An automated structured education intervention based on a smartphone app in Chinese patients with type 1 diabetes: a protocol for a single-blinded randomized controlled trial

Fansu Huang, Xinyin Wu, Yuting Xie, Fang Liu, Juan Li, Xia Li, Zhiguang Zhou, Fansu Huang, Xinyin Wu, Yuting Xie, Fang Liu, Juan Li, Xia Li, Zhiguang Zhou

Abstract

Background: Although evidence had demonstrated the effectiveness of smartphone apps in diabetes care, the majority of apps had been developed for type 2 diabetes mellitus (T2DM) patients and targeted at populations outside of China. The effects of applying a smartphone app with structured education on glycemic control in type 1 diabetes mellitus (T1DM) are unclear. A digital, culturally tailored structured education program was developed in a smartphone app (Yi tang yun qiao) to provide an automated, individualized education program aimed at improving self-management skills in patients with T1DM in China. This trial aims to investigate the effectiveness of this smartphone app among Chinese T1DM patients.

Methods and analysis: This single-blinded, 24-week, parallel-group randomized controlled trial of a smartphone app versus routine care will be conducted in Changsha, China. We plan to recruit 138 patients with T1DM who will be randomly allocated into the intervention group (automated, individualized education through an app) or routine care group. The intervention will last for 24 weeks. The primary outcome will be the change in glycated hemoglobin (HbA1c) from baseline to week 24. The secondary outcomes will include time in range, fasting blood glucose, levels of serum triglycerides and cholesterol, blood pressure, body mass index, quality of life, diabetes self-care activities, diabetes self-efficacy, depression, anxiety, and patient satisfaction. Adverse events will be formally documented. Data analysis will be conducted using the intention-to-treat principle with appropriate univariate and multivariate methods. Missing data will be imputed with a multiple imputation method under the "missing at random" assumption.

Discussion: This trial will investigate the effectiveness of an app-based automated structured education intervention for Chinese patients with T1DM. If the intervention is effective, this study will provide a strategy that satisfies the need for effective lifelong diabetes care to reduce the disease burden and related complications resulting from T1DM.

Trial registration: ClinicalTrials.gov NCT04016987 . Registered on 29 October 2019.

Keywords: Artificial intelligence; Automated structured education; Intervention; Randomized controlled trial; Smartphone application (app); Type 1 diabetes.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of the trial
Fig. 2
Fig. 2
Homepage of the smartphone app (Yi Tang Yun Qiao). a The English translation and explanation of homepage. bd The diabetes knowledge assessment module. e Different aspects and levels of SEP diabetes education materials. Keys: SEP, structured education program
Fig. 3
Fig. 3
Full Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) figure

References

    1. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;26(2):77–82. doi: 10.2337/diaclin.26.2.77.
    1. Chamberlain JJ, Kalyani RR, Leal S, Rhinehart AS, Shubrook JH, Skolnik N, et al. Treatment of type 1 diabetes: synopsis of the 2017 American Diabetes Association Standards of Medical Care in DiabetesType 1 Diabetes: Synopsis of 2017 ADA Standards of Medical Care in Diabetes. Ann Intern Med. 2017;167(7):493–498. doi: 10.7326/M17-1259.
    1. Miller KM, Foster NC, Beck RW, Bergenstal RM, DuBose SN, DiMeglio LA, et al. Current state of type 1 diabetes treatment in the U.S.: updated data from the T1D Exchange Clinic Registry. Diabetes Care. 2015;38(6):971–978. doi: 10.2337/dc15-0078.
    1. Disease GBD, Injury I, Prevalence C Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–1858. doi: 10.1016/S0140-6736(18)32279-7.
    1. McGuire HC, Ji L, Kissimova-Skarbek K, Whiting D, Aguirre F, Zhang P, et al. Type 1 diabetes mellitus care and education in China: the 3C study of coverage, cost, and care in Beijing and Shantou. Diabetes Res Clin Pract. 2017;129:32–42. doi: 10.1016/j.diabres.2017.02.027.
    1. Chatterjee S, Davies MJ, Heller S, Speight J, Snoek FJ, Khunti K. Diabetes structured self-management education programmes: a narrative review and current innovations. Lancet Diabetes Endocrinol. 2018;6(2):130–142. doi: 10.1016/S2213-8587(17)30239-5.
    1. American Diabetes A Third-party reimbursement for diabetes care, self-management education, and supplies. Diabetes Care. 2010;33(Suppl 1):S87–S88. doi: 10.2337/dc10-S087.
    1. DAFNE Study Group Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ. 2002;325(7367):746. doi: 10.1136/bmj.325.7367.746.
    1. Plank J, Köhler G, Rakovac I, Semlitsch BM, Horvath K, Bock G, et al. Long-term evaluation of a structured outpatient education programme for intensified insulin therapy in patients with type 1 diabetes: a 12-year follow-up. Diabetologia. 2004;47(8):1370–1375. doi: 10.1007/s00125-004-1456-x.
    1. Wu IXY, Kee JCY, Threapleton DE, Ma RCW, Lam VCK, Lee EKP, et al. Effectiveness of smartphone technologies on glycaemic control in patients with type 2 diabetes: systematic review with meta-analysis of 17 trials. Obes Rev. 2018;19(6):825–838. doi: 10.1111/obr.12669.
    1. Hou C, Xu Q, Diao S, Hewitt J, Li J, Carter B. Mobile phone applications and self-management of diabetes: a systematic review with meta-analysis, meta-regression of 21 randomized trials and GRADE. Diabetes Obes Metab. 2018;20(8):2009–2013. doi: 10.1111/dom.13307.
    1. Zhou W, Chen M, Yuan J, Sun Y. Welltang - a smart phone-based diabetes management application - improves blood glucose control in Chinese people with diabetes. Diabetes Res Clin Pract. 2016;116:105–110. doi: 10.1016/j.diabres.2016.03.018.
    1. Zhang Y, Li X, Luo S, Liu C, Liu F, Zhou Z. Exploration of users’ perspectives and needs and design of a type 1 diabetes management Mobile app: mixed-methods study. JMIR Mhealth Uhealth. 2018;6(9):e11400. doi: 10.2196/11400.
    1. American Diabetes A 1. Strategies for Improving Care. Diabetes Care. 2016;39 Suppl 1:S6–12.
    1. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Schulz KF, Altman DG, Moher D, Group C CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;152(11):726–732. doi: 10.7326/0003-4819-152-11-201006010-00232.
    1. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Med. 1998;15(7):539–553. doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>;2-S.
    1. Zhang X, Wen D, Liang J, Lei J. How the public uses social media wechat to obtain health information in china: a survey study. BMC Med Inform Decis Mak. 2017;17(Suppl 2):66. doi: 10.1186/s12911-017-0470-0.
    1. Efird J. Blocked randomization with randomly selected block sizes. Int J Environ Res Public Health. 2011;8(1):15–20. doi: 10.3390/ijerph8010015.
    1. Saghaei M. Random allocation software for parallel group randomized trials. BMC Med Res Methodol. 2004;4:26. doi: 10.1186/1471-2288-4-26.
    1. Savović J, Jones HE, Altman DG, Harris RJ, Jüni P, Pildal J, et al. Influence of reported study design characteristics on intervention effect estimates from randomized. Controlled Trials Ann Intern Med. 2012;157(6):429–438. doi: 10.7326/0003-4819-157-6-201209180-00537.
    1. Nordwall M, Abrahamsson M, Dhir M, Fredrikson M, Ludvigsson J, Arnqvist HJ. Impact of HbA1c, followed from onset of type 1 diabetes, on the development of severe retinopathy and nephropathy: the VISS Study (Vascular Diabetic Complications in Southeast Sweden) Diabetes Care. 2015;38(2):308–315. doi: 10.2337/dc14-1203.
    1. Beck RW, Bergenstal RM, Riddlesworth TD, Kollman C, Li Z, Brown AS, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019;42(3):400–405. doi: 10.2337/dc18-1444.
    1. Group, BACW Need for regulatory change to incorporate beyond A1C glycemic metrics. Diabetes Care. 2018;41(6):e92–ee4. doi: 10.2337/dci18-0010.
    1. Group, TDR Reliability and validity of a diabetes quality-of-life measure for the diabetes control and complications trial (DCCT) Diabetes Care. 1988;11(9):725–732. doi: 10.2337/diacare.11.9.725.
    1. Ding Y, Kong D, Ni Z, Deng H. Cultural adaptation and revision of diabetes-specific quality of life scale (DQOL) Chin J Behav Med Sci. 2004;13(1):102–103.
    1. Ding Y, Ni Z, Zhang J, Chen G, Feng H. The assessment on reliability and validity of adjusted diabetes quality of life (A-DQOL) scale. Chin J Prev Control Chronic Non Commun Dis. 2000;8(4):160–161.
    1. Toobert DJ, Hampson SE, Glasgow RE. The summary of diabetes self-care activities measure: results from 7 studies and a revised scale. Diabetes Care. 2000;23(7):943–950. doi: 10.2337/diacare.23.7.943.
    1. Lin Q, Yan J, Zheng X, Luo S, Zhang Y, Jiang L, et al. The validity and reliability of the revised Chinese version of diabetes self-management scales for adult type 1 diabetes patients. Chin J Endocrinol Metab. 2019;35(5):378–382.
    1. Anderson RM, Funnell MM, Fitzgerald JT, Marrero DG. The Diabetes Empowerment Scale: a measure of psychosocial self-efficacy. Diabetes Care. 2000;23(6):739–743. doi: 10.2337/diacare.23.6.739.
    1. Anderson RM, Fitzgerald JT, Gruppen LD, Funnell MM, Oh MS. The Diabetes Empowerment Scale-Short Form (DES-SF) Diabetes Care. 2003;26(5):1641–1642. doi: 10.2337/diacare.26.5.1641-a.
    1. Hu B, Lou Q, Tian Y, Zhang Q, Zhu J. Study on empowerment and its influencing factors among diabetes inpatients. Chin J Nurs. 2011;46(3):225–228.
    1. Zheng Y, Wei L, Lianggue G, Guochen Z, Chenggue W. Applicability of the Chinese beck depression inventory. Compr Psychiatry. 1988;29(5):484–489. doi: 10.1016/0010-440X(88)90063-6.
    1. Zheng X, Li Y. State-trait anxiety inventory. Chin Ment Health J. 1997;4:219–220.
    1. Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. doi: 10.1136/bmj.b2393.
    1. Kirwan M, Vandelanotte C, Fenning A, Duncan MJ. Diabetes self-management smartphone application for adults with type 1 diabetes: randomized controlled trial. J Med Internet Res. 2013;15(11):e235. doi: 10.2196/jmir.2588.
    1. Baron JS, Hirani S, Newman SP. A randomised, controlled trial of the effects of a mobile telehealth intervention on clinical and patient-reported outcomes in people with poorly controlled diabetes. J Telemed Telecare. 2017;23(2):207–216. doi: 10.1177/1357633X16631628.

Source: PubMed

3
Abonnieren