM, Altaisan AA, Alromaih AZ, Aldawod RA. Visual outcomes and patient satisfaction after bilateral implantation of a new trifocal diffractive intraocular lens. Saudi J Ophthalmol. 2018;32(4):310–317. doi: 10.1016/j.sjopt.2018.08.004.
    1. Mencucci R, Favuzza E, Caporossi O, Savastano A, Rizzo S. Comparative analysis of visual outcomes, reading skills, contrast sensitivity, and patient satisfaction with two models of trifocal diffractive intraocular lenses and an extended range of vision intraocular lens. Graefes Arch Clin Exp Ophthalmol. 2018;256(10):1913–1922. doi: 10.1007/s00417-018-4052-3.
    1. Webers VSC, Bauer NJC, Saelens IEY, Creten OJM, Berendschot T, van den Biggelaar F, Nuijts R. Comparison of the intermediate distance of a trifocal IOL with an extended depth-of-focus IOL: results of a prospective randomized trial. J Cataract Refract Surg. 2020;46(2):193–203. doi: 10.1097/j.jcrs.0000000000000012.
    1. Venter JA, Barclay D, Pelouskova M, Bull CE. Initial experience with a new refractive rotationally asymmetric multifocal intraocular lens. J Refract Surg. 2014;30(11):770–776. doi: 10.3928/1081597X-20141021-09.
    1. McNeely RN, Pazo E, Spence A, Richoz O, Nesbit MA, Moore TCB, Moore JE. Visual outcomes and patient satisfaction 3 and 12 months after implantation of a refractive rotationally asymmetric multifocal intraocular lens. J Cataract Refract Surg. 2017;43(5):633–638. doi: 10.1016/j.jcrs.2017.01.025.
    1. McNeely RN, Pazo E, Spence A, Richoz O, Nesbit MA, Moore TCB, Moore JE. Visual quality and performance comparison between 2 refractive rotationally asymmetric multifocal intraocular lenses. J Cataract Refract Surg. 2017;43(8):1020–1026. doi: 10.1016/j.jcrs.2017.05.039.
    1. Hashemi H, Fotouhi A, Yekta A, Pakzad R, Ostadimoghaddam H, Khabazkhoob M. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. J Curr Ophthalmol. 2018;30(1):3–22. doi: 10.1016/j.joco.2017.08.009.
    1. Wu LJ, You QS, Duan JL, Luo YX, Liu LJ, Li X, Gao Q, Zhu HP, He Y, Xu L, et al. Prevalence and associated factors of myopia in high-school students in Beijing. PLoS One. 2015;10(3):e0120764. doi: 10.1371/journal.pone.0120764.
    1. He M, Huang W, Zheng Y, Huang L, Ellwein LB. Refractive error and visual impairment in school children in rural southern China. Ophthalmology. 2007;114(2):374–382. doi: 10.1016/j.ophtha.2006.08.020.
    1. Pan CW, Boey PY, Cheng CY, Saw SM, Tay WT, Wang JJ, Tan AG, Mitchell P, Wong TY. Myopia, axial length, and age-related cataract: the Singapore Malay eye study. Invest Ophthalmol Vis Sci. 2013;54(7):4498–4502. doi: 10.1167/iovs.13-12271.
    1. Kanthan GL, Mitchell P, Rochtchina E, Cumming RG, Wang JJ. Myopia and the long-term incidence of cataract and cataract surgery: the Blue Mountains Eye Study. Clin Exp Ophthalmol. 2014;42(4):347–353. doi: 10.1111/ceo.12206.
    1. Chong EW, Mehta JS. High myopia and cataract surgery. Curr Opin Ophthalmol. 2016;27(1):45–50. doi: 10.1097/ICU.0000000000000217.
    1. Abulafia A, Barrett GD, Rotenberg M, Kleinmann G, Levy A, Reitblat O, Koch DD, Wang L, Assia EI. Intraocular lens power calculation for eyes with an axial length greater than 26.0 mm: comparison of formulas and methods. J Cataract Refract Surg. 2015;41(3):548–556. doi: 10.1016/j.jcrs.2014.06.033.
    1. Dalto RF, Ferreira MA, Queiroz W, Coelho RP, Paula JS, Messias A. Haigis and SRKT formulae accuracy for intentional myopic overcorrection. Int Ophthalmol. 2018;38(4):1459–1463. doi: 10.1007/s10792-017-0607-2.
    1. Melles RB, Holladay JT, Chang WJ. Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology. 2018;125(2):169–178. doi: 10.1016/j.ophtha.2017.08.027.
    1. Steinwender G, Schwarz L, Bohm M, Slavik-Lencova A, Hemkeppler E, Shajari M, Kohnen T. Visual results after implantation of a trifocal intraocular lens in high myopes. J Cataract Refract Surg. 2018;44(6):680–685. doi: 10.1016/j.jcrs.2018.04.037.
    1. Chen SY, Xie C, Wang Y, Shen Y. Full-vision maintenance in extra-high myopia from implantable collamer lens to trifocal intraocular lens implantation. Int J Ophthalmol. 2018;11(7):1239–1242.
    1. Sezgin Asena B. Visual and refractive outcomes, spectacle independence, and visual disturbances after cataract or refractive lens exchange surgery: Comparison of 2 trifocal intraocular lenses. J Cataract Refract Surg. 2019;45(11):1539–1546. doi: 10.1016/j.jcrs.2019.06.005.
    1. Vinciguerra P, Holladay JT, Pagano L, Gramigna M, Borgia A, Lanni V, Legrottaglie E, Vinciguerra R. Comparison of visual performance and satisfaction with a bilateral emmetropic vs a bilateral mild myopic target using a spherical monofocal intraocular lens. J Cataract Refract Surg. 2020;46(6):839–843. doi: 10.1097/j.jcrs.0000000000000183.
    1. Tideman JWL, Polling JR, Vingerling JR, Jaddoe VWV, Williams C, Guggenheim JA, Klaver CCW. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmol. 2018;96(3):301–309. doi: 10.1111/aos.13603.
    1. Tekce A, Gulmez M. Comparison of visual and refractive outcomes of diffractive bifocal toric and trifocal toric intraocular lenses 12 months after implantation in patients with moderate to high myopia. Int Ophthalmol. 2021;41(9):3029–3040. doi: 10.1007/s10792-021-01865-3.
    1. Lee J, Ahn EJ, Kim YW, Ha A, Kim YK, Jeoung JW, Park KH. Impact of myopia on the association of long-term intraocular pressure fluctuation with the rate of progression in normal-tension glaucoma. Br J Ophthalmol. 2021;105(5):653–660. doi: 10.1136/bjophthalmol-2019-315441.
    1. Javaloy J, Rivera E, Montalban R, Beltran J, Munoz G, Rohrweck S. Diffractive trifocal pseudophakic intraocular lenses in high myopic eyes: 2-year assessment after implantation. Graefes Arch Clin Exp Ophthalmol. 2019;257(6):1331–1339. doi: 10.1007/s00417-019-04302-5.
    1. Garcia-Perez JL, Gros-Otero J, Sanchez-Ramos C, Blazquez V, Contreras I. Short term visual outcomes of a new trifocal intraocular lens. BMC Ophthalmol. 2017;17(1):72. doi: 10.1186/s12886-017-0462-y.
    1. Wang X, Tu H, Wang Y. Comparative analysis of visual performance and optical quality with a rotationally asymmetric multifocal intraocular lens and an apodized diffractive multifocal intraocular lens. J Ophthalmol. 2020;2020:7923045. doi: 10.1155/2020/7923045.
    1. Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations. Eye (Lond) 2002;16(5):552–556. doi: 10.1038/sj.eye.6700157.
    1. Bang S, Edell E, Yu Q, Pratzer K, Stark W. Accuracy of intraocular lens calculations using the IOLMaster in eyes with long axial length and a comparison of various formulas. Ophthalmology. 2011;118(3):503–506. doi: 10.1016/j.ophtha.2010.07.008.
    1. Wang L, Shirayama M, Ma XJ, Kohnen T, Koch DD. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J Cataract Refract Surg. 2011;37(11):2018–2027. doi: 10.1016/j.jcrs.2011.05.042.
    1. Cheng H, Liu L, Sun A, Wu M. Accuracy of modified axial length adjustment for intraocular lens power calculation in Chinese axial myopic eyes. Curr Eye Res. 2020;45(7):827–33.
    1. Leung CK, Palmiero PM, Weinreb RN, Li H, Sbeity Z, Dorairaj S, Leung D, Liu S, Liebmann JM, Congdon N, et al. Comparisons of anterior segment biometry between Chinese and Caucasians using anterior segment optical coherence tomography. Br J Ophthalmol. 2010;94(9):1184–1189. doi: 10.1136/bjo.2009.167296.
    1. Mester U, Dillinger P, Anterist N. Impact of a modified optic design on visual function: clinical comparative study. J Cataract Refract Surg. 2003;29(4):652–660. doi: 10.1016/S0886-3350(02)01983-1.
    1. Montes-Mico R, Lopez-Gil N, Perez-Vives C, Bonaque S, Ferrer-Blasco T. In vitro optical performance of nonrotational symmetric and refractive-diffractive aspheric multifocal intraocular lenses: impact of tilt and decentration. J Cataract Refract Surg. 2012;38(9):1657–1663. doi: 10.1016/j.jcrs.2012.03.040.
    1. Lawu T, Mukai K, Matsushima H, Senoo T. Effects of decentration and tilt on the optical performance of 6 aspheric intraocular lens designs in a model eye. J Cataract Refract Surg. 2019;45(5):662–668. doi: 10.1016/j.jcrs.2018.10.049.
    1. Nanavaty MA, Spalton DJ, Marshall J. Effect of intraocular lens asphericity on vertical coma aberration. J Cataract Refract Surg. 2010;36(2):215–221. doi: 10.1016/j.jcrs.2009.08.024.
    1. Perez-Merino P, Marcos S. Effect of intraocular lens decentration on image quality tested in a custom model eye. J Cataract Refract Surg. 2018;44(7):889–896. doi: 10.1016/j.jcrs.2018.02.025.
    1. Zhu X, He W, Zhang Y, Chen M, Du Y, Lu Y. Inferior Decentration of Multifocal Intraocular Lenses in Myopic Eyes. Am J Ophthalmol. 2018;188:1–8. doi: 10.1016/j.ajo.2018.01.007.
    1. Zhu X, He W, Zhang K, Lu Y. Factors influencing 1-year rotational stability of AcrySof Toric intraocular lenses. Br J Ophthalmol. 2016;100(2):263–268. doi: 10.1136/bjophthalmol-2015-306656.
    1. Giers BC, Khoramnia R, Weber LF, Tandogan T, Auffarth GU. Rotation and decentration of an undersized plate-haptic trifocal toric intraocular lens in an eye with moderate myopia. J Cataract Refract Surg. 2016;42(3):489–493. doi: 10.1016/j.jcrs.2016.02.001.
    1. Pazo EE, Richoz O, McNeely R, Millar ZA, Moore TC, Moore JE. Optimized visual outcome after asymmetrical multifocal IOL rotation. J Refract Surg. 2016;32(7):494–496. doi: 10.3928/1081597X-20160503-01.
    1. Liu Y, Gao Y, Liu R, Hu C, Ma B, Miao J, Luo J, Qi H. Influence of angle kappa-customized implantation of rotationally asymmetric multifocal intraocular lens on visual quality and patient satisfaction. Acta Ophthalmol. 2020;98(6):e734–e742. doi: 10.1111/aos.14356.
    1. Hopf S, Korb C, Nickels S, Schulz A, Münzel T, Wild PS, Michal M, Schmidtmann I, Lackner KJ, Pfeiffer N, et al. Prevalence of myopic maculopathy in the German population: results from the Gutenberg health study. Br J Ophthalmol. 2020;104(9):1254–9.

Source: PubMed

3
Abonnieren